高考物理闭合电路的欧姆定律真题汇编(含答案)
高中物理闭合电路的欧姆定律练习题及答案
高中物理闭合电路的欧姆定律练习题及答案一、高考物理精讲专题闭合电路的欧姆定律1.小勇同学设计了一种测定风力大小的装置,其原理如图所示。
E是内阻不计、电动势40Q的定值电阻。
v是由理想电压表改装成的指针式测风力为6V的电源。
R0是一个阻值为显示器。
R是与迎风板A相连的一个压敏电阻,其阻值可随风的压力大小变化而改变,其关系如下表所示。
迎风板人的重力忽略不计。
试求:(1)利用表中的数据归纳出电阻R随风力F变化的函数式;(2)若电压表的最大量程为5V,该装置能测得的最大风力为多少牛顿;(3)当风力F为500N时,电压表示数是多少;(4)如果电源E的电动势降低,要使相同风力时电压表测得的示数不变,需要调换R0,调(只写结论)换后的R0的阻值大小如何变化?R=30-°・°4F(°);(2)F=550N;(3)U=4.8V;(4)阻值变【答案】(1)m大【解析】【分析】【详解】A F(1)通过表中数据可得:=S故R与F成线性变化关系设它们的关系式为:ARR=kF+b代入数据得:R=30-0.04F(Q)①(2)由题意,R0上的电压U R =5V,通过R0的电流为0RU1=青②U =竺=4.8V ⑤R T ③解①~④式,得,当电压表两端电压U 为5V 时,测得的风力最大RF 二550N ④m(3)由①式得R =10Q(4)阻值变大2. 如图所示,水平U 形光滑框架,宽度L=1m ,电阻忽略不计,导体棒ab 的质量m =°.2弦,电阻R=0.50,匀强磁场的磁感应强度B=0.2T ,方向垂直框架向上•现用F=1N 的拉力由静止开始向右拉ab 棒,当ab 棒的速度达到2m/s 时,求此时:(1) ab 棒产生的感应电动势的大小; (2)ab棒产生的感应电流的大小和方向;(3) ab棒所受安培力的大小和方向;【答案】(1)0.4V (2)0.8A 从a 流向b (3)0.16N 水平向左(4)4.2m/s 2 【解析】 【分析】 【详解】试题分析:(1)根据切割产生的感应电动势公式E=BLv ,求出电动势的大小.(2)由闭合电路欧姆定律求出回路中电流的大小,由右手定则判断电流的方向•(3)由安培力公式求出安培力的大小,由左手定则判断出安培力的方向.(4)根据牛顿第二定律求出ab 棒的加速度.(1)根据导体棒切割磁感线的电动势E=BLv=0.2x l x 2V=0.4VE 04(2)由闭合电路欧姆定律得回路电流I ==A =0.8A ,由右手定则可知电流方向R 0.5为:从a 流向b(3)ab 受安培力F =BIL =0.2x 0.8x l N=0.16N ,由左手定则可知安培力方向为:水平向左 (4)根据牛顿第二定律有:F -F =ma ,得ab 杆的加速度安4.2m/s23 14+1 A=0.2A1-0.16/m/s2=0.23.在如图所示的电路中,电阻箱的阻值K是可变的,电源的电动势为E,电源的内阻为r,其余部分的电阻均可忽略不计。
高考物理闭合电路的欧姆定律专项训练及答案含解析
高考物理闭合电路的欧姆定律专项训练及答案含解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路中,19ΩR =,230ΩR =,开关S 闭合时电压表示数为11.4V ,电流表示数为0.2A ,开关S 断开时电流表示数为0.3A ,求:(1)电阻3R 的值.(2)电源电动势和内电阻.【答案】(1)15Ω (2)12V 1Ω【解析】【详解】(1)由图可知,当开关S 闭合时,两电阻并联,根据欧姆定律则有:21123()IR U I R IR R =++ 解得: 315ΩR =(2) 由图可知,当开关S 闭合时,两电阻并联,根据闭合电路的欧姆定律则有:213()11.40.6IR E U I r r R =++=+ S 断开时,根据闭合电路的欧姆定律则有:212()0.3(39)E I R R r r =++=⨯+联立解得:12V E =1Ωr =2.手电筒里的两节干电池(串联)用久了,灯泡发出的光会变暗,这时我们会以为电池没电了。
但有人为了“节约”,在手电筒里装一节新电池和一节旧电池搭配使用。
设一节新电池的电动势E 1=1.5V ,内阻r 1=0.3Ω;一节旧电池的电动势E 2=1.2V ,内阻r 2=4.3Ω。
手电筒使用的小灯泡的电阻R =4.4Ω。
求:(1)当使用两节新电池时,灯泡两端的电压;(2)当使用新、旧电池混装时,灯泡两端的电压及旧电池的内阻r 2上的电压;(3)根据上面的计算结果,分析将新、旧电池搭配使用是否妥当。
【答案】(1)2.64V ;(2)1.29V ;(3)不妥当。
因为旧电池内阻消耗的电压U r 大于其电动势E 2(或其消耗的电压大于其提供的电压),灯泡的电压变小【解析】【分析】【详解】(1)两节新电池串联时,电流 11A 2=20.6E I R r =+ 灯泡两端的电压 2.64V U IR ==(2)一新、一旧电池串联时,电流12120.3A =E E I R r r =+'++ 灯泡两端的电压 1.32V U I R '='=旧电池的内阻r 2上的电压2 1.29V r U I r ='=(3)不妥当。
高考物理高考物理闭合电路的欧姆定律的基本方法技巧及练习题及练习题(含答案)
高考物理高考物理闭合电路的欧姆定律的基本方法技巧及练习题及练习题(含答案)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 3=2R 2=2R 4,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;现将电键S 断开,小球将向电容器某一个极板运动。
若不计电源内阻,求: (1)电源的电动势大小;(2)小球第一次与极板碰撞前瞬间的速度大小。
【答案】(1)2mgdE q=(2)03gd v =【解析】 【详解】(1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)U C =U 4=12E 对带电小球有:2C qU qEmg d d== 得:2mgdE q=(2)电键S 断开后,R 1、R 4串联,则233CE mgd U q==' 小球向下运动与下极板相碰前瞬间,由动能定理得21222C U d mg q mv ⋅-⋅=' 解得:03gdv =2.如图所示电路中,r 是电源的内阻,R 1和R 2是外电路中的电阻,如果用P r ,P 1和P 2分别表示电阻r ,R 1,R 2上所消耗的功率,当R 1=R 2= r 时,求: (1)I r ∶I 1∶I 2等于多少 (2)P r ∶P 1∶P 2等于多少【答案】(1)2:1:1;(2)4:1:1。
【解析】 【详解】(1)设干路电流为I ,流过R 1和R 2的电流分别为I 1和I 2。
由题,R 1和R 2并联,电压相等,电阻也相等,则电流相等,故I 1=I 2=12I 即I r ∶I 1∶I 2=2:1:1(2)根据公式P =I 2R ,三个电阻相等,功率之比等于电流平方之比,即P r :P 1:P 2=4:1:13.如图所示,电路中电源内阻不计,水平放置的平行金属板A 、B 间的距离为d ,金属板长为L ,在两金属板左端正中间位置M ,有一个小液滴以初速度v 0水平向右射入两板间,已知小液滴的质量为m ,带负电,电荷量为q .要使液滴从B 板右侧边缘射出电场,电动势E 是多大?(重力加速度用g 表示)【答案】220222md v mgdE qL q=+ 【解析】 【详解】由闭合电路欧姆定律得2E EI R R R ==+ 两金属板间电压为U BA =IR =2E 由牛顿第二定律得qBAU d-mg =ma 液滴在电场中做类平抛运动,有L =v 0t 21 22d at =联立解得220222md v mgdEqL q=+ 【点睛】题是电路与电场两部分知识的综合,关键是确定电容器的电压与电动势的关系,掌握处理类平抛运动的分析方法与处理规律.4.如图所示,R 为电阻箱,V 为理想电压表.当电阻箱读数为R 1=2Ω时,电压表读数为U 1=4V ;当电阻箱读数为R 2=5Ω时,电压表读数为U 2=5V .求:(1)电源的电动势E 和内阻r .(2)当电阻箱R 读数为多少时,电源的输出功率最大?最大值P m 为多少? 【答案】(1)E =6 V r =1 Ω (2)当R=r =1 Ω时,P m =9 W 【解析】 【详解】(1)由闭合电路欧姆定律E U Ir =+得:111U E U r R =+,代入得44422E r =+=+①, 222U E U r R =+,代入得:5555E r r =+=+②, 联立上式并代入数据解得:E=6V ,r=1Ω(2)当电阻箱的阻值等于电源的内电阻时电源的输出功率最大,即有R=r=1Ω电源的输出功率最大为:22226()92441m E E P I R r W W r r =====⨯;5.如图所示电路中,电源电动势E =16V ,内电阻r =1.0Ω,电阻R 1=9.0Ω,R 2=15Ω。
物理欧姆定律题20套(带答案)及解析【可编辑全文】
可编辑修改精选全文完整版物理欧姆定律题20套(带答案)及解析一、欧姆定律选择题1.如图所示是小刚同学测定小灯泡电功率的电路图,当闭合开关时,发现灯L不亮,电流表有明显示数,电压表示数为零,若故障只出现在灯L和变阻器R中的一处,则下列判断正确的是()A. 灯L断路B. 灯L短路C. 变阻器R断路D. 变阻器R 短路【答案】B【解析】【解答】A. 灯L断路时,电压表串联在电路中,会有示数,而电压表的电阻很大,所以电流表无示数,A不符合题意;B. 灯L短路时,电压表同时被短路,不会有示数,此时电路是通路,所以电流表会有示数,B符合题意;C. 变阻器R断路时,整个电路是断路状态,两电表都不会有示数,C不符合题意;D. 变阻器R短路时,只有灯连接在电路中,电压表和电流表都应该有示数,D不符合题意;故答案为:B。
【分析】本题利用了串联电路的电流特点分析电路故障,小灯泡不发光说明灯泡短路或电路中电流过小或电路某处断路.2.如图所示,若电路中电源两端的电压保持不变,闭合开关S,当滑动变阻器的滑片P从b端向a端滑动的过程中()A. 电压表V1的示数变大,电流表A的示数变大B. 电压表V2的示数变大,电流表A的示数变小C. 电压表V1的示数变大,电流表A的示数变小D. 电压表V2的示数变大,电流表A的示数变大【答案】 A【解析】【解答】解:由图知,定值电阻R1和滑动变阻器R2串联,V1测量R1两端的电压,电压表V2测量R2两端的电压,电流表测量串联电路中的电流。
当滑动变阻器的滑片P从b端向a端滑动的过程中,滑动变阻器的电阻变小,由串联分压的规律可知,变阻器分担的电压变小,即电压表V2示数变小;电源电压不变,所以定值电阻两端的电压就变大,即电压表V1示数变大;定值电阻的阻值不变,滑动变阻器的电阻变小,所以整个电路的总电阻变小,电源电压不变,由欧姆定律可知,电路中的电流就变大,即电流表的示数就变大。
BCD不符合题意,A 符合题意。
高考物理闭合电路的欧姆定律题20套(带答案)及解析
【答案】(1)0Ω(2)6Ω(3)256W;80% 【解析】
【详解】
(1)由
可知 I 最大时 R1 功率最大, 又由
P I2R
I E r R1 R2
可知:当 R2=0 时 R1 消耗功率最大。
(2)设 R2 消耗的电功率为 P1,则
P1
E r +R1 +R2
2
R2
R+
E2
R1+r 2
1
I1=I2= I
2
即 Ir∶I1∶I2=2:1:1
(2)根据公式 P=I2R,三个电阻相等,功率之比等于电流平方之比,即 Pr:P1:P2=4:1:1
6.一电瓶车的电源电动势 E=48V,内阻不计,其电动机线圈电阻 R=3Ω,当它以 v=4m/s 的速度在水平地面上匀速行驶时,受到的阻力 f=48N。除电动机线圈生热外,不计其他能 量损失,求: (1)该电动机的输出功率; (2)电动机消耗的总功率。 【答案】(1)192W ,(2) 384W 。 【解析】 【详解】 (1)电瓶车匀速运动,牵引力为:
q=+4×10﹣6C 的粒子以平行于两板且大小为 =5×102m/s 的初速度从两板的正中间射入,求 粒子在两平行金属板间运动的过程中沿垂直于板方向发生的位移大小?(不考虑粒子的重 力)
【答案】
【解析】根据闭合电路欧姆定律,有:
电场强度: 粒子做类似平抛运动,根据分运动公式,有: L=v0t
y= at2
电路。在水平地面上有 B 5T 的垂直于平面向里的磁场,电阻为 1Ω 的导体棒 ab 垂直放
在宽度为 0.2m 的导体框上。电源 E 是用很多工作电压为 4V 的 18650 锂电池串联而成的, 不计电源内阻及导体框电阻。接通电源后 ab 恰可做匀速直线运动,若 ab 需要克服 400N 的阻力做匀速运动,问: (1)按如图所示电路,ab 会向左还是向右匀速运动? (2)电源 E 相当于要用多少节锂电池串联?
(物理)物理部分电路欧姆定律题20套(带答案)及解析
(物理)物理部分电路欧姆定律题20套(带答案)及解析一、高考物理精讲专题部分电路欧姆定律1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标轴是渐进线);顶角θ=45°的光滑金属长导轨 MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触.已知t=0时,导体棒位于顶角O 处;导体棒的质量为m=2kg ;OM 、ON 接触处O 点的接触电阻为R=0.5Ω,其余电阻不计;回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线.求:(1)t=2s 时流过导体棒的电流强度I 2的大小; (2)1~2s 时间内回路中流过的电量q 的大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)t=2s 时流过导体棒的电流强度I 2的大小为8A ; (2)1~2s 时间内回路中流过的电量q 的大小为6C ;(3)导体棒滑动过程中水平外力F 与横坐标x 的关系式为F=(4+4)N .【解析】试题分析:(1)根据E —t 图像中的图线是过原点的直线特点 有:EI R=得:28I A =(2分) (2)可判断I —t 图像中的图线也是过原点的直线 (1分) 有:t=1s 时14I A =可有:122I I q I t t +=∆=∆(2分) 得:6q C =(1分)(3)因θ=45°,可知任意t 时刻回路中导体棒有效切割长度L=x (2分) 再根据B —x 图像中的图线是双曲线特点:Bx=1 有:()E BLv Bx v ==且2E t =(2分)可得:2v t =,所以导体棒的运动是匀加速直线运动,加速度22/a m s =(2分) 又有:()F BIL BIx Bx I 安===且I 也与时间成正比 (2分) 再有:F F ma -=安(2分)212x at =(2分) 得:44F x =+(2分)考点:本题考查电磁感应、图像、力与运动等知识,意在考查学生读图、试图的能力,利用图像和数学知识解决问题的能力.2.有三盘电灯L1、L2、L3,规格分别是“110V,100W”,“110V,60W”,“110V,25W”要求接到电压是220V的电源上,使每盏灯都能正常发光.可以使用一直适当规格的电阻,请按最优方案设计一个电路,对电阻的要求如何?【答案】电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【解析】将两个电阻较大的电灯“110V 60W”、“110V 25W”与电阻器并联,再与“110V100W”串连接在220V的电源上,电路连接如图所示,当左右两边的总电阻相等时才能各分压110V,使电灯都正常发光.由公式P=UI得L1、L2、L3的额定电流分别为:I1==A=A,I2==A=A,I3=A=A则通过电阻R的电流为 I=I1﹣I2﹣I3=A=AR==Ω=806.7Ω答:电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【点评】本题考查设计电路的能力,关键要理解串联、并联电路的特点,知道用电器在额定电压下才能正常工作,设计好电路后要进行检验,看是否达到题目的要求.3.图示为汽车蓄电池与车灯、小型启动电动机组成的电路,蓄电池内阻为0.05Ω,电表可视为理想电表。
【物理】物理闭合电路的欧姆定律练习题含答案
【物理】物理闭合电路的欧姆定律练习题含答案一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,金属导轨平面动摩擦因数µ=0.2,与水平方向成θ=37°角,其一端接有电动势E =4.5V ,内阻r =0.5Ω的直流电源。
现把一质量m =0.1kg 的导体棒ab 放在导轨上,导体棒与导轨接触的两点间距离L =2m ,电阻R =2.5Ω,金属导轨电阻不计。
在导轨所在平面内,分布着磁感应强度B =0.5T ,方向竖直向上的匀强磁场。
己知sin37°=0.6,cos37°=0.8,g =10m/s 2(不考虑电磁感应影响),求: (1)通过导体棒中电流大小和导体棒所受安培力大小; (2)导体棒加速度大小和方向。
【答案】(1) 1.5A ,1.5N ;(2)2.6m/s 2,方向沿导轨平面向上 【解析】 【详解】(1)由闭合电路欧姆定律可得1.5A E I R r==+ 根据安培力公式可得导体棒所受安培力大小为1.5N F BIL ==(2)对导体棒受力分析,根据牛顿第二定律有cos θsin θ BIL mg f ma --=()cos θsin θN f F mg BIL μμ==+联立可得2 2.6m/s a =方向沿导轨平面向上2.如图所示,质量m=1 kg 的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1 m 的光滑绝缘框架上。
匀强磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内)。
右侧回路中,电源的电动势E=8 V ,内阻r=1 Ω。
电动机M 的额定功率为8 W ,额定电压为4 V ,线圈内阻R 为0.2Ω,此时电动机正常工作(已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2)。
试求:(1)通过电动机的电流I M 以及电动机的输出的功率P 出; (2)通过电源的电流I 总以及导体棒的电流I ;(3)磁感应强度B 的大小。
高考物理部分电路欧姆定律试题(有答案和解析)
高考物理部分电路欧姆定律试题(有答案和解析)一、高考物理精讲专题部分电路欧姆定律1.地球表面附近存在一个竖直向下的电场,其大小约为100V /m 。
在该电场的作用下,大气中正离子向下运动,负离子向上运动,从而形成较为稳定的电流,这叫做晴天地空电流。
地表附近某处地空电流虽然微弱,但全球地空电流的总电流强度很大,约为1800A 。
以下分析问题时假设地空电流在全球各处均匀分布。
(1)请问地表附近从高处到低处电势升高还是降低?(2)如果认为此电场是由地球表面均匀分布的负电荷产生的,且已知电荷均匀分布的带电球面在球面外某处产生的场强相当于电荷全部集中在球心所产生的场强;地表附近电场的大小用E 表示,地球半径用R 表示,静电力常量用k 表示,请写出地表所带电荷量的大小Q 的表达式;(3)取地球表面积S =5.1×1014m 2,试计算地表附近空气的电阻率ρ0的大小; (4)我们知道电流的周围会有磁场,那么全球均匀分布的地空电流是否会在地球表面形成磁场?如果会,说明方向;如果不会,说明理由。
【答案】(1)降低 (2)2ER Q k = (3)2.8×1013Ω·m (4)因为电流关于地心分布是球面对称的,所以磁场分布也必将关于地心球面对称,这就要求磁感线只能沿半径方向;但是磁感线又是闭合曲线。
以上两条互相矛盾,所以地空电流不会产生磁场【解析】试题分析:(1)沿着电场线方向,电势不断降低;(2)根据点电荷的电场强度定义式进行求解电量;(3)利用微元法求一小段空气层为研究对象,根据电阻定律和欧姆定律进行求解电阻率;(4)根据地球磁场的特点进行分析。
(1)由题意知,电场方向竖直向下,故表附近从高处到低处电势降低。
(2)由2Q E k R=,得电荷量的大小2ER Q k = (3)如图从地表开始向上取一小段高度为Δh 的空气层(Δh 远小于地球半径R )则从空气层上表面到下表面之间的电势差为·U E h =∆这段空气层的电阻0h r S ρ∆=,且U I r = 三式联立得: 0ES Iρ= 代入数据解: 130 2.810?m ρ=⨯Ω (4)方法一:如图,为了研究地球表面附近A 点的磁场情况可以考虑关于过A 点的地球半径对称的两处电流1I 和2I ,根据右手螺旋定则可以判断,这两处电流在A 点产生的磁场的磁感应强度刚好方向相反,大小相等,所以1I 和2I 产生的磁场在A 点的合磁感应强度为零。
物理闭合电路的欧姆定律练习题20篇
物理闭合电路的欧姆定律练习题20篇一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路中,R 二40,R2二60,C 二30卩F ,电池的内阻r =20,电动势E =12V .(1)闭合开关S ,求稳定后通过叫的电流. (2)求将开关断开后流过叫的总电荷量. 【答案】(1)1A ;(2)1.8x 10-4C 【解析】 【详解】 (1) 闭合开关S 电路稳定后,电容视为断路,则由图可知,R 1与R2串联,由闭合电路的欧姆定律有:I -E—12_1AR +R +r 4+6+212所以稳定后通过叫的电流为1A .(2) 闭合开关S 后,电容器两端的电压与竹的相等,有U 二1x 6V 二6VC将开关S 断开后,电容器两端的电压与电源的电动势相等,有U '=E=12VC流过R 1的总电荷量为Q=CU '-CU=30x 10-6x (12-6)C 二18x10-4CCC•2.如图所示的电路中,两平行金属板人、B 水平放置,两板间的距离d =40cm 。
电源电动势E =24V ,内电阻r =10,电阻R =15Q 。
闭合开关S ,待电路稳定后,将一带正电的小球从 B 板小孔以初速度v 0=4m/s 竖直向上射入两板间,小球恰能到达A 板。
若小球带电荷量为Q =1X 10-2C ,质量为m =2xl0-2kg ,不考虑空气阻力,取g =10m/s 2。
求: (1) A 、B 两板间的电压U ;(2) 滑动变阻器接入电路的阻值R p ; (3) 电源的输出功率P 。
【答案】(1)8V ;(2)80;(3)23W【解析】【详解】1(1)对小球从B到A的过程,由动能定理:—qU-mgd=0--mv2厶解得:U=8VE-UT(2)由欧姆定律有:1—R+r电流为:I=-RP80解得:R p=(3)根据电功率公式有:P=12G+R)p解得:P=23W3.如图所示,E=l0V,r=1Q,R]=R3=5Q,R2=4Q,C=100吓,当断开时,电容器中带电粒子恰好处于静止状态;求:(1)S闭合后,带电粒子加速度的大小和方向;⑵S闭合后流过R3的总电荷量.【答案】⑴g,方向竖直向上⑵4x10-4C【解析】【详解】(1)开始带电粒子恰好处于静止状态,必有qE=mg且qE竖直向上.S闭合后,qE=mg的平衡关系被打破.S断开时,带电粒子恰好处于静止状态,设电容器两极板间距离为d,有RU=-2E=4VC R+R+r'21qUC=mgdS闭合后,—U'=E=8VC R+r2设带电粒子加速度为a,则qU'j-mg=ma,30“FT 才汀缈其解得a=g,方向竖直向上.(2)S 闭合后,流过R 3的总电荷量等于电容器上电荷的增加量,所以\Q=C (U C ,-U C )=4X 10-4C4.如图所示,电源电动势E =30V ,内阻r =10,电阻R=4Q ,R 2=10Q .两正对的平行金属 板长L =0.2m ,两板间的距离d =0.1m .闭合开关S 后,一质量m =5x10一8kg ,电荷量Q =+4X 10.6C的粒子以平行于两板且大小为:=5x102m/s 的初速度从两板的正中间射入,求粒子在两平行金属板间运动的过程中沿垂直于板方向发生的位移大小?(不考虑粒子的重力)【解析】根据闭合电路欧姆定律,有:U20VE"=—=——=200卩加电场强度:粒子做类似平抛运动,根据分运动公式,有: L=v °t17y=at 2m 1Q ET 214X 10~6X 200X 0 y =~-=-X=1.28x 联立解得:点睛:本题是简单的力电综合问题,关键是明确电路结构和粒子的运动规律,然后根据闭合电路欧姆定律和类似平抛运动的分运动公式列式求解.5.如图所示,电路由一个电动势为E 、内电阻为r 的电源和一个滑动变阻器R 组成。
高中物理闭合电路的欧姆定律试题(有答案和解析)含解析
高中物理闭合电路的欧姆定律试题(有答案和解析)含解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路,A 、B 两点间接上一电动势为4V 、内电阻为1Ω的直流电源,三个电阻的阻值均为4Ω,电容器的电容为20μF ,电流表内阻不计,求:(1)闭合开关S 后,电容器所带电荷量;(2)断开开关S 后,通过R 2的电荷量。
【答案】(1)6.4×10-5C ;(2)53.210C -⨯【解析】【分析】【详解】(1)当电键S 闭合时,电阻1R 、2R 被短路,据欧姆定律得电流表的读数为34A 0.8A 14E I r R ===++ 电容器所带电荷量 653320100.84C 6.410C Q CU CIR --=⨯⨯⨯=⨯==(2)断开电键后,电容器相当于电源,外电路1R 、2R 并联后与3R 串联,由于各个电阻相等,则通过2R 的电荷量为51 3.210C 2Q Q -==⨯'2.如图所示,水平U 形光滑框架,宽度1L m =,电阻忽略不计,导体棒ab 的质量0.2m kg =,电阻0.5R =Ω,匀强磁场的磁感应强度0.2B T =,方向垂直框架向上.现用1F N =的拉力由静止开始向右拉ab 棒,当ab 棒的速度达到2/m s 时,求此时: ()1ab 棒产生的感应电动势的大小;()2ab 棒产生的感应电流的大小和方向;()3ab 棒所受安培力的大小和方向;()4ab 棒的加速度的大小.【答案】(1)0.4V (2)0.8A 从a 流向b (3)0.16N 水平向左 (4)24.2/m s【解析】【分析】【详解】试题分析:(1)根据切割产生的感应电动势公式E=BLv ,求出电动势的大小.(2)由闭合电路欧姆定律求出回路中电流的大小,由右手定则判断电流的方向.(3)由安培力公式求出安培力的大小,由左手定则判断出安培力的方向.(4)根据牛顿第二定律求出ab 棒的加速度.(1)根据导体棒切割磁感线的电动势0.2120.4E BLv V V ==⨯⨯=(2)由闭合电路欧姆定律得回路电流0.40.80.5E I A A R ===,由右手定则可知电流方向为:从a 流向b(3)ab 受安培力0.20.810.16F BIL N N ==⨯⨯=,由左手定则可知安培力方向为:水平向左(4)根据牛顿第二定律有:F F ma -=安,得ab 杆的加速度2210.16/ 4.2/0.2F F a m s m s m 安--=== 3.如图所示,质量m=1 kg 的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1 m 的光滑绝缘框架上。
高考物理闭合电路的欧姆定律题20套(带答案)及解析(1)
高考物理闭合电路的欧姆定律题20套(带答案)及解析(1)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,水平U 形光滑框架,宽度1L m =,电阻忽略不计,导体棒ab 的质量0.2m kg =,电阻0.5R =Ω,匀强磁场的磁感应强度0.2B T =,方向垂直框架向上.现用1F N =的拉力由静止开始向右拉ab 棒,当ab 棒的速度达到2/m s 时,求此时: ()1ab 棒产生的感应电动势的大小;()2ab 棒产生的感应电流的大小和方向;()3ab 棒所受安培力的大小和方向;()4ab 棒的加速度的大小.【答案】(1)0.4V (2)0.8A 从a 流向b (3)0.16N 水平向左 (4)24.2/m s【解析】【分析】【详解】试题分析:(1)根据切割产生的感应电动势公式E=BLv ,求出电动势的大小.(2)由闭合电路欧姆定律求出回路中电流的大小,由右手定则判断电流的方向.(3)由安培力公式求出安培力的大小,由左手定则判断出安培力的方向.(4)根据牛顿第二定律求出ab 棒的加速度.(1)根据导体棒切割磁感线的电动势0.2120.4E BLv V V ==⨯⨯=(2)由闭合电路欧姆定律得回路电流0.40.80.5E I A A R ===,由右手定则可知电流方向为:从a 流向b(3)ab 受安培力0.20.810.16F BIL N N ==⨯⨯=,由左手定则可知安培力方向为:水平向左(4)根据牛顿第二定律有:F F ma -=安,得ab 杆的加速度2210.16/ 4.2/0.2F F a m s m s m 安--=== 2.如图所示,R 1=R 3=2R 2=2R 4,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;现将电键S 断开,小球将向电容器某一个极板运动。
若不计电源内阻,求:(1)电源的电动势大小;(2)小球第一次与极板碰撞前瞬间的速度大小。
高考物理闭合电路的欧姆定律真题汇编(含答案)及解析
高考物理闭合电路的欧姆定律真题汇编(含答案)及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电阻R 1=1.5Ω,电动机的线圈电阻R 0=1.0Ω。
电动机正常工作时,电压表的示数U 1=3.0V ,求:(1)电源的路端电压;(2)电动机输出的机械功率。
【答案】(1)9V ;(2)8W【解析】【分析】【详解】(1)流过电源的电流为I ,则11IR U =路端电压为U ,由闭合电路欧姆定律U E Ir =-解得9V U =(2)电动机两端的电压为M 1()U E I R r =-+电动机消耗的机械功率为2M 0P U I I R =-解得8W P =2.如图所示,R 1=R 3=2R 2=2R 4,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;现将电键S 断开,小球将向电容器某一个极板运动。
若不计电源内阻,求:(1)电源的电动势大小;(2)小球第一次与极板碰撞前瞬间的速度大小。
【答案】(1)2mgd E q =(2)03gd v = 【解析】【详解】 (1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)U C =U 4=12E 对带电小球有: 2C qU qE mg d d == 得:2mgd E q= (2)电键S 断开后,R 1、R 4串联,则 233CE mgd U q ==' 小球向下运动与下极板相碰前瞬间,由动能定理得21222C U d mg q mv ⋅-⋅=' 解得:03gd v =3.在如图所示的电路中,电阻箱的阻值R 是可变的,电源的电动势为E ,电源的内阻为r ,其余部分的电阻均可忽略不计。
(1)闭合开关S ,写出电路中的电流I 和电阻箱的电阻R 的关系表达式;(2)若电源的电动势E 为3V ,电源的内阻r 为1Ω,闭合开关S ,当把电阻箱R 的阻值调节为14Ω时,电路中的电流I 为多大?此时电源两端的电压(路端电压)U 为多大?【答案】(1) E I R r=+ (2)0.2A 2.8V 【解析】【详解】 (1)由闭合电路的欧姆定律,得关系表达式:E I R r=+ (2)将E =3V ,r =1Ω,R =14Ω,代入上式得:电流表的示数I =3A 141+=0.2A 电源两端的电压U=IR =2.8V4.如图所示,电路中电源内阻不计,水平放置的平行金属板A 、B 间的距离为d ,金属板长为L ,在两金属板左端正中间位置M ,有一个小液滴以初速度v 0水平向右射入两板间,已知小液滴的质量为m ,带负电,电荷量为q .要使液滴从B 板右侧边缘射出电场,电动势E 是多大?(重力加速度用g 表示)【答案】220222md v mgd E qL q=+ 【解析】【详解】 由闭合电路欧姆定律得2E E I R R R==+ 两金属板间电压为U BA =IR =2E 由牛顿第二定律得q BA U d-mg =ma 液滴在电场中做类平抛运动,有L =v 0t 21 22dat = 联立解得220222md v mgd E qL q=+ 【点睛】题是电路与电场两部分知识的综合,关键是确定电容器的电压与电动势的关系,掌握处理类平抛运动的分析方法与处理规律.5.如图所示,电流表A 视为理想电表,已知定值电阻R 0=4Ω,滑动变阻器R 阻值范围为0~10Ω,电源的电动势E =6V .闭合开关S ,当R =3Ω时,电流表的读数I =0.5A 。
高中物理部分电路欧姆定律题20套(带答案)
高中物理部分电路欧姆定律题20套(带答案)一、高考物理精讲专题部分电路欧姆定律1.如图所示的电路中,两平行金属板A、B水平放置,极板长L=60 cm,两板间的距离d=30 cm,电源电动势E=36 V,内阻r=1 Ω,电阻R0=9 Ω,闭合开关S,待电路稳定后,将一带负电的小球(可视为质点)从B板左端且非常靠近B板的位置以初速度v0=6 m/s 水平向右射入两板间,小球恰好从A板右边缘射出.已知小球带电荷量q=2×10-2 C,质量m=2×10-2 kg,重力加速度g取10 m/s2,求:(1)带电小球在平行金属板间运动的加速度大小;(2)滑动变阻器接入电路的阻值.【答案】(1)60m/s2;(2)14Ω.【解析】【详解】(1)小球进入电场中做类平抛运动,水平方向做匀速直线运动,竖直方向做匀加速运动,则有:水平方向:L=v0t竖直方向:d=at2由上两式得:(2)根据牛顿第二定律,有:qE-mg=ma电压:U=Ed解得:U=21V设滑动变阻器接入电路的电阻值为R,根据串并联电路的特点有:解得:R=14Ω.【点睛】本题是带电粒子在电场中类平抛运动和电路问题的综合,容易出错的是受习惯思维的影响,求加速度时将重力遗忘,要注意分析受力情况,根据合力求加速度.2.如图所示为检测某传感器的电路图,传感器上标有“3 V 0.9 W”的字样(传感器可看做一个纯电阻),滑动变阻器R0上标有“10 Ω 1 A”的字样,电流表的量程为0.6 A,电压表的量程为3 V.求(1)传感器的电阻和额定电流?(2)为了确保电路各部分的安全,在a、b之间所加的电源电压最大值是多少?(3)如果传感器的电阻变化超过标准值1 Ω,则该传感器就失去作用.实际检测时,将一个恒压电源加在图中a、b之间,闭合开关S,通过调节R0来改变电路中的电流和R0两端的电压,检测记录如下:电压表示数U/V电流表示数I/A第一次1.480.16第二次0.910.22若不计检测电路对传感器电阻的影响,你认为这个传感器是否仍可使用?此时a、b间所加的电压是多少?【答案】(1)10 Ω 0.3 A (2)6 V (3)仍可使用 3 V【解析】(1)R传==Ω=10 ΩI传==A=0.3 A(2)最大电流I=I传=0.3 A电源电压最大值U m=U传+U0U传为传感器的额定电压,U0为R0m=10 Ω时R0两端的电压,即U0=I传·R0m=0.3×10 V=3 V所以U m=U传+U0=3 V+3 V=6 V(3)设实际检测时加在a、b间的电压为U,传感器的实际电阻为R传′,根据第一次实验记录数据有U=I1R传′+U1根据第二次实验记录数据有U=I2R传′+U2代入数据解得R传′=9.5 Ω,U=3 V传感器的电阻变化为ΔR=R传-R传′=10 Ω-9.5 Ω=0.5 Ω<1 Ω所以此传感器仍可使用3.科技小组的同学们设计了如图18甲所示的恒温箱温控电路(用于获得高于室温,控制在一定范围内的“室温”)包括工作电路和控制电路两部分,其中R'为阻值可以调节的可变电阻,R为热敏电阻(置于恒温箱内),其阻值随温度变化的关系如图18乙所示,继电器线圈电阻R0为50欧姆:(1)如图18甲所示状态,加热器是否处于加热状态?(2)已知当控制电路的电流达到0.04 A时继电器的衔铁被吸合;当控制电路的电流减小0.036A时,衔铁被释放。
高考物理闭合电路的欧姆定律题20套(带答案)及解析
高考物理闭合电路的欧姆定律题20套(带答案)及解析一、高考物理精讲专题闭合电路的欧姆定律1.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V(2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .2.如图所示电路,电源电动势为1.5V ,内阻为0.12Ω,外电路的电阻为1.38Ω,求电路中的电流和路端电压.【答案】1A; 1.38V【解析】【分析】【详解】闭合开关S后,由闭合电路欧姆定律得:电路中的电流I为:I==A=1A路端电压为:U=IR=1×1.38=1.38(V)3.如图所示电路中,r是电源的内阻,R1和R2是外电路中的电阻,如果用P r,P1和P2分别表示电阻r,R1,R2上所消耗的功率,当R1=R2= r时,求:(1)I r∶I1∶I2等于多少(2)P r∶P1∶P2等于多少【答案】(1)2:1:1;(2)4:1:1。
高考必刷题物理闭合电路的欧姆定律题及解析
高考必刷题物理闭合电路的欧姆定律题及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 2=2.5Ω,滑动变阻器R 的最大阻值为10Ω,电压表为理想电表。
闭合电键S ,移动滑动变阻器的滑片P ,当滑片P 分别滑到变阻器的两端a 和b 时,电源输出功率均为4.5W 。
求 (1)电源电动势;(2)滑片P 滑动到变阻器b 端时,电压表示数。
【答案】(1) 12V E = (2) 7.5V U = 【解析】 【详解】(1)当P 滑到a 端时,21124.5RR R R R R =+=Ω+外 电源输出功率:22111(E P I R R R r==+外外外) 当P 滑到b 端时,1212.5R R R =+=Ω外电源输出功率:22222(E P I R R R r==+'外外外) 得:7.5r =Ω 12V E =(2)当P 滑到b 端时,20.6A EI R r==+'外电压表示数:7.5V U E I r ='=-2.如图所示,水平U 形光滑框架,宽度1L m =,电阻忽略不计,导体棒ab 的质量0.2m kg =,电阻0.5R =Ω,匀强磁场的磁感应强度0.2B T =,方向垂直框架向上.现用1F N =的拉力由静止开始向右拉ab 棒,当ab 棒的速度达到2/m s 时,求此时:()1ab 棒产生的感应电动势的大小; ()2ab 棒产生的感应电流的大小和方向; ()3ab 棒所受安培力的大小和方向; ()4ab 棒的加速度的大小.【答案】(1)0.4V (2)0.8A 从a 流向b (3)0.16N 水平向左 (4)24.2/m s 【解析】 【分析】 【详解】试题分析:(1)根据切割产生的感应电动势公式E=BLv ,求出电动势的大小.(2)由闭合电路欧姆定律求出回路中电流的大小,由右手定则判断电流的方向.(3)由安培力公式求出安培力的大小,由左手定则判断出安培力的方向.(4)根据牛顿第二定律求出ab 棒的加速度.(1)根据导体棒切割磁感线的电动势0.2120.4E BLv V V ==⨯⨯= (2)由闭合电路欧姆定律得回路电流0.40.80.5E I A A R ===,由右手定则可知电流方向为:从a 流向b(3)ab 受安培力0.20.810.16F BIL N N ==⨯⨯=,由左手定则可知安培力方向为:水平向左(4)根据牛顿第二定律有:F F ma -=安,得ab 杆的加速度2210.16/ 4.2/0.2F F a m s m s m安--===3.如图所示,电解槽A 和电炉B 并联后接到电源上,电源内阻r =1Ω,电炉电阻R =19Ω,电解槽电阻r ′=0.5Ω.当S 1闭合、S 2断开时,电炉消耗功率为684W ;S 1、S 2都闭合时,电炉消耗功率为475W(电炉电阻可看作不变).试求:(1)电源的电动势;(2)S 1、S 2闭合时,流过电解槽的电流大小;(3)S 1、S 2闭合时,电解槽中电能转化成化学能的功率. 【答案】(1)120V (2)20A (3)1700W 【解析】(1)S 1闭合,S 2断开时电炉中电流106P I A R== 电源电动势0()120E I R r V =+=; (2)S 1、S 2都闭合时电炉中电流为25B P I A R== 电源路端电压为95R U I R V == 流过电源的电流为25E UI A r-== 流过电槽的电流为20A B I I I A =-=; (3)电解槽消耗的电功率1900A A P I U W ==电解槽内热损耗功率2'200A P I r W ==热电解槽转化成化学能的功率为1700A P P P W 化热=-=.点睛:电解槽电路在正常工作时是非纯电阻电路,不能用欧姆定律求解其电流,只能根据电路中电流关系求电流.4.如图所示的电路中,电源电动势E =12 V ,内阻r =0.5 Ω,电动机的电阻R 0=1.0 Ω,电阻R 1=2.0Ω。
(物理)物理闭合电路的欧姆定律练习题含答案
(物理)物理闭合电路的欧姆定律练习题含答案一、高考物理精讲专题闭合电路的欧姆定律1.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电阻R 1=1.5Ω,电动机的线圈电阻R 0=1.0Ω。
电动机正常工作时,电压表的示数U 1=3.0V ,求: (1)电源的路端电压; (2)电动机输出的机械功率。
【答案】(1)9V ;(2)8W 【解析】 【分析】 【详解】(1)流过电源的电流为I ,则11IR U =路端电压为U ,由闭合电路欧姆定律U E Ir =-解得9V U =(2)电动机两端的电压为M 1()U E I R r =-+电动机消耗的机械功率为2M 0P U I I R =-解得8W P =2.爱护环境,人人有责;改善环境,从我做起;文明乘车,低碳出行。
随着冬季气候的变化,12月6号起,阳泉开始实行机动车单双号限行。
我市的公交和出租车,已基本实现全电动覆盖。
既节约了能源,又保护了环境。
电机驱动的原理,可以定性简化成如图所示的电路。
在水平地面上有5B =T 的垂直于平面向里的磁场,电阻为1Ω的导体棒ab 垂直放在宽度为0.2m 的导体框上。
电源E 是用很多工作电压为4V 的18650锂电池串联而成的,不计电源内阻及导体框电阻。
接通电源后ab 恰可做匀速直线运动,若ab 需要克服400N 的阻力做匀速运动,问:(1)按如图所示电路,ab 会向左还是向右匀速运动? (2)电源E 相当于要用多少节锂电池串联?【答案】(1)向右;(2)100节 【解析】 【分析】 【详解】(1)电流方向由a 到b ,由左手定则可知导体棒ab 受到向右的安培力,所以其向右匀速运动。
(2)ab 做匀速运动,安培力与阻力相等,即400N BIL F ==阻解得400I =A则400V U IR ==电源E 相当于要用锂电池串联节数4001004U n E ===节3.如图所示,电路中电源内阻不计,水平放置的平行金属板A 、B 间的距离为d ,金属板长为L ,在两金属板左端正中间位置M ,有一个小液滴以初速度v 0水平向右射入两板间,已知小液滴的质量为m ,带负电,电荷量为q .要使液滴从B 板右侧边缘射出电场,电动势E 是多大?(重力加速度用g 表示)【答案】22222md v mgd EqLq=+【解析】【详解】由闭合电路欧姆定律得2E EIR R R==+两金属板间电压为U BA=IR=2E由牛顿第二定律得q BAUd-mg=ma液滴在电场中做类平抛运动,有L=v0t 2122dat=联立解得22222md v mgdEqL q=+【点睛】题是电路与电场两部分知识的综合,关键是确定电容器的电压与电动势的关系,掌握处理类平抛运动的分析方法与处理规律.4.如图所示,R为电阻箱,V为理想电压表.当电阻箱读数为R1=2Ω时,电压表读数为U1=4V;当电阻箱读数为R2=5Ω时,电压表读数为U2=5V.求:(1)电源的电动势E和内阻r.(2)当电阻箱R读数为多少时,电源的输出功率最大?最大值P m为多少?【答案】(1)E=6 V r=1 Ω (2)当R=r=1 Ω时,P m=9 W【解析】【详解】(1)由闭合电路欧姆定律E U Ir=+得:111UE U rR=+,代入得44422E r=+=+①,222UE U rR=+,代入得:5555E r r=+=+②,联立上式并代入数据解得:E=6V,r=1Ω(2)当电阻箱的阻值等于电源的内电阻时电源的输出功率最大,即有R=r=1Ω电源的输出功率最大为:22 226()92441mE EP I R r W Wr r=====⨯;5.如图所示,在A、B两点间接一电动势为4V,内电阻为1Ω的直流电源,电阻1R、2R、3R的阻值均为4Ω,电容器的电容为30Fμ,电流表内阻不计,当电键S闭合时,求:(1)电流表的读数.(2)电容器所带的电量.(3)断开电键S后,通过2R的电量.【答案】(1)0.8A;(2)59.610C-⨯;(3)54.810C-⨯【解析】试题分析:当电键S闭合时,电阻1R、2R被短路.根据欧姆定律求出流过3R的电流,即电流表的读数.电容器的电压等于3R两端的电压,求出电压,再求解电容器的电量.断开电键S后,电容器通过1R、2R放电,1R、2R相当并联后与3R串联.再求解通过2R的电量.(1)当电键S闭合时,电阻1R、2R被短路.根据欧姆定律得:电流表的读数340.841EI A AR r===++(2)电容器所带的电量653330100.849.610Q CU CIR C C--===⨯⨯⨯=⨯(3)断开电键S后,电容器相当于电源,外电路是1R、2R相当并联后与3R串联.由于各个电阻都相等,则通过2R的电量为514.8102Q Q C-==⨯'6.如图所示的电路中,电源电动势E d=6V,内阻r=1Ω,一定值电阻R0=9.0Ω,变阻箱阻值在0﹣99.99Ω范围。
闭合电路的欧姆定律练习题含答案及解析
闭合电路的欧姆定律练习题含答案及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 3=2R 2=2R 4,电键S 闭合时,间距为d 的平行板电容器C 的正中间有一质量为m ,带电量为q 的小球恰好处于静止状态;现将电键S 断开,小球将向电容器某一个极板运动。
若不计电源内阻,求: (1)电源的电动势大小;(2)小球第一次与极板碰撞前瞬间的速度大小。
【答案】(1)2mgdE q=(2)03gd v =【解析】 【详解】(1)电键S 闭合时,R 1、R 3并联与R 4串联,(R 2中没有电流通过)U C =U 4=12E 对带电小球有:2C qU qEmg d d== 得:2mgdE q=(2)电键S 断开后,R 1、R 4串联,则233CE mgd U q==' 小球向下运动与下极板相碰前瞬间,由动能定理得21222C U d mg q mv ⋅-⋅=' 解得:03gdv =2.在如图所示的电路中,电阻箱的阻值R 是可变的,电源的电动势为E ,电源的内阻为r ,其余部分的电阻均可忽略不计。
(1)闭合开关S ,写出电路中的电流I 和电阻箱的电阻R 的关系表达式;(2)若电源的电动势E 为3V ,电源的内阻r 为1Ω,闭合开关S ,当把电阻箱R 的阻值调节为14Ω时,电路中的电流I 为多大?此时电源两端的电压(路端电压)U 为多大?【答案】(1) EI R r=+ (2)0.2A 2.8V 【解析】 【详解】(1)由闭合电路的欧姆定律,得关系表达式:EI R r=+ (2)将E =3V ,r =1Ω,R =14Ω,代入上式得: 电流表的示数I =3A 141+=0.2A 电源两端的电压U=IR =2.8V3.如图所示,金属导轨平面动摩擦因数µ=0.2,与水平方向成θ=37°角,其一端接有电动势E =4.5V ,内阻r =0.5Ω的直流电源。
现把一质量m =0.1kg 的导体棒ab 放在导轨上,导体棒与导轨接触的两点间距离L =2m ,电阻R =2.5Ω,金属导轨电阻不计。
高考物理闭合电路的欧姆定律真题汇编(含答案)及解析
高考物理闭合电路的欧姆定律真题汇编(含答案)及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路中,19ΩR =,230ΩR =,开关S 闭合时电压表示数为11.4V ,电流表示数为0.2A ,开关S 断开时电流表示数为0.3A ,求:(1)电阻3R 的值.(2)电源电动势和内电阻.【答案】(1)15Ω (2)12V 1Ω【解析】【详解】(1)由图可知,当开关S 闭合时,两电阻并联,根据欧姆定律则有:21123()IR U I R IR R =++ 解得: 315ΩR =(2) 由图可知,当开关S 闭合时,两电阻并联,根据闭合电路的欧姆定律则有:213()11.40.6IR E U I r r R =++=+ S 断开时,根据闭合电路的欧姆定律则有:212()0.3(39)E I R R r r =++=⨯+联立解得:12V E =1Ωr =2.如图所示的电路中,电源电动势E =12 V ,内阻r =0.5 Ω,电动机的电阻R 0=1.0 Ω,电阻R 1=2.0Ω。
电动机正常工作时,电压表的示数U 1=4.0 V ,求:(1)流过电动机的电流;(2)电动机输出的机械功率;(3)电源的工作效率。
【答案】(1)2A ;(2)14W ;(3)91.7%【解析】【分析】【详解】(1)电动机正常工作时,总电流为I =11U R = 2A (2)电动机两端的电压为U =E -Ir -U 1=(12-2×0.5-4.0) V =7 V电动机消耗的电功率为P 电=UI =7×2 W =14 W电动机的热功率为P 热=I 2R 0=22×1 W =4 W电动机输出的机械功率P 机=P 电-P 热=10 W(3)电源释放的电功率为P 释=EI =12×2 W =24 W有用功率P 有=2122W UI I R +=电源的工作效率=91.7%P P η=有释3.在图中R 1=14Ω,R 2=9Ω.当开关处于位置1时,电流表读数I 1=0.2A ;当开关处于位置2时,电流表读数I 2=0.3A .求电源的电动势E 和内电阻r .【答案】3V ,1Ω【解析】【详解】当开关处于位置1时,根据闭合电路欧姆定律得:E=I1(R1+r)当开关处于位置2时,根据闭合电路欧姆定律得:E=I2(R2+r)代入解得:r=1Ω,E=3V答:电源的电动势E=3V,内电阻r=1Ω.4.利用如图所示的电路可以测量电源的电动势和内电阻.当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为0.20A和2.90V.改变滑片的位置后,两表的示数分别为0.40A和2.80V.这个电源的电动势和内电阻各是多大?【答案】E=3.00V,r=0.50Ω【解析】【分析】【详解】根据全电路欧姆定律可得:;,联立解得:E=3.00V,r=0.50Ω5.如图的电路中,电池组的电动势E=30V,电阻,两个水平放置的带电金属板间的距离d=1.5cm。
高中物理闭合电路的欧姆定律题20套(带答案)
高中物理闭合电路的欧姆定律题20套(带答案)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,电解槽A 和电炉B 并联后接到电源上,电源内阻r =1Ω,电炉电阻R =19Ω,电解槽电阻r ′=0.5Ω.当S 1闭合、S 2断开时,电炉消耗功率为684W ;S 1、S 2都闭合时,电炉消耗功率为475W(电炉电阻可看作不变).试求:(1)电源的电动势;(2)S 1、S 2闭合时,流过电解槽的电流大小;(3)S 1、S 2闭合时,电解槽中电能转化成化学能的功率. 【答案】(1)120V (2)20A (3)1700W 【解析】(1)S 1闭合,S 2断开时电炉中电流106P I A R== 电源电动势0()120E I R r V =+=; (2)S 1、S 2都闭合时电炉中电流为25B P I A R== 电源路端电压为95R U I R V == 流过电源的电流为25E UI A r-== 流过电槽的电流为20A B I I I A =-=; (3)电解槽消耗的电功率1900A A P I U W ==电解槽内热损耗功率2'200A P I r W ==热电解槽转化成化学能的功率为1700A P P P W 化热=-=.点睛:电解槽电路在正常工作时是非纯电阻电路,不能用欧姆定律求解其电流,只能根据电路中电流关系求电流.2.如图所示,R 为电阻箱,V 为理想电压表.当电阻箱读数为R 1=2Ω时,电压表读数为U 1=4V ;当电阻箱读数为R 2=5Ω时,电压表读数为U 2=5V .求:(1)电源的电动势E 和内阻r .(2)当电阻箱R 读数为多少时,电源的输出功率最大?最大值P m 为多少?【答案】(1)E =6 V r =1 Ω (2)当R=r =1 Ω时,P m =9 W 【解析】 【详解】(1)由闭合电路欧姆定律E U Ir =+得:111U E U r R =+,代入得44422E r =+=+①, 222U E U r R =+,代入得:5555E r r =+=+②, 联立上式并代入数据解得:E=6V ,r=1Ω(2)当电阻箱的阻值等于电源的内电阻时电源的输出功率最大,即有R=r=1Ω电源的输出功率最大为:22226()92441m E E P I R r W W r r =====⨯;3.利用电动机通过如图所示的电路提升重物,已知电源电动势6E V =,电源内阻1r =Ω,电阻3R =Ω,重物质量0.10m kg =,当将重物固定时,理想电压表的示数为5V ,当重物不固定,且电动机最后以稳定的速度匀速提升重物时,电压表的示数为5.5V ,(不计摩擦,g 取210/).m s 求:()1串联入电路的电动机内阻为多大?()2重物匀速上升时的速度大小.()3匀速提升重物3m 需要消耗电源多少能量?【答案】(1)2Ω;(2)1.5/m s (3)6J 【解析】 【分析】根据闭合电路欧姆定律求出电路中的电流和电动机输入电压.电动机消耗的电功率等于输出的机械功率和发热功率之和,根据能量转化和守恒定律列方程求解重物匀速上升时的速度大小,根据W EIt =求解匀速提升重物3m 需要消耗电源的能量. 【详解】()1由题,电源电动势6E V =,电源内阻1r =Ω,当将重物固定时,电压表的示数为5V ,则根据闭合电路欧姆定律得 电路中电流为6511E U I A r --===电动机的电阻51321M U IR R I --⨯==Ω=Ω ()2当重物匀速上升时,电压表的示数为 5.5U V =,电路中电流为''0.5E U I A r-==电动机两端的电压为()()'60.5314M U E I R r V V =-+=-⨯+= 故电动机的输入功率'40.52M P U I W ==⨯= 根据能量转化和守恒定律得2''M U I mgv I R =+代入解得, 1.5/v m s =()3匀速提升重物3m 所需要的时间321.5h t s v===, 则消耗的电能'60.526W EI t J ==⨯⨯=【点睛】本题是欧姆定律与能量转化与守恒定律的综合应用.对于电动机电路,不转动时,是纯电阻电路,欧姆定律成立;当电动机正常工作时,其电路是非纯电阻电路,欧姆定律不成立.4.某实验小组设计了如图所示的欧姆表电路,通过调控电键S 和调节电阻箱2R ,可使欧姆表具有“1⨯”和“10⨯”两种倍率。
高考物理部分电路欧姆定律题20套(带答案)及解析
高考物理部分电路欧姆定律题20套(带答案)及解析一、高考物理精讲专题部分电路欧姆定律1.恒定电流电路内各处电荷的分布是稳定的,任何位置的电荷都不可能越来越多或越来越少,此时导内的电场的分布和静电场的性质是一样的,电路内的电荷、电场的分布都不随时间改变,电流恒定.(1)a. 写出图中经△t 时间通过0、1、2,3的电量0q ∆、1q ∆、2q ∆、3q ∆满足的关系,并推导并联电路中干路电流0I 和各支路电流1I 、2I 、3I 之间的关系;b. 研究将一定量电荷△q 通过如图不同支路时电场力做功1W ∆、2W ∆、3W ∆的关系并说明理由;由此进一步推导并联电路中各支路两端电压U 1、U 2、U 3之间的关系;c. 推导图中并联电路等效电阻R 和各支路电阻R 1、R 2、R 3的关系.(2)定义电流密度j 的大小为通过导体横截面电流强度I 与导体横截面S 的比值,设导体的电阻率为ρ,导体内的电场强度为E ,请推导电流密度j 的大小和电场强度E 的大小之间满足的关系式.【答案】(1)a.0123q q q q ∆=∆+∆+∆,0123 I I I I =++ b.123W W W ∆=∆=∆,123U U U == c. 1231111R R R R =++ (2)j E l ρ= 【解析】 【详解】(l )a. 0123q q q q ∆=∆+∆+∆03120123q q q qI I I I t t t t∆∆∆∆====∆∆∆∆ ∴0123 I I I I =++即并联电路总电流等于各支路电流之和。
b. 123W W W ∆=∆=∆理由:在静电场和恒定电场中,电场力做功和路径无关,只和初末位置有关. 可以引进电势能、电势、电势差(电压)的概念.11W U q ∆=∆,22W U q ∆=∆,33W U q∆=∆ ∴123U U U ==即并联电路各支路两端电压相等。
c. 由欧姆定律以及a 、b 可知:1231111R RR R =++ (2)I j S =,U I R=,U EL =,L R S ρ= ∴j E lρ=2.如图中所示B 为电源,电动势E=27V ,内阻不计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理闭合电路的欧姆定律真题汇编(含答案)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路中,19ΩR =,230ΩR =,开关S 闭合时电压表示数为11.4V ,电流表示数为0.2A ,开关S 断开时电流表示数为0.3A ,求:(1)电阻3R 的值.(2)电源电动势和内电阻.【答案】(1)15Ω (2)12V 1Ω【解析】【详解】(1)由图可知,当开关S 闭合时,两电阻并联,根据欧姆定律则有:21123()IR U I R IR R =++ 解得: 315ΩR =(2) 由图可知,当开关S 闭合时,两电阻并联,根据闭合电路的欧姆定律则有:213()11.40.6IR E U I r r R =++=+ S 断开时,根据闭合电路的欧姆定律则有:212()0.3(39)E I R R r r =++=⨯+联立解得:12V E =1Ωr =2.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。
汽车的电源、电流表、车灯、电动机连接的简化电路如图所示,已知汽车电源电动势为12.5V ,电源与电流表的内阻之和为0.05Ω。
车灯接通电动机未起动时,电流表示数为10A ;电动机启动的瞬间,电流表示数达到70A 。
求:(1)电动机未启动时车灯的功率。
(2)电动机启动瞬间车灯的功率并说明其功率减小的原因。
(忽略电动机启动瞬间灯泡的电阻变化)【答案】(1)120W ;(2)67.5W【解析】【分析】【详解】(1) 电动机未启动时12V U E Ir =-=120W P UI ==(2)电动机启动瞬间车灯两端电压'9 V U E I r =-'=车灯的电阻'1.2U R I==Ω 267.5W RU P ''== 电源电动势不变,电动机启动瞬间由于外电路等效总电阻减小,回路电流增大,内电路分得电压增大,外电路电压减小,所以车灯电功率减小。
3.如图所示,电源的电动势110V E =,电阻121R =Ω,电动机绕组的电阻0.5R =Ω,开关1S 始终闭合.当开关2S 断开时,电阻1R 的电功率是525W ;当开关2S 闭合时,电阻1R 的电功率是336W ,求:(1)电源的内电阻r ;(2)开关2S 闭合时电动机的效率。
【答案】(1)1Ω;(2)86.9%。
【解析】【详解】(1)S 2断开时R 1消耗的功率为1525P =W ,则2111E P R R r ⎛⎫= ⎪+⎝⎭代入数据得r =1Ω(2)S 2闭合时R 1两端的电压为U ,消耗的功率为2336P =W ,则 221U P R = 解得U =84V由闭合电路欧姆定律得E U Ir =+代入数据得I =26A设流过R 1的电流为I 1,流过电动机的电流为I 2,则114U I R ==A 又 12I I I +=解得I 2=22A则电动机的输入功率为M 2P UI =代入数据解得M 1848P =W电动机内阻消耗的功率为2R 2P I R =代入数据解得R 242P =W则电动机的输出功率M R P P P '=-=1606W所以开关2S 闭合时电动机的效率M100%86.9%P P η'=⨯= 4.如图所示,在A 、B 两点间接一电动势为4V ,内电阻为1Ω的直流电源,电阻1R 、2R 、3R 的阻值均为4Ω,电容器的电容为30F μ,电流表内阻不计,当电键S 闭合时,求:(1)电流表的读数.(2)电容器所带的电量.(3)断开电键S 后,通过2R 的电量.【答案】(1)0.8A ;(2)59.610C -⨯;(3)54.810C -⨯【解析】试题分析:当电键S 闭合时,电阻1R 、2R 被短路.根据欧姆定律求出流过3R 的电流,即电流表的读数.电容器的电压等于3R 两端的电压,求出电压,再求解电容器的电量.断开电键S 后,电容器通过1R 、2R 放电,1R 、2R 相当并联后与3R 串联.再求解通过2R 的电量.(1)当电键S 闭合时,电阻1R 、2R 被短路.根据欧姆定律得: 电流表的读数340.841E I A A R r ===++ (2)电容器所带的电量653330100.849.610Q CU CIR C C --===⨯⨯⨯=⨯(3)断开电键S 后,电容器相当于电源,外电路是1R 、2R 相当并联后与3R 串联.由于各个电阻都相等,则通过2R 的电量为51 4.8102Q Q C -==⨯'5.如图所示的电路中,当S 闭合时,电压表和电流表(均为理想电表)的示数各为1.6V 和0.4A .当S 断开时,它们的示数各改变0.1V 和0.1A ,求电源的电动势和内电阻.【答案】E =2 V ,r =1 Ω【解析】试题分析:当S 闭合时,R 1、R 2并联接入电路,由闭合电路欧姆定律得:U 1=E -I 1r 即E =1.6+0.4r ,①当S 断开时,只有R 1接入电路,由闭合电路欧姆定律得:U 2=E -I 2r ,即E =(1.6+0.1)+(0.4-0.1)r ,②由①②得:E =2 V ,r =1 Ω.考点:闭合电路欧姆定律【名师点睛】求解电源的电动势和内阻,常常根据两种情况由闭合电路欧姆定律列方程组求解,所以要牢记闭合电路欧姆定律的不同表达形式.6.如图所示,为某直流电机工作电路图(a)及电源的U -I 图象(b)。
直流电机的线圈电阻R =0.25Ω,闭合开关后,直流电机正常工作,电流表的示数I =2A ,求:(1)电源的电动势E 及内阻r ;(2)直流电机输出功率P .【答案】(1)3V ;0.5Ω(2)3W【解析】【详解】(1)由图b 可知3V E =,0.5v r t∆==Ω∆; (2)由电路的路端电压与负载的关系:2V U E Ir =-=非纯电阻元件,根据能量守恒定律:2UI P I R =-出所以23W P UI I R =-=出7.如图所示的电路中,电阻R 1=9Ω,R 2=15Ω,R 3=30Ω,电源内电阻r =1Ω,闭合开关S ,理想电流表的示数I 2=0.4A .求:(1)电阻R 3两端的电压U 3;(2)流过电阻R 1的电流I 1的大小;(3)电源的总功率P .【答案】(1)6.0V (2)0.6A (3)7.2W【解析】【详解】(1)电阻R 3两端有电压为3220.415 6.0U I R ==⨯=(V )(2)通过电阻R 3的电流大小: 3330.2U I R ==A 流过电阻R 1的电流大小为: I 1=I 2+I 3=0.4+0.2=0.6A(3)电源的电动势为:11130.610.69612E I r I R U =++=⨯+⨯+=V电源的总功率为P=I 1E =7.2W或()21123//P I r R R R =++=7.2W8.如图所示,水平放置的平行金属导轨abdc ,相距l =0.50m ,bd 间连有一固定电阻R =0.20Ω,导轨电阻可忽略不计.磁感应强度B =0.40 T 的匀强磁场方向垂直于导轨平面,导体棒MN 垂直放在导轨上,其电阻也为R ,导体棒能无摩擦地沿导轨滑动,当MN 以v =4.0m/s 的速度水平向右匀速运动时,求:(1)导体棒MN 中感应电动势的大小;(2)回路中感应电流的大小,流过R 的电流方向;(3)导体棒MN 两端电压的大小.【答案】(1) 0.80V ;(2)2A ,b 到d ;(3)0.4V 。
【解析】【分析】(1)导体垂直切割磁感线,由公式E =BLv 求出感应电动势;(2)MN 相当于电源,根据闭合电路欧姆定律求解感应电流大小;(3)棒两端的电压是路端电压,由U =IR 即可求出结果.【详解】(1)根据法拉第电磁感应定律得:感应电动势0.80E Blv ==V(2)根据闭合电路的欧姆定律得,通过R 的电流22E I R==A 由右手定则可知,流过R 的电流方向为b 到d(3)导体棒MN 两端电压为路端电压,则:0.4U IR ==V【点睛】本题是电磁感应、电路和磁场相结合的综合题,应用E =BLv 、欧姆定律即可解题,要注意ab 切割磁感线产生电动势,ab 相当于电源,ab 两端电势差不是感应电动势,而是路端电压.9.如图所示,电源电动势E =15V ,内阻r =0.5Ω,电阻R 1=3Ω,R 2=R 3=R 4=8Ω,一电荷量q =+3×10-5C 的小球,用长l =0.1m 的绝缘细线悬挂于竖直放置足够大的平行金属板中的O 点。
电键S 合上后,小球静止时细线与竖直方向的夹角θ=37°,已知两板间距d =0.1m ,取重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
求:(1)两板间的电场强度的大小;(2)带电小球的质量;(3)现剪断细线,并在此瞬间使小球获得水平向左的初速度,则小球刚好运动到左极板,求小球到达左极板的位置与O 点的距离L 。
【答案】(1)140V/m (2)45.610m kg -=⨯(3)0.16m【解析】【详解】(1)电阻连接后的总外电阻为: 231237ΩR R R R R R =+=+ 干路上的电流: 2A E I R r==+ 平行板电容器两板间电压: 14V U IR ==电场强度:140V/m U E d== (2)由小球的受力情况知: tan θEq mg =解得:45.610kg m -=⨯(3)剪断细线后,在水平方向上做匀减速直线运动21sin θ2l at =Eq a m=竖直方向做自由落体运动: 212h gt =解得: 0.08m h =小球与左板相碰的位置为:cos θ0.16m L h l =+=10.如图所示,电源电动势E=50V ,内阻r=1Ω, R1=3Ω,R2=6Ω.间距d=0.2m 的两平行金属板M 、N 水平放置,闭合开关S ,板间电场视为匀强电场.板间竖直放置一根长也为d 的光滑绝缘细杆AB ,有一个穿过细杆的带电小球p ,质量为m=0.01kg 、带电量大小为q=1×10-3C (可视为点电荷,不影响电场的分布).现调节滑动变阻器R ,使小球恰能静止在A 处;然后再闭合K ,待电场重新稳定后释放小球p .取重力加速度g=10m/s2.求:(1)小球的电性质和恰能静止时两极板间的电压;(2)小球恰能静止时滑动变阻器接入电路的阻值;(3)小球p 到达杆的中点O 时的速度.【答案】(1)U =20V (2)R x =8Ω (3)v =1.05m/s【解析】【分析】【详解】(1)小球带负电;恰能静止应满足:U mg Eq q d== 30.01100.220110mgd U V V q -⨯⨯===⨯(2)小球恰能静止时滑动变阻器接入电路的阻值为R x ,由电路电压关系:22x E U R R r R =++ 代入数据求得R x =8Ω(3)闭合电键K 后,设电场稳定时的电压为U',由电路电压关系:1212'x E U R R r R =++ 代入数据求得U'=10011V 由动能定理:211222d mg U q mv ='- 代入数据求得v=1.05m/s【点睛】本题为电路与电场结合的题目,要求学生能正确掌握电容器的规律及电路的相关知识,能明确极板间的电压等于与之并联的电阻两端的电压.11.如图甲所示,水平面上放置一矩形闭合线框abcd , 已知ab 边长l 1=1.0m 、bc 边长l 2=0.5m ,电阻r =0.1Ω。