金属材料的结构与结晶
纯金属结构与结晶
• 原子半径 ➢ 晶胞中相距最近的两个原子之
间距离的一半。体心立方晶胞 中原子相距最近的方向是体对 角线, 所以原子半径与晶格常 数a之间的关系为:
• 常见金属
R 3 a 4
➢ 钼(Mo)、钨(W)、钒(V)、α-铁
(α-Fe, <912℃)等。
4.3.2 面心立方晶格( FCC) • 原子排列方式 ➢ 金属原子分布在立方体的八
2.3.3 密排六方晶格( HCP) • 原子排列方式 • 十二个金属原子分布在六方体的十二个角上, 在上下底面的
中心各分布一个原子, 上下底面之间均匀分布三个原子。
• 密排六方晶胞的特征:
➢ 晶格常数:用底面正六边形的边长a和两 底面之间的距离c来表达, c/a=1.633,
两相邻侧面之间的夹角为120°, 侧面与 底面之间的夹角为90°。
树枝状长大的实际观察
树枝状结晶
金
金
属 的
属 的
树
树
枝 晶
枝 晶
金 属 的 树 枝
冰 的 树 枝 晶
晶
2.5.4 金属结晶后晶粒的大小及力学性能的影响
• 晶粒度:单位体积内晶粒数目。为测量方便,常以单位界 面内晶粒数目
• 对金属材料的影响:
➢ 细晶强化。通过细化晶粒而使金属材料力学性能提高的方
法称为细晶强化。
动画--晶面指数的确定方法
15
晶面族
在晶体内凡晶 面间距和晶面上 原子排列分布情 况完全相同,只 是空间位向不同 的一组晶面的集 合称为晶面族。
16
(2)晶向指数 • 确定步骤 ➢ 建立坐标系,度量单位 ➢ 求坐标。u’,v’,w’ ➢ 化整数。 u,v,w. ➢ 加[ ]。[uvw]。 • 说明: ➢ 指数意义:代表相互平行、
金属的结构与结晶
过冷度:理论结晶温度与实际结晶温度之 差:ΔT=T0-Tn 。 过冷是结晶的必要条件。 晶核:形成规则排列的原子集团而成 为结晶的核心。晶核分为自发晶核和外 来晶核两种。
2、结晶过程 液态金属中原子结晶的过程,即晶核 不断地形成及长大的过程,直到液态金 属已全部耗尽,结晶过程也就完成了, 如图所示。
金属的结构 与结晶
一 金属的结晶结构
一、晶体与非晶体 1.非晶体:在物质内部,凡原子呈无序堆积状况 的,称为非晶体。 如:普通玻璃、松香、树脂等。
2.晶体:凡原子呈有序、有规则排列的物质,金 属的固态、金刚石、明矾晶体等。 性能:晶体有固定的熔、沸点,呈各向异性,非 晶体没有固定熔点,而且表现为各向同性。
(2)变质处理 在浇注时向液态金属中加入一定的变 质剂,起到外来晶核的作用,并能在铸 件的整个体积内都能得到均匀细化的晶 粒。 (3)振动 机械振动、超声波振动、电磁振动等, 造成枝晶破碎,使晶粒数量增加,达到 细化目的。 此外,还可以采用热处理和压力加工的 方法,使固态金属的粗晶粒细化。
二、同素异构转变 大多数金属的晶格类型都是一成不变 的,但是,铁、锰、锡、钛等金属的晶 格类型都会随温度的升高或降低而发生 改变。一种固态金属,在不同的温度区 间具有不同的晶格类型的性质称为同素 异构性。
单晶体:一块晶体就是一颗晶粒(晶格排列 方位完全一致),如图所示。单晶体必须 专门人工制作,如生产半导体元件的单 晶硅、单晶锗等。
单晶体在不同方向上具有不同性能的现 象称为各向异性。 普通金属材料都是多晶体。多晶体的金 属虽然每个晶粒具有各向异性,但由于 各个晶粒位向不同,加上晶界的作用, 这就使得各晶粒的有向性互相抵消,因 而整个多晶体呈现出无向性,即各向同 性。
3、晶粒大小与机械性能的关系 金属结晶后,一般是晶粒愈细,强度、 硬度愈高,塑性、韧性也愈好。铸造生 产中为了得到细晶粒的铸件,常采取以 下几种方法: (1)加快冷却速度 金属结晶过程中过冷度愈大,结晶推动 力增加,生核速率增长要快一些,故过 冷度愈大,晶粒愈细。薄壁铸件的晶粒 较细,厚大的铸件往往是粗晶,铸件外 层的晶粒较细,心部则是粗晶。
金属材料的结构与结晶
只有当溶质原子尺寸较小,溶剂晶格间隙较大时
才能形成间隙固溶体。
例:Fe和C形成间隙固溶体。
间隙固溶体溶解的溶质数量是有限的。
图2-12(b)
图2-12(a)
(2)臵换固溶体:溶质原子占据晶格结点位臵而形 成的固溶体。 (图2-12b)
两组元原子尺寸相近时,易形成臵换固溶体。可形
成有限固溶体和无限固溶体。 例:Cr和Ni等合金元素溶入铁中形成的固溶体为臵
立方晶格中的某些晶面立方晶格中的某些晶面100100面面110110面面111111面面立方晶格中的某些晶向立方晶格中的某些晶向111111向向110110向向在同一晶格的不同晶面和晶向上原子排列的疏密在同一晶格的不同晶面和晶向上原子排列的疏密不同因此原子结合力也就不同从而在不同的不同因此原子结合力也就不同从而在不同的晶面和晶向上显示出不同的性能这就是晶体具晶面和晶向上显示出不同的性能这就是晶体具有各向异性的原因
1.晶格:描述原子在晶体中排列方式的空间几何格架。 2.晶胞:反映晶格特征的最小单元。
3. 晶格参数:
晶胞棱边的长度和棱边夹角α、β、γ。
4. 三种典型的金属晶体结构 面心立方晶格、体心立方晶格、密排六方晶格。 面心立方晶格类型的金属有Cu、Al、Ni等,具有良
好的塑性; 密排六方晶格的金属有 Mg、Zn、Be等
Fe3C组成的机械混合物。
机械混合物的性质,基本上是各组成相性能的
平均值。
35 钢的显微组织
机械混合物P
将黑色部分放大,看到指纹状结构。其中白色
基体是Fe与C形成的固溶体, 含碳0.0218% 体 心立方晶格(称为铁素体F), 黑色条纹为 渗
碳体(Fe3C)。
黑色部分是F与Fe3C形成的机械混合物,称为
机械工程材料 第二章 金属的晶体结构与结晶
均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:
绪论,第一章金属的结构与结晶
73
1、过冷现象:金属的实际结晶温度低于 理论结晶温度(熔点)。 2、过冷度:金属的理论结晶温度Tm与实 际结晶温度Tn之差。 △T=Tm-Tn>0 3、同一成分的金属,冷却速度愈大,则 过冷度也愈大。 4、临界过冷度(△Tk):过冷度有一最 小值,若过冷度小于这个值,结晶过程 就不能进行。
74
(二)结晶过程的微观现象
原子密度最大的晶面是(111),
晶向是[110]。
51
52
(四)晶体的各向异性
由于晶体中不同晶面和晶向上的原子 密度不同,因而晶体在不同方向上的性能 有所差异。 如冷轧硅钢片,当易于磁化的〈100〉 晶向平行于轧制方向时,得到优异的磁导 率。
53
§ 1-2金属的实际结构和缺陷
一、多晶体结构 1、单晶体:内部的晶格位向完全一致的 晶体。
九江长江大桥 : 跨度216 米,始建于 1973年12月,1992年公路桥建成通车,
3
§0-2 影响金属材料性能的因素 一、化学成分 组成金属材料的各种元素的种类及其浓 度(一般用重量百分数)。 成分 铝 抗拉强度(MPa) 20-80 延伸率 (%) 32-40
铜
纯铁
200-240
250-330
6
3、显微组织:用100-2000倍的显微镜所观 察到的组织。(反映了晶粒的种类、形状、 大小以及各种晶粒的相对数量和相对分布)
通常所说的组织就是指显微组织。
7
8
9
10
11
12
13
14
15
第一章
金属的结构与结晶
16
§1-1金属的晶体结构 一、晶体的概念 1、晶体:原子(离子)呈规则排列的物质。 2、晶体结构(结构):构成晶体的原子在 三维空间的具体的排列方式。 3、晶格:表示晶体中原子排列形式的空间 格子。 建立:原子简化成点,用假想线连接点。
吉林大学工程材料第1章 金属的晶体结构和结晶
由于金属键无方向性及饱和性,使得大部分金 属都具有紧密排列的趋向,以致其中绝大多数的金 属晶体都属于三种密排的晶格形式。
三、金属晶体中常见的三种晶格类型
度量晶体中原子排列的紧密程度的方法:
常用的有配位数、致密度。
A:配位数: 晶格中任一原子周围所紧邻的最近且 等距的原子数。 (定性的)
B:致密度:
表格 1-3 三种典型晶格的密排面和密排方向
晶格类型 体心立方 面心 密排六方
密排面 {110} {111} 底面
密排方向 〈111〉 〈110〉 底面对角线
以后我们将看到,金属晶格的密排面及密排方向 的确定,对我们研究金属的特性是有重要意义的。
五、晶体的各向异性
对于同一个完整的晶体,当我们从不同方向 上测量某些量时,(如弹性模量E、强度极限 b、 屈服极限 s 、电阻率、磁导率、线胀系数、耐蚀 性等),将得到不同的数值。如铁(-Fe) 〈111〉方向E=2.80×105MN/m2 〈100〉方向E=1.30×105MN/m2 这就引出一个新的概念:
晶界这种晶体缺陷的存在,是晶体中不同晶格位向相 邻晶粒之间的过渡所形成的面缺陷(如图1-12a)。
(a)
(b)
图1-12 晶界(a)及亚晶界(b)示意图
而亚晶界这种晶体缺陷,是亚晶粒间所存在的微小 晶格位向差形成的面缺陷(如图1-12b)。可以把 它看作是一种位错的堆积或称“位错墙”。
三、晶体缺陷对金属性能的影响
{111}
1 3 0 . 58 6 a2 3 2 a 2
3a 0.29a 6
〈111〉 <111>
1 2 1 1.16 2 a 3a
6a 0.82a 3
规律 : 原子间彼此相接触的晶面和晶向为最密排的晶面和晶
02第二章 金属的晶体结构与结晶
放大100∼2000倍的组织称高倍组织或显微组织。 在电子显微镜下放大几千∼几十万倍的组织称精细组织或电镜组
织。
显微组织实质上是指在显微镜下观察到的金属中各相或各晶粒的
形态、数量、大小和分布的组合。
二、合金的相结构
1、固溶体 合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之
理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
Fe-C二元相图
三元相图
1. 二元相图的建立
几乎所有的相图都是通过实验得到的,最常用
的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1、配制不同成分的合金,测出各合金的冷却曲线,找出曲线 上的相变点(停歇点或转折点)。 2、在温度-成分坐标中做成分垂线,将相变点标在成分垂线上 3、将这些相变点连接起来,即得到Cu-Ni相图。
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
单位时间内晶核生长的长度
叫长大速度(G)。
N/G比值越大,晶粒越细小。 因此,凡是促进形核、抑制长 大的因素,都能细化晶粒。
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、
组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属
主要以晶体形式存在。晶体具有各向异性。 非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
T= T0 –T1
金属材料纲要第一章金属的结构与结晶 Microsoft Word 文档
金属材料绪论1、金属:由单一元素组成的具有特殊的光泽、延展性、导电性、导热性的物质。
如:金、银、铜、铁、锰、锌、铝等。
2、合金:是指由一种金属元素与其它金属元素或非金属元素通过熔炼或其它方法合成的具有金属特性的材料。
3、金属材料是金属及其合金的总称。
4、材料的成分和热处理决定其组织,组织决定其性能,性能决定用途。
第一章金属的结构与结晶§1-1金属的晶体结构1、自然界中绝大多数固态物质是晶体,少数为非晶体。
所有金属都是晶体。
2、晶体:原子呈有序,有规则排列的物质。
例:所有金属,石英,云母,明矾,食盐,糖,味精,硫酸铜。
晶体的性能特点:有规则的几何形状;有固定的熔点;各向异性。
3、非晶体:原子呈无序,无规则堆积的物质。
例:玻璃、蜂蜡、松香、沥青、橡胶。
晶体的性能特点:有规则的几何形状;有固定的熔点;各向异性。
4、晶格:能反映原子排列规律的空间格架。
晶胞:能完整反映晶体晶格特征的最小几何单元。
5、晶格类型体心立方晶格α—Fe 、钨(W)、钼(Mo)晶格类型面心立方晶格γ—Fe、金(Au)、银(Ag)、铜、铝、密排六方晶格镁、锌金刚石和石墨都是由碳原子组成,但由于晶格结构不同性能差异巨大。
6、金属由许多小晶粒组成,晶粒之间的交界称为晶界。
晶界越多金属材料的力学性能越好。
7、单晶体:只有一个晶粒组成的晶体。
单晶体必须人为制造。
表现为各向异性。
多晶体:普通金属材料都是多晶体。
整个多晶体表现为各向同性。
8、晶体缺陷:晶体中原子紊乱排列的现象称为晶体缺陷。
它在塑性变形和热处理中起重要作用。
点缺陷:空位原子、间隙原子、置代原子晶体缺陷线缺陷:刃位错面缺陷:晶界、亚晶界§1-2 纯金属的结晶1、结晶:生产中金属的凝固过程就是结晶。
结晶是指金属从高温液体状态冷却凝固为固体(晶体)状态的过程。
结晶潜热:结晶过程中放出的热量称为结晶潜热。
2、过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
过冷度与冷却速度有关 ,冷却速度越快过冷度越大。
金属的结构与结晶
金属的结构与结晶§1-1 金属的晶体结构★学习目的:了解金属的晶体结构★重点: 有关金属结构的基本概念:晶面、晶向、晶体、晶格、单晶体、晶体,金属晶格的三种常见类型。
★难点:金属的晶体缺陷及其对金属性能的影响。
一、晶体与非晶体1、晶体:原子在空间呈规则排列的固体物质称为“晶体”。
(晶体内的原子之所以在空间是规则排列,主要是由于各原子之间的相互吸引力与排斥力相平衡的结晶。
)规则几何形状性能特点:熔点一定各向异性2、非晶体:非晶体的原子则是无规则、无次序的堆积在一起的(如普通玻璃、松香、树脂等)。
二、金属晶格的类型1、晶格和晶胞晶格:把点阵中的结点假象用一序列平行直线连接起来构成空间格子称为晶格。
晶胞:构成晶格的最基本单元2、晶面和晶向晶面:点阵中的结点所构成的平面。
晶向:点阵中的结点所组成的直线由于晶体中原子排列的规律性,可以用晶胞来描述其排列特征。
(阵点(结点):把原子(离子或分子)抽象为规则排列于空间的几何点,称为阵点或结点。
点阵:阵点(或结点)在空间的排列方式称晶体。
)晶胞晶面晶向3、金属晶格的类型是指金属中原子排列的规律。
7个晶系 14种类型最常见:体心立方晶格、面心立方晶格、密排六方晶格(1)、体心立方晶格:(体心立方晶格的晶胞是由八个原子构成的立方体,并且在立方体的体中心还有一个原子 )。
属于这种晶格的金属有:铬Cr、钒V、钨W、钼Mo、及α-铁α-Fe所含原子数 1/8×8+1=2(个)(2)、面心立方晶格:面心立方晶格的晶胞也是由八个原子构成的立方体,但在立方体的每个面上还各有一个原子。
属于这种晶格的金属有:Al、Cu、Ni、Pb(γ-Fe)等所含原子数 1/8×8+6×1/2=4(个)(3)、密排六方晶格:由12个原子构成的简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。
属于这种晶格的金属有铍(Be)、Mg、Zn、镉(Cd)等。
《金属的结构与结晶》PPT课件
§1.1 金属的特征
金属材料 以金属键方式结合,从而使金属材料具 有以下特征:
良好的导电、导热性: 自由电子定向运动〔在电场作用下〕导电、
〔在热场作用下〕导热。 正的电阻温度系数:
金属正离子随温度的升高,振幅增大,阻碍自 由电子的定向运动,从而使电阻升高。 不透明,有光泽:
自由电子容易吸收可见光,使金属不透明。自 由电子吸收可见光后由低能轨道跳到高能轨道, 当其从高能轨道跳回低能轨道时,将吸收的可见 返回
非晶体
蜂蜡、玻璃 等。
液体
§1.2 金属的 晶体构造
扩大知识
• 微晶:快速凝固的晶态金属或合金的颗粒尺寸要 小得多,仅为微米纳米级尺度,高强度高硬度;
• 准晶:在晶体内部的原子长程有序,介于晶体和 非晶体之间;
• 液晶:二维长程有序。
返回
§1.2 金属的 晶体构造
z
c
a
x
y b
d 晶胞
a 原子堆垛模型
《金属的结构与结晶》 PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
第一章 金属的构造与结晶
§1.1 金属的特征 §1.2 金属的晶体构造 §1.3 实际晶体中的缺陷 §1.4 金属的结晶过程 §1.5 晶粒大小控制
c
a
X
b
Y
§1.2 金属的 晶体构造
晶格常数:a=b=c; ===90
晶胞原子数: 4 原子半径: 致密度:0.74
返回
§1.2 金属的 晶体构造
晶格常数 密排六方晶格 C〔石墨〕、Mg、Zn 等 底面边长a
工程材料学2金属的晶体结构与结晶
§2.1 晶体学基础知识
注意:晶面指数特征与与原点位置无关;每一指数对应一组平行的晶面 。
§2.1 晶体学基础知识
晶面族:原子排列情况相同,但空间位向不同的各组晶面的集合。
§2.1 晶体学基础知识
立方晶系常见的晶面 Z
(011)
(110
) (011
(101)
)
(101 )
Y
(110
) X
§2.1 晶体学基础知识
柱体。
四轴定向:晶面符号一般写为(hkil),指
数的排列顺序依次与a1轴、 a2轴、 a3轴、c轴相对
应,其中a1、a2、a3三轴间夹角为120o,c轴与它 们垂直。它们之间的关系为:i =-(h+k)。
2.2.3、六方晶系晶面、晶向表示方法
1、晶面指数:
方法同立方晶系, (hkil)为在四个坐标 轴的截距倒数的化简 ,自然可保证关系式 h+k+i=0。底面指 数为(0001)。
铅锭宏观组织
沿晶断口
§2.3 金属材料的实际晶体结构
点缺陷对材料性能的影响
(1)提高材料的电阻 定向流动的电子在点缺陷处受到非平衡 力(陷阱),增加了阻力,加速运动提高局部温度(发热)。
(2)加快原子的扩散迁移 空位可作为原子运动的周转站。 ( 3 ) 使强度、硬度提高,塑性、韧性下降。
§2.3 金属材料的实际晶体结构
体心立方晶格为单斜晶系
§2.2 纯金属的典型晶体结构
1.体心立方、面心立方为何不在前述七大晶系之内?
面心立方晶格为菱方晶系
§2.2 纯金属的典型晶体结构
2.面心立方、密排六方的致密度相同,原子堆积方式的主要差异是什么?
密排六方晶格的堆垛顺序为ABABAB… 面心立方晶格的堆垛顺序为ABCABCABC…
金属材料的晶体结构与结晶
1.1.1 合金的晶体结构
合金是指由两种或两种以上的金属元素或由金属元素与非金属元素 组成的具有金属特性的物质。
组成合金的最基本的、独立的单元称为组元。由两个组元组成的合 金称为二元合金,由三个组元组成的合金称为三元合金,由三个以上组 元组成的合金称为多元合金。
合金中结构相同、成分相同和性能一致,并以界面相互隔开的组成 部分称为相。只有一种相组成的合金为单相合金,由两种或两种以上相 组成的合金为多相合金。用金相观察方法,在金属及合金内部看到的相 的形态、数量、大小和分布及相间结合状态称为显微组织。
非晶体
晶体
金属材料的晶体结构与结晶
1.晶体结构的基本知识
图2-1 晶体结构示意图
金属材料的晶体结构与结晶
1.常见的金属晶格类型 常见的金属晶格类型包括体心立方晶格、面心立方晶格和密排六方
晶格三大类。 1)体心立方晶格 body—centered cubic lattice 特点:b 较好。如:<912℃ Fe, Cr, Mo, V等。 含有2个原子体积组成。
图2-7 刃型位错示意图
金属材料的晶体结构与结晶
(3)面缺陷。面缺陷是指在晶体中呈面状分布(在两个方向上尺寸很大,在第 三个方向上尺寸很小)的缺陷。常见的面缺陷是晶界和亚晶界。
晶界是位向不同的晶粒间的过渡区,其宽度为5~10个原子间距。晶界区域的晶 粒的位向通过晶界的协调逐步过渡到相邻晶粒的位向,如图2-8(a)所示。亚晶界 是由位向相差很小的亚晶粒组成的,如图2-8(b)所示。晶界和亚晶界的原子排列 都不规则,会产生晶格畸变。因此,晶界和亚晶界均可提高金属的强度,改善塑性 和韧性。
图2-10 液态金属的结晶过程示意图
金属材料的晶体结构与结晶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 体心立方晶格 :晶胞为立方体,在立方体的八个 角上和晶胞中心各排列一个原子。 (图2-4)
a
a)
b)
c)
图2-4 体心立方晶格的晶包示意图
体心立方晶胞中的原子数为1+8×1/8=2个。
体心立方晶格类型的金属有室温下的Fe、Cr、W、 Mo、V、Nb等。
晶胞中原子占有的体积与晶胞体积的比值称为晶 格的致密度。
第二章 金属材料的
结构与结晶
第一节金属材料的结构
一、晶体与非晶体 1.晶体(物质):原子在空间有秩序排列的物质。 例:食盐、金属、金刚石等。 特点:固定的形状、熔点及各向异性。
2.非晶体(物质):原子无序排列的物质。 例:玻璃、塑料、沥青、松香等。 特点:无固定的形状、熔点及各向同性。
二、晶体结构的概念 (一)晶格与晶胞 实际晶体中的各类质点在不停的运动,讨论晶体结 构时,常把原子看成一个固定的小球,这些原子小 球按一定的几何形状在空间紧密堆积(图2-1a)。
四、实际金属的晶体结构
(一)单晶体与多晶体 1.单晶体:一块金属内部的晶格位向完全一致。 金属单晶体只能靠特殊方法制得,具有各向异性。 2. 多晶体:由许多晶格位向不同的微小晶粒组成。 每个小晶粒都相当于一个单晶体 。 3.晶界: 晶粒与晶粒之间的界面。(图2-7) 多晶体由于各晶粒方位不同,晶体的性能在各个 方向相互补充和抵消,宏观显示出各向同性,亦 称为“伪无向性”。
一个晶粒内部,有更细小的晶块,其晶格位向差 很小,通常小于2º~3º, 这些小晶块称为亚晶粒。
亚晶粒之间的界面称为亚晶界。亚晶界原子排列也不 规则。
亚晶界示意图
晶界过渡结构示意图
晶体中存在点、线、面缺陷,都会造成晶格畸变, 引起塑变抗力的增加,使金属强度提高。
五、合金的晶体结构 (一)合金的基本概念 1.合金:两种或两种以上的金属元素或金属和非 金属元素组成的具有金属性质的物质。 例:黄铜是铜和锌的合金;碳钢是铁和碳的合金。 合金一般具有比组成该合金的金属更高的力学性能。 例:钢比纯铁有更高的强度和硬度。 2.组元:组成合金的最基本的独立物质。 例:黄铜中铜和锌都是组元。组元可以是金属、非 金属或稳定的金属化合物。
体心立方致密度
2 4r3 ห้องสมุดไป่ตู้ 3
a3
2 4
3a a3
/
4
3
/
3
0.68
体心立方晶格的致密度为0.68,表明在体心立方 晶格中有68%的体积被原子所占有,其余为空隙。
2. 面心立方晶格:晶胞为立方体,在立方体的八个 角上和六个面中心各排列一个原子。 (图2-5)
图2-5
面心立方晶胞中的原子数为1/8×8+1/2×6=4 个。 属于面心立方晶格类型的金属有Cu、Al、Ni、Ag、 Pb 、γ-Fe(912~1394℃的铁)等。致密度0.74。
100面
110面
立方晶格中的某些晶向
111面 111向
110向
在同一晶格的不同晶面和晶向上原子排列的疏密 不同,因此原子结合力也就不同,从而在不同的 晶面和晶向上显示出不同的性能,这就是晶体具 有各向异性的原因。
三、金属的三种典型的晶体结构及其特性参数
金属中常见的晶格类型有体心立方晶格、面心立方 晶格和密排六方晶格三种。
空位
图2-7 多晶体示意图
(二)晶体缺陷
间隙原子
图2-8晶格点缺陷示意图
1.点缺陷:空位和间隙原子。(图2-8) 空位和间隙原子使晶格发生扭曲,称为晶格畸变。
晶格畸变将使晶体性能发生改变,如强度、硬度
和电阻增加。
2. 位错(线缺陷):晶体中一列或数列原子发生有 规律错排的现象。最常见的就是刃型位错。
3.相:合金中具有相同成分、结构并以界面相互 分开的均匀组成部分。
例:35钢的显微组 织中白色部分具有 相同的化学成分和 晶格结构。并与黑 色部分以界面分开。
ωc=0.03%的铁, 体心立方结构。 白色部分是一相。
35钢的显微组织
一般把固态下的相称为固相,而液体状态称为液相。
一种相在一定条件下可以转变成为另一种相,叫做 相变,例如金属结晶,是液相变为固相的一种相变。
刃位错示意图
三维图
平面图
在平面ABCD上方,多出半个原子面EFGH, 如同 刀刃插入晶体,称为刃位错。
螺型位错
在位错附近区域,晶格发生的畸变。 位错的特点之一是很容易在晶体中移动,金属材 料的塑性变形通过位错运动来实现的。 3. 晶界和亚晶界(面缺陷) 实际金属是一个多晶体结构。 晶粒与晶粒之间的 界面称为晶界 。晶界处的原子排列不规则,原子 处于不稳定状态。
z
c
a)晶体中的原子排列
b)晶格
x
ba
c)晶胞及晶格参数表示方法
图2-1 简单立方晶格与晶胞示意图
为描述晶体内部原子排列规律,将每个原子视为一个 几何质点,并用一些假想几何线条将各质点连接起来, 形成一个空间几何格架(图2-1b) 。 1.晶格:描述原子在晶体中排列方式的空间几何格架。 晶体中原子作周期性规则排列,可在晶格内取一个代 表晶格特征的,由最少数目原子构成的最小结构单元 表示晶格,称为晶胞(图2-1c)。 2.晶胞:反映晶格特征的最小单元。 晶胞能反映晶格特征,晶格性质的研究,可转化为 研究晶胞性质的问题。
3. 密排六方晶格:晶包是六方体,在柱体的每个角 上和上下底面中心均排列一个原子,晶胞中间还排 列三个原子。(图2-6)
图2-6
密排六方晶胞中的原子数为1/6×12+3+1/2×2=6 个。 密排六方晶格的金属有Mg、Zn、Be等。致密度0.74。
三种典型晶体结构的晶格特性参数如表2-1所示。 各种金属因其晶格结构不同,而具有不同的性能。 同一晶格类型的金属,因其晶格参数不同,而存 在性能上的差异,又因晶格类型相同而具有一些 相近的性能。 如:体心立方晶格的金属一般具有较好的塑性, 密排六方晶格的金属一般较脆,面心立方晶格 的金属的塑性一般优于体心立方等。
(二) 晶格参数:晶胞棱边的长度和棱边夹角α、 β、 γ。(图2-1c) 棱边长度单位Å ,1Å=10-10m
当三个晶格参数a=b=c,三个轴间夹角α=β=γ= 90º时,称为简单立方晶格。
(三)晶面和晶向
晶体中通过原子中心的平面,称为晶面。 通过原子中心的直线,代表一定的方向,称为晶向。
立方晶格中的某些晶面