大学物理第十三章电磁场与麦克斯韦方程组习题解答和分析

合集下载

《物理学基本教程》课后答案 第十三章 电磁感应

《物理学基本教程》课后答案 第十三章 电磁感应

第十三章 电磁感应13-1 地球表面的磁感应强度约为5105-⨯T,若将一个电阻Ω5.0,半径为20cm 的金属圆环翻转︒180,则流过该圆环截面的电荷量的最大值为多少?若将该金属圆环放在中子星的表面作同样的翻转,流过圆环截面的最大电荷量又为多少 (中子星表面的磁感应强度为810T)?分析 由(13-4)式可知,金属环在翻转中要获得流穿过环截面的感应电量的最大值,应将翻转前金属环面的法线方向置于地磁场方向,则通过环面的磁通量有最大值,翻转后磁通量为最大负值,这样翻转才有最大的磁通量改变,才能产生最大的感应电量.解 在地球表面, 最大感应电荷量为RBSR R q 221)(1121==-=ΦΦΦ 5251051.2C 5.02.014.31052--⨯=⨯⨯⨯⨯= C在中子星表面, 最大感应电荷量为RBS R R q 221)(1121==-=ΦΦΦ81002.5⨯= C 13-2半径分别为R 和r 的金属圆环共轴放置,且R >>r ,在大圆环中有恒定电流,而小圆环则以恒定速度沿轴线方向运动,问当小圆环运动到什么位置时,其内部的感应电流为最大?分析 本题中载流大圆环半径远大于小圆环的半径,小圆环所围面积内的磁场可视为均匀,其中各点的磁感应强度均近似等于位于大圆环轴线上的小圆环圆心处的值.在真空中恒定电流的磁场一章(11-10)式给出,载流圆环轴线上某点的磁感应强度B 是该点到圆环圆心距离x 的函数,小圆环沿轴线远离大圆环运动时,所围面积的磁通量减小,小圆环中将产生感生电动势和感应电流.应用极值条件可以求出感应电流为最大时小圆环的位置.解 如图13-2所示,小圆环所围面积内的磁感应强度近似等于其圆心处的值,由(11-10)式得2/3222)(2x R IR B +=μ 小圆环以恒定的速度t xd d =v 运动到轴线上x 处,圆环中的感生电动势为 2/5222202/3222202/322220i )(3d d )(2d d )(2d d d d d d x R xI R r tx x R r IR x x R r IR t BS t t +=⋅⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=-=-=2v πμπμπμΦE 圆环中感生电动势最大时感应电流也为最大值.令0d d i=xE ,得 02)(25)()(d d 227222/5222522=+-+=+--x x R x R x R x x解得2R x ±=,并取2Rx =.计算可得22i 2d d Rx x =E < 0,故小圆环运动到轴线上2R 处时,环中感应电流最大.13-3 一立方体在坐标系中的位置如图13-3所示,它的一边长为1m ,磁感应强度为0.2T 的均匀磁场沿y 轴方向,导体A 、C 和D 沿图中所示的方向以0.5m/s 的速度运动,试求每一导体内的感应电动势.分析 与用法拉第电磁感应定律比较,本题用动生电动势的定义式⎰⋅⨯=Li d )(l B v E 计算较简便.从该定义式可以看出,i E 的计算涉及到三个矢量的矢量积和标量积,因此必须先确定)(B ⨯v 的方向,以及导体棒上线元d l 的方向.解 对于导体A ,因)//(B v ,则0=⨯B v , E i = 0对于导体C ,因v 与B 夹角为 45,且 //)(B ⨯v d l ,则⎰⋅︒=⋅⨯=ll B 0i 45sin d )(v l B v E V 1007.7V 1222.05.02-⨯=⨯⨯⨯= 对于导体D ,因B v ⊥,)(B ⨯v 方向与l d 夹角为︒45,︒⋅=⋅⨯=⎰45cos 2d )(20i l B lv l B v E V 1.0V 22122.05.0=⨯⨯⨯⨯= 13-4 一载流长直导线中电流为I ,一矩形线框置于同一平面中,线框以速度v 垂直于导体运动,如图13-4所示.当线框AB 边与导线的距离为d 时,试用如下两种方法求出此时线框内的感应电动势,并标明其方向.(1)用动生电动势定义式;(2)用法拉第电磁感应定律.分析 这是一道很典型的求动生电动势题.注意以下几点:长直导线的磁场具有轴对称性,因而矩形框沿垂直于轴线方向运动时,框内将产生动生电动势;线框内的感应电动势大小与运动中矩形框的位置有关;可以用动生电动势定义式和法拉第定律求解;用法拉第定律需先求穿过闭合回路的磁通量. 在线框平面内凡与长直导线距离相等处B 大小相等方向相同,而在垂直长直导线方向B 大小不等,于是计算穿过矩形框的磁通量时,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.解1 用动生电动势的定义式计算 对于AD 和BC 边,因)(B ⨯v 方向与l d 方向垂直,电动势为零.取AB 边上线元l d 方向从A 到B ,CD 边上线元l d 方向从C 到D ,动生电动势分别为d Ibl d I ABbAB πμππμ2d cos 2d )(000v v-=⋅=⋅⨯=⎰⎰l B v E )(2d )(2d )(000a d Ibl a d ICDbCD +=+=⋅⨯=⎰⎰πμπμv vl B v E)(2)11(200a d d I d a d b I ABCDA +-=-+=πμπμvab v E 其中负号表明电动势的方向为ADCBA .解2 用法拉第定律计算如图13-4所示,以长直导线为坐标原点取x 轴向右.t 时刻AB 边距长直导线为x . 在框内取宽为x d 的面元x b S d d =,面元法线垂直纸面向里,穿过矩形框的磁通量为xax Ib x x Ib ax x+==⎰+ln2d 200πμπμΦ )(2d d ln d d 2d d 00i a x x aIb t x x a x x Ib t +=⋅⎪⎭⎫ ⎝⎛+-=-=πμπμΦv E 当d x =时矩形框上的电动势为0)(20i >+=a d d aIb πμv E即矩形框电动势i E 的方向为ADCBA .也可以用楞次定律判定框内电动势的方向为ADCBA 方向.13-5 一长为L 的导体棒CD ,在与一均匀磁场垂直的平面内,绕位于L 处的轴O 以匀角速度ω沿反时针方向旋转,磁场方向如图13-5所示,磁感强度为B ,求导体棒内的感应电动势,并指出哪一端电势较高.分析 导体棒在磁场中转动,导体棒切割磁感线,棒中产生感应电动势.如果转轴位于2L 处,棒两端电势相等,与转轴间有电势差.假如用铜盘代替导体棒,盘心与盘边缘便有一定的电势差,分别用导线从盘心和盘边缘接出,就构成一个直流发电机.解 在棒上取线元l d 沿CD 方向,则导体棒内的感应电动势为⎰⎰⋅⨯+⋅⨯=+O CDOOD CO l B l B d )(d )(v v E E⎰⎰+=3320d cos d lll Bl l Bl πωω6)32(2)3(2222L B L B L B ωωω-=-= 即棒内感应电动势大小为62L B ω,方向从D 指向C .CD 两端间的电势差为261L B V V ODCO C D ω-=+=-E E 表明C 点电势较高.13-6 如图13-6,一半径为R 的半圆形导线,保持与一载流长直导线共面,且直径CD 与长直电流垂直,C 端到直电流的距离为d .当半圆导线以匀速度v 平行于长直电流向上运动时,求半圆导线中的感应电动势大小,那一端电势较高?设cm 0.10=d ;.A 0.2;s m 0.2;m 0.15===I R v分析 连接直径CD ,与半圆弧导线构成闭合回路CDOC ,设回路顺时针绕行.由于回路匀速地平行长直导线运动,磁通量没有变化,回路中感应电动势为零,则沿回路绕行方向半圆弧导线与直线上的感应电动势大小相等,方向相反.因直径CD 上的感应电动势计算简单,可由此确定半圆弧导线上的感应电动势.解 如图13-6,在直径CD 上距长直导线为x 处取线元x d ,方向从D C →,CD 上的动生电动势为1.04.0ln 2d 2d )(04.01.00πμπμI x x I CD CD v v ==⋅⨯=⎰⎰x B v E 0V 1011.1V 4ln 22210467<⨯-=⨯⨯⨯⨯=--ππ故C 点电势高.半圆弧导线上感应电动势与直径CD 上的大小相等为V 1011.16-⨯.13-7如图13-7(a),在通有电流的无限长直导线附近,有一直角三角形线圈ABC 与其共面,并以速度v 垂直于导线运动,求当线圈的A 点距导线为d 时,线圈中的感应电动势的大小及方向.已知θ=∠=ACB b AB ,.分析 本题与13-4题相似.要注意的是AC 边与v 有一夹角,BA 边上l d 方向与)(B v ⨯方向垂直,0=AB E .解1 用动生电动势的定义如图13-7(a),取ACBA 为回路绕行方向.对于AC 段,)(B v ⨯方向竖直向上,平行长直导线,在AC 上与A 相距为l 处取线元l d ,方向C A →,动生电动势为⎰⋅+=CAAC l l d Id cos )sin (20θθπμvE⎰+=θθπθμsin 0sin d 2cos b l d l I v db d I +⋅=ln cot 20θπμv方向C A →.对于CB 段,)(B v ⨯方向竖直向上,得θπμοcot )(2b b d ICB⋅+⋅-=v E方向C B →.对于BA 段,)(B v ⨯方向与l d 垂直,则0=BA E .所以直角三角形线框上电动势大小为)(ln cot 20i bd bd b d I BA CB AC +-+⋅=++=θπμv E E E E 因b d bd b d +>+ln,则0i >E ,表明感应电动势方向为ACBA .解2 用法拉第定律如图13-7(b),在距直导线x 处取宽为x d 的面元x t x S d cot )(d θv -=,面元法线方向垂直纸面向里.设t 时刻A 点距离长直导线t v ,面元处磁感强度方向垂直纸面向里 ,大小为xIB x πμ20=穿过直角三角形的磁通量为⎰+-=b t t x x t I v v v d )1(cot 20θπμΦ)ln (cot 20tbt t b I v v v +-=θπμ当d t =v 时,应用法拉第电磁感应定律,直角三角形中的感应电动势为)(ln cot 2d d 0i bd bd b d I tdt +-+=-==θπμΦv v E >0 电动势的方向为ACBA .13-8 如图13-8,在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度为l ab =,导轨一端由一电阻相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速度为0v 运动时,求(1)金属杆能够移动的距离;(2)在此过程中电阻R 所放的焦耳热.分析 金属杆以0v 的初速度在磁场中向右运动,金属杆与导轨组成的回路中有感应电流,因而金属杆受到向左的安培力作用.在安培力作用下杆的运动速度渐慢,最后为0.速度的变化使安培力为变力.于是本题不能简单地用匀加速直线运动公式aS 22-=v -计算,而应从牛顿第二定律出发建立运动方程后求解.根据能量守恒定律,在此过程中杆的初动能全部转化电阻所发出的焦耳热.解 (1)取向右为x 正向,当杆的速度为v ,金属杆ba 上的感应电动势为⎰=⋅⨯=abBl v l B d )(v E感应电流为 RBl R I v==E 方向沿b 到a .在金属杆ba 上取电流元I l d 方向从b 到a ,I B l ⊥d ,安培力B l F ⨯=d d I ,所以作用于杆的安培力沿x 轴的负方向.Rl B B l I F F ab x v22 d -=⋅-==⎰负号表示F 与v 反向.应用牛顿第二定律,得mRl B m F t v v 22d d -== x mRl B t mR l B d d d 2222-=-=v v 设杆的移动距离为d ,由上式分离变量两边积分,有⎰⎰-=022d d v v dx mRl B得 d mRl B 220-=-v 即杆可移动的最大距离为 220l B mR d v =(2)由焦耳热公式, 电阻R 上释放的焦耳热为⎰⎰==t R Rl B t R I Q d d 22222v (1) 又 v v mRl B t 22d d -= 分离变量两边积分,t 时刻有⎰⎰-=t t mR l B 022d d vv 0vv t mRl B 22e0-=v v (2)(2)式代入(1)式,且当∞→t 时0→v ,得⎰⎰∞-=-==222022222221d ed 22v v v m t R l B t R R l B Q t mRl B 即杆从开始运动到停止,其间电阻所放的焦耳热在量值上等于2021v m .13-9磁场沿x 方向,磁感强度大小为T )6(y -,在yOz 平面内有一矩形线框,在0=t 时刻的位置如图13-9所示,求在以下几种情况下,线框中的感应电动势与t 的函数关系:(1)线框以速度m 2=v 的速度平行于y 轴匀速运动;(2)线框从静止开始,以2s m 2=a 的加速度平行于y 轴运动;(3)线框在yOz 平面内平行于z 轴重复以上两种运动.分析 磁场沿x 轴方向,矩形线框沿y 轴运动,所以DC 、BA 边上的电动势为0. 磁感强度是y 的函数,AD 边上的各点B 相等,BC 边上的各点B 相等.此题可以用动生电动势定义式和法拉第定律两种方法求解.不过,对此类既有感生又有动生电动势的题,一般来说先求磁通量,再用法拉第定律求解较易.解1 (1))(B v ⨯的方向为z 轴负向,DC 、BA 边的感应电动势为0,设AD 边感应电动势为1E ,BC 边的为2E ,方向分别为从D 到A 、从C 到B ,矩形框的总电动势为)]6()6[()(212121i y y l B B l ---=-=-=v v E E E lb v =2.0V 2.05.02=⨯⨯=V 方向为逆时针方向.(2) 矩形框作加速运动时,框上的动生电动势为lb y y l B B l v v v =---=-=-=)]6()6[()(212121i E E E其中 at =v 故 2.0i ==a t l bE t 解2 (1)以下均取逆时针方向为回路绕行方向,若0i >E ,则其沿回路绕行方向,反之亦然.穿过矩形框的磁通量为)2(26)2(26d )6(d b t lblb b y lb lb y l y by y +-=+-=-=⋅=⎰⎰+v s B Φ 其中y=vt .矩形框中的电动势为2.0d d i ==-=bl tv ΦE V (2)取回路逆时针绕行,矩形框作加速运动时穿过框的磁通量为⎰⎰++-=-=⋅=by yb y lblb y l y )2(26d )6(d s B Φ其中 2202121at at t y =+=v即 22622lb labt lb --=Φ 矩形框上的电动势为 t l a b t t2.0d d i ==-=ΦE (3)线框沿z 轴方向运动时,Φ不变,则i E 均为0.13-10 如图13-10所示,在两无限长载流导线组成的平面内,有一固定不动的矩形导体回路.两电流方向相反,若有电流A t I )12(+=,求线圈中的感应电动势的大小和方向.分析 在本题中,应用法拉第电磁感应定律求感应电动势有两条途径:分别求出两个直电流在框上产生的感应电动势,再进行叠加;或者,先求出两直电流的合磁感强度,再求磁通量,应用法拉第定律.载流长直导线磁场是不均匀的,欲求磁通量,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.因两直电流方向相反,靠近线框的直电流在框上电动势大一些,它的贡献决定了线框上电动势的方向. 解 框内任一点磁感应强度为)(22120021d d x Ix I B B B -+-=-=πμπμ取逆时针方向为回路绕行方向,如图13-10,在线框上取面元d S ,且d S =h d x ,穿过框的磁通量为x d d x x Ih S B ld d d )11(2d 12011-+-==⎰⎰+πμΦ其中12+=t I .矩形框上的电动势为)ln (ln 22d d 11220i d l d d l d ht +-+=-=πμΦE )()(ln 12120l d d d l d h ++=πμ 因(l +d 2)d 1<d 2(l +d 1),得0i <E ,即i E沿顺时针方向. 13-11 如图13-11所示, 均匀磁场与半径为r 的圆线圈垂直 (图中l d 表示绕行回路的正方向).如果磁感强度随时间的变化的规律为τ-t/0e B B =,其中B 0和τ为常量, 试将线圈中的感应电动势表示为时间的函数,并标明方向.分析 本题用法拉第定律可方便求解.解 回路绕行方向为逆时针, 穿过圆线圈的磁通量为τππΦt B r B r -==e 022τττπτπΦ/02/02e e )1(d d t t B r B r t ---=-= 圆线圈上的电动势为ττπΦ/02ie d d t B r t -=-=E 方向沿回路正方向即逆时针方向.13-12 如图13-12所示,在与均匀磁场垂直的平面内有一折成α角的V 型导线框,其MN 边可以自由滑动,并保持与其它两边接触.今使ON MN ⊥,当t =0时,MN 由O 点出发,以匀速v 平行于ON 滑动,已知磁场随时间的变化规律为2)(2t t B =,求线框中的感应电动势与时间的关系.分析 导线在磁场中运动,磁感强度又随时间变化,因而线框中的电动势由动生电动势和感生电动势两部分组成,可以直接求出面积不断变化的回路MONM 任一时刻的磁通量,再应用法拉第电磁感应定律求解.也可以分别计算由于MN 边滑动产生的动生电动势和由于线框中磁感强度随时间变化引起磁通量变化产生的感生电动势.解1 取顺时针方向为回路绕行方向, t 时刻穿过V 型导线框的磁通量为B xl2=Φ 其中 t x v =,αtan x l =,22t B =,应用法拉第电磁感应定律,导线框上的感应电动势为)2(d d d d B xlt t -=-=ΦE ααt a n )t a n 4(d d 3242t t t v v -=-= 负号表明E 与回路绕行方向相反,即沿逆时针方向.解2 由于MN 边滑动产生的动生电动势为⎰==⋅⨯=MN t Bx ααtan 21tan d )(32v v l B v 动E 沿NM 方向.t 时刻回路面积xl S 21=,取逆时针方向为回路绕行方向,回路法向矢量n e 与B 相反,则())2(d d 2d d d d d d 2t t xl t B S BS t t ==--=-=Φ感E =αtan 2132t v总感应电动势为感动E E E +==αtan 32t v 沿逆时针方向.13-13 一导线弯成如图13-13的形状,在均匀磁场中绕轴O O '转动,角速度为1ω.若电路的总电阻为R ,当0=t 时从图示的位置开始转动.(1)当磁感强度B 为常量时;(2)当t B B 20sin ω=时,求导线中的感应电流和感应电动势.解 (1)B 为常量,t 时刻穿过线圈的磁通量为t l Bl 112cos ωΦ=,线圈上的感应电动势为t l Bl t1112i sin d d ωωΦ=-=E 线圈上的感应电流为t R l Bl R I 1112i i sin ωω==E(2)t B B 20sin ω=时,t 时刻穿过线圈的磁通量为t l l t B 11220cos sin ωωΦ⋅=线圈上的电动势为sin (d d 212211120i l l B tωωΦ=-=E线圈上的感应电流为)cos cos sin sin (212211120it t t t Rl l B R I i ωωωωωω-==E 13-14 均匀磁场B 被限制在如图13-14所示的圆柱型空间中, B 从0.5T 以0.1T/s 的速率减小,(1)确定涡旋电场电场线的形状和方向并示于图中;(2)求图中半径为r =10cm 的导体回路上各点的涡旋电场场强和回路中的感生电动势;(3)设回路的电阻为Ω2,求其中感应电流的大小;(4)回路中任意两点b a ,间的电势差为多大?(5)如果在回路某点将其切断,两端稍微分开,问此时两端的电势差为多大?分析 例题413-讨论了这种在圆柱形空间中随时间改变的均匀磁场所产生的涡旋电场,可以直接利用其结果计算该涡旋电场中的电场强度的大小和方向.解 (1)由例题413-的讨论知,该圆柱形空间中随时间改变的均匀磁场产生涡旋电场,其电场线是圆心在轴线上的一系列同心圆,又因0d d <t B ,该涡旋电场中的电场强度涡E 为同心圆上沿顺时针绕行的切线方向,如图13-14所示.(2)利用例题413-的结果,r = 10cm 的回路上涡旋电场强度大小为V/m 005.0V/m 1.021.0d d 2=⨯==t B r E 涡内 回路上的感生电动势为V 1014.3V 1.01.014.3d d d d 322i -⨯=⨯⨯=-=-=tBr t B SπE 方向为顺时针方向.(3)回路中感应电流为 A 1057.1A 21014.333ii --⨯=⨯==R I E (4)根据一段含源电路的欧姆定律,弧⋂b a 上的电势差等于该段导线上电阻引起的电势差减去该圆弧上的感应电动势⋂abE ,即0)(2)(2 2)2(i ii i=-⋅=-=⋅-⋅=-=-⋂⋂⋂⋂⋂⋂E E E E E R Rr ab IR r ab abrab r R I IR V V ab ab b a ππππ(5)断开一个缺口cd 后回路不再闭合,因此回路中无电流,则cd 两点间电势差为V 1014.303i -⨯-=-=-E d c V V由于d c V V <,表明d 点电势高.13-15 在半径为R 的圆柱形空间中,存在着变化的均匀磁场)(t B ,有一长为l 的导体棒放在磁场中,如图13-15(a)所示,设磁场的变化率为t B d d ,(1)用感生电动势定义⎰⋅=ba l E d i 涡E 求棒中的感生电动势;(2)用法拉第电磁感应定律求棒中的感生电动势;(3)若导体棒在图示位置时有一个方向与棒垂直指向O 点、大小为v 的速度,再求棒上的感应电动势.分析 这是与上题特征相同的磁场.利用例题413-的结果,涡旋电场线是一系列同心圆,涡E 在圆的切线方向,所以用感生电动势定义计算时应注意ab 棒上各点的涡E 与l d 有一夹角.如果应用电磁感应法拉第定律计算,将ab 棒连接半径Oa ,Ob 构成闭合回路OabO ,考虑到沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势.当导体棒运动时,闭合回路OabO 中的磁通量随时间变化,求出任一时刻t 回路OabO 所围面积的磁通量,便可求解. 解 (1)如图13-15(b)所示,在ab 棒上取线元l d ,方向从b a →.该处涡E 在切线方向,大小为tBr d d 2,涡E 与l d 的夹角为θ,且rlR 22)2(cos -=θ,得ab 棒上感应电动势ab E 的方向从b a →,大小为⎰⎰=⋅=b abaab l tBr d cos d d 2d θl E 涡E 0)2(2d d d d d 2)2(02222>-=-=⎰l l R l t B l t B l R(2)连接Ob Oa ,成闭合回路OabO ,设回路逆时针绕行,穿过回路的磁通量为4222l R Bl --=Φ闭合回路OabO 上的感应电动势为42d d d d 22l R l t B t oabo-=-=ΦE因沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势,即42d d 22l R l t B oabo ab -==E E方向从b a →.(3) 如图13-15(c),经t 时间棒向着O 点移动t v ,连接Oa 、Ob 成闭合回路OabO ,设回路逆时针绕行.穿过回路的磁通量为t l R Bl v ---=4222Φ导体棒中的感应电动势为v v 2Bl t l R l t B t oaboab 21)4(2d d d d 2---=-==ΦE E若0>oabo E ,则ab E 从b a →;若0<oabo E ,则ab E 从a b →.13-16 如图13-16(a),均匀磁场被限制在半径为R 的圆柱形空间,磁感强度对时间的变化率0d d >t B ,在圆柱形空间外与磁场垂直的平面内有一导体AB .(1)计算AB 上的感应电动势;(2)B A 、两点间的电势差有多高?(3)在图中表示出B A 、两点的涡旋电场强度.分析 磁场局限在圆柱形空间内部,连接OB OA 、,计算穿过三角形OAB ∆的磁通量时,只需计算该三角形所包围的圆柱形空间内扇形面积的磁通量.解1 (1) 如图13-16(a),连接OB OA 、,穿过OAB ∆的磁通量与穿过扇形的磁通量相等为tBd b l a b R t dbl a b R B d d )arctan (arctan 21d d )arctan(arctan 212i 2-+-=-=-+⋅=ΦΦE(2) 0d d >tB,应用楞次定律判定电动势从B A →,所以B 点的电势高. tBd b l a b R U BA d d )arctan (arctan 212-+= (3)kB kA E E 、都在该点切线方向,且沿逆时针绕行的切线方向.解2 (1) 如图13-16(b),在AB 上取线元l d 方向从A 到B ,到圆心的距离为r ,据(13-7)式,有⎰⎰=⋅=BA BA l tB r R d cos d d 2d 2i θl E 涡E而θθcos d d r l =,AB 上的感生电动势为 )(21cos cos d d d 221202i 21θθθθθθθ+-=⋅-=⎰+R r t B r R E 其中d bl ab-==arctanarctan21θθ,得 tBd b l a b R d d )arctan (arctan 212i-+-=E 13-17截面为矩形的环形螺线管,平均半径为R ,截面边长为b 和c ,螺线管共有N 匝导线,管内充满磁导率为μ的均匀磁介质,如图13-17(a )所示,试求其自感系数.分析 螺绕环的磁感线是以对称中心为圆心的一系列同心圆,每条磁感线都要穿过矩形截面,于是求自感系数的问题归结为求穿过矩形截面的磁通量.由于沿螺绕环半径方向的磁场分布不均匀,需在矩形截面上取面元S d ,算出ϕd ,再积分得ϕ.解 如图13-17(b),在矩形截面上取面元r c S d d =,与螺绕环中心距离为r .由安培环路定理(11-15)式得S d 处的磁感应强度为rNIB πμ2=穿过螺绕环的磁通链为⎰⋅==sS N N d B ϕΦ22ln 2d 22222b a b a Ic N r r Ic N b a b a -+==⎰+-πμπμ 螺绕环的自感系数为22ln 22b a b a c N I L -+==πμΦ13-18 如图13-18, 两平行长直导线,其中心距离为d ,载有等大反向的电流(可以想象它们在相当远的地方汇成单一回路),每根导线的半径均为R ,如果不计导线内部磁通量的贡献,试求单位长度的自感系数.分析 两平行长直导线间的磁感应强度为两长直导线在该处磁感应强度之代数和.沿着以下思路解题:先求出两导线间的B ,再求两导线间的磁通量,再求自感系数.解 如图13-18,由磁场叠加原理,在两条导线间距左边一根为r 远(R r <)处磁感应强度为)11(20rd r I B -+=πμ取长为l 的一段导线,通过图中阴影部分的磁通量为⎰--+=R d Rr r d r Il d )11(20πμΦRR d Il -=ln 0πμ 长为l 的一段导线的自感系数为RRd l IL l -==ln 0πμΦ单位长导线的自感系数为RR d l L L l -==ln 0πμ 13-19 如图13-19,两圆形线圈共轴放置在一平面内,它们的半径分别为1R 和2R ,21R R >>,匝数分别为1N 和2N ,试求它们之间的互感系数.(大线圈中有电流时,小线圈所在处的磁场可看作是均匀的.)分析 题目给出条件21R R >>,2R 线圈与1R 线圈共轴,所以2R 线圈所在处的磁感应强度可视为均匀,且等于1R 线圈圆心处的磁感应强度. 解 因21R R >>,当大线圈中有电流1I 时,小线圈所在处各点的磁感应强度近似相等,且等于圆心处的磁感应强度,即1110212R N I B μ=穿过小线圈的磁通链为1221102212212R R N I N N πμϕΦ==互感系数为1222101212R R N N I M πμΦ==13-20 在如图13-20所示的电路中,线圈I 连线上有一长为l 的导线棒CD 可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈I 连线接触,导体棒的速度与棒垂直.设线圈I 和线圈Ⅱ的互感系数为M ,电阻为1R 和2R .分别就以下两种情况求通过线圈I 和线圈Ⅱ的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动.分析 CD 边运动,线圈I 中有感应电流. 由于互感,线圈I 中的电流变化将在线圈Ⅱ中产生感应电流.解(1)CD 匀速运动时,线圈I 中的感应电流是常量,为111R lB R I i v ==E 它在线圈Ⅱ中引起的磁通量的变化率为0 d d 21=tΦ 在线圈Ⅱ中引起的互感电动势021=E ,因此线圈Ⅱ中的感应电流为零.(2)CD 加速运动时, 线圈I 中的感应电流为11R BlatI =在线圈Ⅱ中引起的磁通量为at R BlMMI 1121==Φ在线圈Ⅱ中引起的互感电动势为12121 d d R BlMat -=-=ΦE因此线圈Ⅱ中的感应电流为212212R R BlMa R I -==E13-21 如图13-21所示的两个共轴圆形线圈,它们的间距为d ,半径为R 和r ,且r R >>,大线圈中有电流时,小线圈所在处的磁场可看作是均匀的,试求(1)大线圈中的电流t I I ωsin 0=时小线圈中的感应电动势;(2)两线圈的互感系数M ;(3)当小线圈偏转,使得两线圈平面法线的夹角分别为︒︒︒90 60 30、、时,再求M .解 (1)大线圈在小线圈处产生的磁感强度为2/3222021)(2d R R IB +=μ 大线圈电流产生的磁场穿过小线圈的磁通量为232222022121)(2d R r IR S B +==πμΦ大线圈电流变化, 在小线圈中产生的互感电动势为232222002121)(2cos d d d R t R r I t +-=-=ωωπμΦE (1) (2)两电流的互感电动势又可表示为 t MI tIM ωωcos d d 021-=-=E 将(1)式代入上式,得232222021)(2d d d R r R t I M +=-=πμE(3)两线圈平面法向夹角为 30时穿过小线圈的磁通量为2121212330cos ΦΦΦ==' 互感系数 2322220)(43d R r R M +='πμ 夹角为 60时,得 2121212160cos ΦΦΦ==' 2322220)(4d R r R M +='πμ夹角为 90时,得 021='Φ 0='M13-22 试求题13-10中二长直导线组成的回路与矩形框之间的互感系数. 分析 在本题中,显然求出长直导线在矩形框处的磁通量,然后求互感系数较容易.解 利用习题13-10的结果,两长直导线在矩形线圈处产生的磁通量为)ln (ln 222110d ld d l d Ih +-+=πμΦ 得互感系数为 )()(ln 2)ln (ln 22112022110l d d l d d h d ld d l d h IM ++=+-+==πμπμΦ13-23 两线圈的自感系数分别为1L 和2L ,它们的互感系数为M ,当两线圈串联时,试证它的等效自感系数为M L L L 221±+=,其中的正负号分别是对应图13-23中的两种连接情况.分析 两线圈串联后的等效自感系数,应该等于输入端与输出端间自感电动势与回路电流变化率之比.任一线圈两端的感应电动势应等于各自的自感电动势与另一线圈在其上产生的互感电动势的代数和.根据楞次定律,线路顺接如图13-23(a)时,互感电动势与自感电动势方向相同;反接如图13-23(b)时,互感电动势与自感电动势方向相反.假如再拓展考虑两线圈顺并联和反并联的情况.这时流经两线圈的电流分别为1I 和2I ,但互感系数M 不变,且并联后的总电动势12E E E ==.可解出顺并联时M L L M L L L 221221-+-+=,反并联时ML L M L L L 221221++-+=. 解 顺连接如图13-23(a ),设左边的线圈为(1),右边的线圈为(2).根据楞次定律,线圈(1)上的总电动势1E ,应为其上的自感电动势11E 与线圈(2)在线圈(1)上产生的互感电动势12E 之和,有)d d d d (112111tIM t I L +-=+=E E E 同理 )d d d d (221222tI M t I L +-=+=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121++-=+=E E E 两线圈串联顺接时的等效自感系数为M L L tI L 2d d 21++=-=E反连接如图13-23(b ),根据楞次定律,线圈(1)上的总电动势E 1 ,应为其上的自感电动势E 11与线圈(2)在线圈(1)上产生的互感电动势E 12之差,有)d d d d (112111tIM t I L --=-=E E E同理 )d d d d (221222tI M t I L --=-=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121-+-=+=E E E 两线圈串联反接时的等效自感系数为M L L tI L 2d d 21-+=-=E13-24 在一细线密绕螺线管内填满了某种磁导率为μ(常量)的均匀介质,若该介质的电阻率为ρ,在介质中存在感应电流的情况,由定义tI L d d E-=求该螺线管的自感系数.设螺线管半径为R 、长为l 、总匝数为N ,且R l >>,忽略边缘效应.分析 缠绕螺线管的传导电流I 变化时,传导电流要产生自感电动势1E .现螺线管内充满磁导率为μ的磁介质,变化的传导电流在介质中激发感应电流,变化的感应电流也要产生自感电动势2E .总的自感电动势为21E E E +=.由传导电流激发的螺线管内磁场,方向沿轴线,且分布均匀,所以由变化的传导电流激发的感应电流是以轴线为圆心的圆电流.考虑到介质有电阻,感应电流在介质的径向分布不均匀,因而感应电流产生的磁场方向沿轴线,为非均匀磁场,在计算感应电流产生的磁通量时要注意.。

15磁场的能量麦克斯韦方程组解读

15磁场的能量麦克斯韦方程组解读

《大学物理》练习题 No.15 磁场的能量 麦克斯韦方程组班级 ____________ 学号 __________ 姓名 _______________ 成绩 ________ 说明:字母为黑体者表示矢量一、选择题1. 对位移电流,有下述四种说法,请指出哪一种说法是正确的。

[ A ] (A) 位移电流是由变化电场产生的;(B) 位移电流是由变化磁场产生的;(C) 位移电流的热效应服从焦耳-楞次定律;(D) 位移电流的磁效应不服从安培环路定理。

2. 设位移电流与传导电流激发的磁场分别为B d 和B 0,则有[ A ] (A) ⎰⎰⎰⎰=⋅=⋅S S 0d ,0d d 0S B S B . (B) ⎰⎰⎰⎰≠⋅≠⋅S S 0d ,0d d 0S B S B . (C) ⎰⎰⎰⎰≠⋅=⋅S S 0d ,0d d 0S B S B . (D) ⎰⎰⎰⎰=⋅≠⋅S S 0d ,0d d0S B S B . 3. 在某空间,有静止电荷激发的电场E 0,又有变化磁场激发的电场E i ,选一闭合回路l ,则有[ A ] (A) 一定有0d ,0d i 0≠⋅=⋅⎰⎰l E l E l l . (B) 一定有0d ,0d i 0=⋅≠⋅⎰⎰l E l E l l . (C) 可能有,0d 0≠⋅⎰l l E 一定有0d i ≠⋅⎰l E l . (D) 一定有0d 0=⋅⎰l l E ,可能有0d i =⋅⎰l E l . 4.用线圈的自感系数L 来表示载流线圈磁场能量的公式W m = L I 2 / 2[ D ] (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺线环.(D) 适用于自感系数L 一定的任意线圈.二.填空题1.真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O点的磁场能量密度w mo = 0 ,P 点的磁场能量密度w mP = 22020365a I πμ.2. 反映电磁场基本性质和规律的麦克斯韦方程组积分形式为: ∑⎰==⋅n i i S q S D 1d ………… ① tΦl E m L d d d -=⋅⎰ ……………… ② 0d =⋅⎰S B S ………… ③ t ΦI l H e n i i L d d d 1 +=⋅∑⎰= ………… ④ 试判断下列结论是包含或等效于哪一个麦克斯韦方程式的,将你确定的方程是用代号填在相对应结论的空白处.(1) 变化的磁场一定伴随有传导电流: ② ;(2) 磁感应线是无头无尾的: ③ ;(3) 电荷总伴随有电场: ① 。

电磁场习题(专题)麦克斯韦方程习题解答

电磁场习题(专题)麦克斯韦方程习题解答

2015/9/25
4
1-4 参看4题图,分界面上 方和下方两种媒质的介电常数 分别为1和2,分界面两侧电场 ˆ21 强度矢量 E 与单位法向矢量 n 之间的夹角分别是1和2。假设 两种媒质分界面上的电荷面密 度S=0,试 证明: tan 1 1 tan 2 2
E2n
证明: 根据边界条件: D2 n D1n S 分界面上无自由面电荷,可得
2015/9/25
D2 n D1n
5
D2 n D1n
所以
2 E2 n 1 E1n

E2n
由图可知:
2 E2 cos 2 1E1 cos 1
又根据边界条件: E2t E1t 由图可知: E2 sin 2 E1 sin 1 两式相除,可得

tan 1 1 tan 2 2
谢谢认真听课的同学!
2015/9/25
10
ˆx e H x Hx
ˆz e E z E y E y E x E x E z ˆx ˆy ˆz e e e z z x y z y x Ez
ˆz e H y H x H z H y H x H z ˆx ˆy ˆz e e e z y z x z x y Hz
C 为积分常数,取为零。 I0 U (t ) cos( t ) E ( t ) 所以 Cd d R 2 考虑 C d

2015/9/25
I0 I0 D (t ) E (t ) cos( t ) cos( t ) 2 Cd R
9
2015/9/25

(完整版)《大学物理》习题册题目及答案第13单元 磁介质

(完整版)《大学物理》习题册题目及答案第13单元 磁介质

H B a b c o 第13单元 磁介质 第九章 电磁场理论(二)磁介质 麦克斯韦方程组学号 姓名 专业、班级 课程班序号一 选择题[ B ]1. 顺磁物质的磁导率:(A)比真空的磁导率略小 (B)比真空的磁导率略大(C)远小于真空的磁导率 (D)远大于真空的磁导率[ C ]2. 磁介质有三种,用相对磁导率r μ表征它们各自的特性时, (A )顺磁质0>r μ,抗磁质0<r μ,铁磁质1>>r μ(B )顺磁质1>r μ,抗磁质1=r μ,铁磁质1>>r μ(C )顺磁质1>r μ,抗磁质1<r μ,铁磁质1>>r μ(D )顺磁质0>r μ,抗磁质0<r μ,铁磁质1>r μ[ B ]3. 如图,平板电容器(忽略边缘效应)充电时,沿环路L1,L2磁场强度H 的环流中,必有:(A )⎰⎰⋅>⋅211L L d d l H l H(B )⎰⎰⋅=⋅211L L d d l H l H(C )⎰⎰⋅<⋅211L L d d l H l H(D )021=⋅⎰L d l H[ D ]4. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A)I d L 21=⋅⎰l H (B) I d L =⋅⎰2l H (C) I d L -=⋅⎰3l H (D) I d L -=⋅⎰4l H二 填空题1. 图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是H B 0μ=的关系。

试说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表 铁磁质 的B ~H 关系曲线。

b 代表 顺磁质 的B ~H 关系曲线。

c 代表 抗磁质 的B ~H 关系曲线。

L 1 L 2 ⊙ × L 1 L 2 L 3 L 42. 一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B = 0r nI μμ,磁场强度H =__nI _。

大学物理课后习题答案ew

大学物理课后习题答案ew
S S
所以: I s1 = I d 1 =

� 1 � 1 � � 1 j d ⋅ dS = ∫ j d ⋅ dS = I d = I c Sr 4 SR 4 4
I s2 = Ic
4、反映电磁场基本性质和规律和积分形式的麦克斯韦方程组为:
� � n D ∫∫ ⋅ dS =∑ qi
S i =1

∫ ∫
� E
� � � ∂D 解:因为 E 方向垂直纸面向内,大小随 t 线性增加,所以 j d = 方向垂直纸面向内,又 ∂t � � � � � � 因为 ∫ H ⋅ dl = ∫ ( j c + j d ) ⋅ dS ,所以 H 方向垂直 OP 连线向下。
l S
6、一电荷为 q 的点电荷,以匀角速度ω作圆周运动,圆周的半径为 R.设 t = 0 时 q 所在点 的坐标为 x0 = R,y0 = 0 ,以 i 、 j 分别表示 x 轴和 y 轴上的单位矢量.求圆心处的位移电 流密度 J 。 解:设坐标如图所示, φ = ω t .t 时刻点电荷 q 在圆心处产生的电位移为
所以 C 错
因为:
l所以 D 错来自3、如图,设平板电容器充电,传导电流为 I c , R = 2r , 忽略边缘效应,试求通过回路 L1 、 L2 的全电流。 解:因为
L1 L2

L
� � � � � � H ⋅ dl = I c + I d = I s = ∫ j c ⋅ dS + ∫ j d ⋅ dS
S
� � � � B ⋅ dS = 0 , ∫ D ⋅ dS = ∫ ρdV = 0 所以 B 对。
S V
r dB 2 dt
所以 A 错
因为:
l

《大学物理》第13章电磁感应电磁场练习题及答案

《大学物理》第13章电磁感应电磁场练习题及答案

《大学物理》第13章电磁感应电磁场练习题及答案练习1一. 选择题1. 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略):( ) A. 把线圈的匝数增加到原来的两倍;B. 把线圈的面积增加到原来的两倍,而形状不变;C. 把线圈切割磁力线的两条边增长到原来的两倍;D. 把线圈的角速度增大到原来的两倍。

2. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时: ( ) A. 铜环中有感应电动势,木环中无感应电动势; B. 铜环中感应电动势大,木环中感应电动势小; C. 铜环中感应电动势小,木环中感应电动势大; D. 两环中感应电动势相等。

3. 对于位移电流,下列说法中正确的是 ( ) A. 与电荷的定向运动有关; B. 揭示了变化的电场能激发磁场; C. 产生焦耳热; D. 与传导电流一样。

4. 一圆形线圈在均匀磁场中作下列运动时,会产生感应电流的情况是 ( ) A. 沿垂直磁场方向平移;B. 以直径为轴转动,轴跟磁场垂直;C. 沿平行磁场方向平移;D. 以直径为轴转动,轴跟磁场平行。

OB二. 填空题1.如图所示,在一长直导线L中通有电流I,ABCD为一矩形线圈,它与L皆在纸面内,且AD边与L平行:(1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方向为____________;(2) 矩形线圈绕AD边旋转,当BC边已离开纸面正向外运动时,线圈中感应动势的方向为_________________________。

2.引起动生电动势的非静电力是力;引起感生电动势的非静电力是力。

3.∮H⃗∙dlL=I+I d表明磁场强度沿任一闭合回路的线积分等于通过以该回路为边界的任意曲面的;∮E⃗∙dll =−dΦdt的物理意义是变化的磁场产生。

第十三章 电磁感应(部分习题分析与解答2)

第十三章  电磁感应(部分习题分析与解答2)
2 2
Φ 2 2 = 0 I[d d R ] M = = 0[d d R ] I
d+R + arctg dR dR π = 2 d+R
1 π 注: arctgA + arctg = arctg A 2
作业13—29
解:取长度为单位长度,半径为r,厚为 的薄 取长度为单位长度,半径为 ,厚为dr的薄 柱壳为体积元dV,则该体积元内储存的能量为: 柱壳为体积元 ,则该体积元内储存的能量为: 1 2 dWm = B 内2πrdr 20
作业13—16
证明:连接 、 证明 连接OP、OQ,设想在 连接 ,设想在PQO 的闭合导体回路中,由于OP、 的闭合导体回路中,由于 、 OQ沿半径方向,于通过该处的感 沿半径方向, 沿半径方向 应电场强度E 处处垂直,故有: 应电场强度 k处处垂直,故有:
B O P O’ Ek
ε op = ∫op E d l = 0; ε OQ = ∫OQ E d l = 0
L1 L2
和线圈2之间完全无关时 (2)当线圈 和线圈 之间完全无关时,若两线圈之 )当线圈1和线圈 之间完全无关时, 间离得很远,或者是它们之间相互无磁力线穿过时: 间离得很远,或者是它们之间相互无磁力线穿过时: 和线圈2之间的 (3)当线圈 和线圈 之间的“关联”介于以上二者 )当线圈1和线圈 之间的“关联” 之间时,即两线圈之间相互有部分磁力线穿过时: 之间时,即两线圈之间相互有部分磁力线穿过时:
B B′
Φ2 Φ Φ 2 = 2Φ + 2Φ = 4Φ,故L2 = = 4 = 4L I I
连接时, 和 线圈中的电流流向相同, (2)当A’和B连接时,AB和A’B’线圈中的电流流向相同, ) 和 连接时 线圈中的电流流向相同 且由于两线圈紧密结合,通过回路的磁通量也相同, 且由于两线圈紧密结合,通过回路的磁通量也相同,故穿 过大回路的总通量为: 过大回路的总通量为:

电磁场与电磁波习题讲解

电磁场与电磁波习题讲解

电磁场与电磁波习题讲解静电场的基本内容2.7 半径分别为a和b(a>b),球心距离为c(c<a-b)的两球面间均匀分布有体密度为ρV的电荷,如图所示。

求空间各区域的电通量密度。

解:由于两球面间的电荷不是球对称分布,不能直接用高斯定律求解。

但可把半径为b的小球面内看作同时具有体密度分别为±ρV的两种电荷分布,这样在半径为a的大球体内具有体密度为ρV的均匀电荷分布,而在半径为b的小球体内则具有体密度为-ρV的均匀电荷分布。

空间任一点的电场是这两种电荷所产生的电场的叠加。

以球体a的球心为原点建立球坐标系,设场点为P(r),场点到球体b球心的距离矢量为r’。

分三种情形讨论。

如果场点位于大球体外的区域,则大小球体产生的电场强度分别为如果场点位于大球体内的实心区域,则大小球体产生的电场强度分别为如果场点位于小球体内的空腔区域,则大小球体产生的电场强度分别为恒定电场的基本内容2.17一个有两层介质(ε1, ε2)的平行板电容器,两种介质的电导率分别为σ1和σ2,电容器极板的面积为S,如图所示。

在外加电压为U时,求:(1)电容器的电场强度;(2)两种介质分界面上表面的自由电荷密度;(3)电容器的漏电导;(4)当满足参数σ1ε2=σ2ε1时,问G/C=?(C为电容器电容)。

恒定磁场的基本内容4.4如果在半径为a,电流为I的无限长圆柱导体内有一个不同轴的半径为b的圆柱空腔,两轴线间距离为c,且c+b<a。

求空腔内的磁通密度。

解:将空腔中视为同时存在J和-J的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J、均匀分布在半径为a 的圆柱内,另一个电流密度为-J、均匀分布在半径为b的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

首先,面电流密度为其次,设场点为P(r),场点到圆柱a轴心的距离矢量为ρ,到圆柱b轴心的距离矢量为ρ’。

电磁场中的麦克斯韦方程组练习题及

电磁场中的麦克斯韦方程组练习题及

电磁场中的麦克斯韦方程组练习题及解答电磁场中的麦克斯韦方程组练习题及解答文中,我们将探讨电磁场中的麦克斯韦方程组,并给出相应的练习题及解答。

一、麦克斯韦方程组简介麦克斯韦方程组是电动力学的基本方程,描述了电磁场的行为和规律。

它由四个方程组成,分别是:1. 高斯定律2. 麦克斯韦-法拉第定律3. 安培环路定律4. 波恩定律下面我们将逐一介绍这四个方程。

1. 高斯定律麦克斯韦方程组中的第一个方程是高斯定律,它描述了电场与电荷之间的关系。

数学表达式为:∮E·dA = 1/ε₀∫ρdV其中,∮E·dA表示电场E沿闭合曲面的通量,ρ表示电荷密度,ε₀为真空电容率。

2. 麦克斯韦-法拉第定律麦克斯韦-法拉第定律描述了磁场的变化与电场的关系,数学表达式为:∮B·ds = μ₀(I + ε₀∂∅/∂t)在上式中,∮B·ds表示磁场B沿闭合回路的环路积分,I表示穿过该回路的电流,∂∅/∂t表示电场的变化率,μ₀为真空磁导率。

3. 安培环路定律安培环路定律描述了磁场的产生与电流的关系,数学表达式为:∮B·ds = μ₀∫J·dA在上式中,∮B·ds表示磁场B沿闭合回路的环路积分,J表示电流密度,∫J·dA表示电流通过曲面的总量。

4. 波恩定律波恩定律描述了电磁感应现象,即磁场的变化会在闭合回路中引起电流的产生。

数学表达式为:∮E·ds = -∂∅/∂t在上式中,∮E·ds表示电场E沿闭合回路的环路积分,∂∅/∂t表示磁通量的变化率。

二、练习题及解答1. 高斯定律练习题考虑一个半径为R的球体,球心处有一个电荷Q。

求该电荷产生的电场在球体表面上的总通量。

解答:根据高斯定律,我们有∮E·dA = 1/ε₀∫ρdV,又因为球体内电荷密度为零,故只需考虑球体表面。

球面上的面积元素为dA = R²sinθdθdφ。

第13章例题_电磁场与麦克斯韦方程组

第13章例题_电磁场与麦克斯韦方程组

电磁场与麦克斯韦方程组
例13-4一根长度为L的铜棒,在磁感应强度为B的匀强磁场中, 以角速度ω在与磁场方向垂直的平面上绕棒的一端 O 做匀 速运动. 试求在铜棒两端的动生电动势. 解法1 :OP方向的为导线正方向,线元dl 速度大小 v l ,方向如图所示, 动生电动势为
di (v B) dl vBdl Bldl
2
当 30 时
i NBa 2πn sin 30 NBa πn
2 2
max
2
(3)转过180̊ 流经横截面的感应电量为
1 2 0 2 NBa 2 qi dt d R R R R
0 0
i
0 NBa 2 为起始位置时的全磁通.
第4页 共13页
dV 2π rldr
I l r2 r2 dr I I l ln Wm wm dV 2 π lr d r 4π r1 V r1 8π 2 r 2 r 1 4π r 2 2 I r2 0 I l r 1 2 ln (2) Wm WL LI 0 ln 2 , L 2π r1 2 4π r1
例13-6 解(2) 在导体棒AB上取线元dl i E感 dl
L
r dB , E感与 dl 的夹角α 该处E 感 2 dt
AB
r dB E感 dl cos dl AB AB 2 d t
dB d l dl AB d t 2 2
dt dt
(2)取半径 r 的回路如图
(3) f m ev B, f E eE ,
第13页 共13页
D B 0 0 dE 0 0 dE H 2πr dS , H , D E , B r , 0 BR R r S t 0 2 dt 2 dt

第十三章电磁场与麦克斯韦方程组习题解答和分析

第十三章电磁场与麦克斯韦方程组习题解答和分析

第十三章习题解答13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r 1,r 2;已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间;导线框长为a 宽为b ,求导线框中的感应电动势;分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律d d i tΦε=-计算感应电动势,其中磁通量s B d S Φ=⎰,B 为两导线产生的磁场的叠加;解:无限长直电流激发的磁感应强度为02IB rμ=π;取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右;取回路的绕行正方向为顺时针;由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+, 垂直纸面向里通过微分面积dS adx =的磁通量为00122()2()I I d B dS B dS adx r x r x μμππ⎡⎤Φ===+⎢⎥++⎣⎦通过矩形线圈的磁通量为000122()2()bI I adx r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰ 012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭感生电动势012012012012d ln ln cos d 2()()ln cos 2i a r b r b I t t r r ar b r b I t r r μωΦεωμωω⎛⎫++=-=-+ ⎪π⎝⎭⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针;题图13-1 题图13-213-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中B =;圆形线圈可绕通过圆心的轴O 1O 2转动,转速n =600rev/min;求圆线圈自图示的初始位置转过/2π时,1 线圈中的瞬时电流值线圈的电阻为R =100Ω,不计自感;2 感应电流在圆心处产生的磁感应强度;分析:应用法拉第电磁感应定律求解感应电动势;应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度; 解:1 圆形线圈转动的角速度2=2060nπωπ= rad/s 设t =0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方向;则t 时刻通过该回路的全磁通2cos cos NB S NBS t NB r t ψωπω===电动势 2d sin d i NB r t tψεπωω=-= 感应电流 2sin ii NB r t I R Rεπωω== 将圆线圈自图示的初始位置转过/2π时,2t πω=代入已知数值 得: 0.99i I A =2 感应电流在圆心处产生的磁感应强度的大小为40 6.2210T 2ii I B Nrμ-==⨯i B 的方向与均匀外磁场B 的方向垂直;13-3 均匀磁场B 被限制在半径R =10cm 的无限长圆柱形空间内,方向垂直纸面向里;取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示;设磁场以d 1T/s d B t =的匀速率增加,已知6cm Oa Ob ==,3πθ=,求等腰梯形回路abcd 感生电动势的大小和方向;分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量;解:设顺时针方向为等腰梯形回路绕行的正方向.则t 时刻通过该回路的磁通量题图13-3 题图13-4B S BS Φ==其中S 为等腰梯形abcd 中存在磁场部分的面积,其值为2211()sin 22S R oa θθ=- 电动势d d d d i B St t Φε=-=-2211d ()sin 22d BR oa tθθ⎡⎤=--⎢⎥⎣⎦ 代入已知数值 33.6810V i ε-=-⨯“–”说明,电动势的实际方向为逆时针,即沿adcba 绕向;用楞次定律也可直接判断电动势的方向为逆时针绕向;13-4 如题图13-4所示,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v 沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:1 在任意时刻t 通过矩形线圈的磁通量m Φ;2 在图示位置时矩形线圈中的电动势i ε;分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t 时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势;解:1 设线圈回路的绕行方向为顺时针;由于载流长直导线激发磁场为非均匀分布,02IB xμπ=;因此,必须由积分求得t 时刻通过回路的磁通量; 取坐标Ox 垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻t 通过矩形线圈的磁通量为00d d ln22b vtSa vtI Il b vtl x x a vtμμΦππ+++===+⎰⎰B S 2在图示位置时矩形圈中的感应电动势00()d d 2i t Ilv b a tabμΦεπ=-=-=电动势的方向沿顺时针绕向;13-5 如题图13-5所示为水平面内的两条平行长直裸导线LM 与L M '',其间距离为l ,其左端与电动势为0ε的电源连接.匀强磁场B 垂直于图面向里,一段直裸导线ab 横嵌在平行导线间并可保持在导线上做无摩擦地滑动,电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;求:1 ab 达到的最大速度;2 ab 到最大速度时通过电源的电流I ;分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题;当接通电源后,ab 中产生电流;该通电导线受安培力的作用而向右加速运动,由于ab 向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab 不受安培力作用,此时ab 达到最大速度;解:1电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;设ab 运动的速度为v ,则此时直导线ab 所产生的动生电动势i Blv ε=,方向由b 指向a .由全电路欧姆定理可得此时电路中的电流为0Blv i Rε-=ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时0i =;所以ab 达到的最大速度为max v Blε=2ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时通过电路的电流i =0;所以通过电源的电流也等于零;13-6 如题图13-6所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转,O 1O 2在离细杆a 端L /5处;若已知均匀磁场B 平行于O 1O 2轴;求ab 两端间的电势差U a -U b . 分析:由动生电动势表达式先求出每段的电动势,再将ab 的电动势看成是oa 和ob 二者电动势的代数和,ab 两端的电势差大小即为ab 间的动生电动势大小;求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元dl ,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的动生电动势;解:设金属细杆ab 与竖直轴O 1O 2交于点O ,将ab 两端间的动生电动势看成ao 与ob 两段动生电动势的串联;取ob 方向为导线的正方向,在铜棒上取极小的一段线元dl ,方向为ob 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()i d v B dl vBdl B ldl εω=⨯=-=-ob 的动生电动势为242501416d d 2550L ob i abL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势ob ε的方向由b 指向O ;同理oa 的动生电动势为题图13-5 题图13-6225011d d 2550L oa i baL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势oa ε的方向由a 指向O ;所以ab 两端间的的动生电动势为2310ab ao ob oa ob B L εεεεεω=+=-+=-动生电动势ab ε的方向由a 指向了b ;a 端带负电,b 端带正电;ab 两端间的电势差2310a b ab U U B L εω-==-b 端电势高于a 端;13-7 如题图13-7所示,导线L 以角速度ω绕其端点O 旋转,导线L 与电流I 在共同的平面内,O 点到长直电流I 的距离为a ,且a >L ,求导线L 在与水平方向成θ角时的动生电动势的大小和方向;分析:载流长直导线产生磁场,导线L 绕O 旋转切割磁力线;由于切割是不均匀的磁场,而且导体各处的运动速度不同,所以要微分运动导线,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的总动生电动势;解:取OP 方向为导线的正方向,在导线OP 上某处取极小的一段线元dl ,方向为OP 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()d v B dl vBdl B ldl εω=⨯=-=-将载流长直导线在该处激发磁场02(cos )IB a l μπθ=+代入,积分得导线L 在与水平方向线成θ角时的动生电动势为:()00d 2cos L i OP i I ldla l ωμεεπθ==-+⎰⎰020(cos )(cos )2cos (cos )LI a l ad l a l ωμθθπθθ+-=+⎰题图13-7 题图13-802+cos cos In 2cos I a L L a a ωμθθπθ⎛⎫=--⎪ ⎭⎝ 动生电动势的方向由P 指向O ;13-8 如题图13-8所示半径为r 的长直密绕空心螺线管,单位长度的绕线匝数为n ,所加交变电流为I =I 0sin ωt ;今在管的垂直平面上放置一半径为2r ,电阻为R 的导线环,其圆心恰好在螺线管轴线上;1计算导线环上涡旋电场E 的值且说明其方向; 2计算导线上的感应电流i I ;3计算导线环与螺线管间的互感系数M ;分析:电流变化,螺线管内部磁场也变化,由磁场的柱对称性可知,由变化磁场所激发的感生电场也具有相应的对称性,感生电场线是一系列的同心圆;根据感生电场的环路定理,可求出感生电场强度;由法拉第电磁感应定律及欧姆定律求感应电流,由互感系数定义式求互感系数; 解:1以半径为2r 的导线环为闭合回路L ,取回路L 的绕行正方向与B 呈右旋关系,自上向下看为逆时针方向;由于长直螺线管只在管内产生均匀磁场0B nI μ=,导线环上某点涡旋电场E 的方向沿导线环的切向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22(2)dB E r r dtππ=-导线环上涡旋电场E 的值为00cos 44n r r dBE I t dt μωω=-=- 若cos ωt >0,E 电场线的实际走向与回路L 的绕行正方向相反,自上向下看为顺时针方向;若cos ωt <0,E 电场线的实际走向与回路L 的绕行正方向相同,自上向下看为逆时针方向; 2 导线上的感应电流i I22001cos ii d r dB r I nI t R R dt R dt RεππμωωΦ==-=-=3导线环与螺线管间的互感系数为220B r M n r I IπμπΦ===13-9 电子感应加速器中的磁场在直径为0.50m 的圆柱形区域内是匀强的,若磁场的变化率为×10-2T/S;试计算离开中心距离为0.10m 、0.50m 、1.0m 处各点的感生电场; 分析:由磁场的柱对称性可知,变化磁场所激发的感生电场分布也具有相应的对称性,即感生电场的电场线是一系列以圆柱体中心为轴的同心圆;根据LS BE dl dS t∂=-∂⎰⎰可求出感生电场强度;解:以圆柱形的区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B呈右旋关系,为顺时针方向;由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22()2()LdB r r R dtE dl E r dB R r R dtπππ⎧-<⎪⎪==⎨⎪->⎪⎩⎰得 2d ()2d d ()2d r Br R tE R B r R r t⎧-<⎪⎪=⎨⎪->⎪⎩式中“-”说明:若d 0d Bt>,E 的实际方向与假定方向相反,否则为一致; r =0.10m 时,r <R , 4d || 5.010V/m 2d r BE t-==⨯r =0.50m 时, r >R , 24d || 6.2510V/m 2d R BE r t -==⨯ r =1.10m 时,r >R , 24d || 3.1310V/m 2d R BE r t-==⨯ 13-10 如题图13-10所示,一个限定在半径为R 的圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小;电子在磁场中A 、O 、C 各点处时,它所获得的瞬时加速度大小、方向各为若干 设r =5.0cm; 分析:根据对称性,由感生电场的环路定理求出感生电场强度,由感生电场力及牛顿第二定律求出瞬时加速度;解:以圆柱形区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B 呈右旋关系,由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律题图13-10 题图13-11d d Ll t∂=-∂⎰⎰S BE S 可得 2d d 2d LB E r r t=π=-π⎰E l r <R 得 d 2d r BE t=-由于圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小.所以d 0d Bt<,E 的实际方向与假定方向一致,为顺时针方向的切线方向;电子受到的电场力为e F eE =-,其方向为逆时针的切线方向; 瞬时加速度的大小为:d 2d eE e r B a m m t== 由于r A =0.05m,所以A 处的瞬时加速度的大小为:724.410/A a m s =⨯,方向为水平向右; 由于r C =0.05m,所以C 处的瞬时加速度的大小为:724.410/C a m s =⨯,方向为水平向左;由于r O =0,所以O 处的瞬时加速度:0O a =13-11 真空中的矩形截面的螺线环的总匝数为N ,其它尺寸如题图13-11所示,求它的自感系数;分析:自感系数一般可由LI ψ=计算,可见计算自感系数关键是确定穿过自感线圈的磁通量;假设螺线管通有电流,求出磁感应强度,再求出磁通量、磁通链,即可求出自感系数; 解:设螺绕管通有电流I ,由安培环路定理可得管内距轴线r 处的磁场强度为2NI H r =π, 2NI B H rμμ==π 通过某一截面的磁通量210021d d ln22R SR NINIhR B S h r rR μμΦ===ππ⎰⎰⎰螺绕管的磁通链2021ln2N N IhR N R μψΦ==π 自感系数:2021ln 2NN hR L IR ψμ==π13-12 设一同轴电缆由半径分别为1r 1和2r 的两个同轴薄壁长直圆筒组成,电流由内筒流入,由外筒流出,如题图13-12所示;两筒间介质的相对磁导率r 1μ=,求同轴电缆1 单位长度的自感系数;2单位长度内所储存的磁能;分析:先求磁场、磁通量,由自感系数定义式求自感系数,再由自感磁能表达式求磁能; 解:1电流由内筒流入,由外筒流出时,在内外筒之间产生的磁场为B=02Irμπ见11-19;通过内外筒之间单位长度截面的磁通量为212121d 1d lnln r Sr IIr x xr r L r μμΦμΦI 000===2π2π∴==2π⎰⎰S B2单位长度内所储存的磁能220211ln 24m I r W LI r μπ==13-13 一无限长直导线通以电流I =I 0sin ωt ,和直导线在同一平面内有一矩形线框,其短边与直导线平行,线框的尺寸及位置如题图13-13所示,且b /c =3;求: 1 直导线和线框的互感系数; 2 线框中的互感电动势;分析:互感系数由MI =φ计算,计算互感系数关键是确定穿过互感线圈的磁通量; 解:1 无限长直导线产生的磁场02IB r μπ=;取矩形线框的正法线方向为垂直纸面向里,通过矩形线框的磁通量为d d d ln ln 3bcSIIa x a xxxIa Ia b c μμΦμμ0000==-2π2π==2π2π⎰⎰⎰S B∴ 0ln 32aM IμΦ==π2线框中的互感电动势00ln 3d cos d 2i a I IMt t μωεω=-=-πi ε为正时,电动势的方向沿顺时针绕向;i ε为负时,电动势的方向沿逆时针绕向;13-14 一圆环,环管横截面的半径为a ,中心线的半径为R Ra ;有两个彼此绝缘的导线圈题图13-12 题图13-13都均匀地密绕在环上,一个N 1匝,另一个N 2匝,求: 1两线圈的自感L 1和L 2; 2两线圈的互感M ; 3M 与L 1和L 2的关系; 分析:由于Ra ,环中的磁感应强度可视为均匀;设两个线圈通有电流1I 、2I ,求出穿过螺线管线圈的磁通链数,进而求出自感、互感系数;解:1设N 1匝螺绕管线圈中通有电流I 1,由于中心线的半径R 环管横截面的半径a ,所以螺绕管内的磁场01112N I B Rμ=π,通过螺绕管线圈的磁通链数为222011011111122N I N a N B S N a I RRμμψ==π=πN 1匝螺绕管线圈自感系数:22011112N a L I Rμψ==同理,N 2匝螺绕管线圈自感系数:22022222N a L I Rμψ==2N 1匝螺绕管线圈产生的磁场B 1,通过N 2匝螺绕管线圈的磁通链数为2201101221212122N I N N a N B S N a I RRμμψ==π=π两线圈的互感20122112N N a M I Rμψ==3M 与L 1和L 2的关系22220120222N N a N aM RRμμ===13-15 一圆柱体长直导线,均匀地通有电流I ,证明导线内部单位长度储存的磁场能量为2m 0/(16)W I μ=π设导体的相对磁导率r 1μ≈;分析:均匀通有电流的长直导线,其内部和外部均存在磁场,且磁场分布呈轴对称性;据题意,只需求得单位长度导线内所储存的磁能,因此根据磁能密度公式,求得体元内的磁能,然后对圆柱内部的磁能进行积分即可;解:设圆柱形导体的半径为R .由安培环路定律可得长直导线内的磁场02,2rB I R μ=π r<R导线内的磁能密度222200m 2240012228r I r B w I R R μμμμ⎛⎫===⎪ππ⎝⎭在导线内取单位长度的同轴薄圆柱筒体元d 2d V r r =π 其磁能为 230m m 4d d d 4I W w V r r R μ==π单位长度导体柱内储存的磁场能量为22300m m 4d d 416RI I W W r r R μμ===ππ⎰⎰13-16 平行板电容器的电容为C=μF,两板上的电压变化率为dU/dt =×105V/s,则该平行板电容器中的位移电流为多少;分析:根据平行板电容器的性质,平行板间为均匀电场,电位移D 均匀分布,由平行板电容器场强与电压关系式,求出电位移通量ψ与电压U 的关系,并求出位移电流; 解:设平行板电容器的极板面积S 、间距d ,其间电位移通量为00U DS ES S dψεε=== 对平行板电容器,其电容为0SC dε=,代入上式得CU ψ= 位移电流为65d d d 2010 1.5103A d d UI C t tψ--===⨯⨯⨯= 13-17 一平行板电容器,极板是半径为R 的两圆形金属板,极板间为空气,此电容器与交变电源相接,极板上电量随时间变化的关系为q =q 0sin ωt ω为常量,忽略边缘效应,求: 1电容器极板间位移电流及位移电流密度;2极板间离中心轴线距离为rr <R 处的b 点的磁场强度H 的大小;3当/4t ω=π时,b 点的电磁场能量密度即电场能量密度与磁场能量密度之和; 分析:根据电流的连续性,电容器极板间位移电流等于传导电流求解位移电流;忽略边缘效应,极板间位移电流均匀分布求解位移电流密度;根据全电流安培环路定理求出磁场强度极板间的磁场强度;由极板间电场强度、磁场强度可求得电磁场能量密度; 解:1电容器极板间位移电流d 00d cos cos d UI CCU t q t tωωωω=== 或由电流连续性得:0cos d dqI q t dtωω== 位移电流密度02cos d d I q t S R ωωδπ== 2以中心轴线为圆心,过b 点作一半径为rr <R 的圆为回路,由全电流安培环路定理'd LH dl I =⎰,有2202cos 2d q t H r r r R ωωπδπππ==解得02cos 2q r tH Rωωπ=3 t ω=π/4时,0022cos 24q rrH R Rωπωππ/4== 0022000sin /412q E R R πσεεππε=== b 点的电磁场能量密度22222000024012244e mw w w E H q r R εμμωπε=+⎛⎫=+=+ ⎪⎝⎭13-18 由一个电容C =μF 的电容器和一个自感为L =10mH 的线圈组成的LC 电路,当电容器上电荷的最大值Q=×10-5C 时开始作无阻尼自由振荡;试求 1电场能量和磁场能量的最大值;2当电场能量和磁场能量相等时,电容器上的电荷量; 分析:由电容器储能,自感磁能,求电场能量,磁场能量;解:1由初始条件可知,电磁振荡的初相位0ϕ=.所以电容器上的电量振荡表达式为0cos q Q t ω=自感线圈上的电流振荡表达式为0sin dqI Q t dtωω==- 系统固有振动角频率ω=由于电场能量为2220cos 22e Q Q W t C Cω==,所以电场能量的最大值为 240 4.510J 2eMAXQ W C-==⨯ 由于磁场能量为2220sin 22m LI LI W t ω==,所以磁场能量最大值为 22400 4.510J 22mMAXLI Q W C-===⨯电场能量和磁场能量的最大值相同,都与系统总能量相等;2 电场能量和磁场能量相等时,e m W W = 解得2cos 2t ω=±所以电容器上的电荷量为5024.310C 2q Q -=±=±⨯ 13-19 一个沿负z 方向传播的平面电磁波,其电场强度沿x 方向,传播速度为c ;在空间某点的电场强度为300cos 2V /m 3x E vt ππ⎛⎫=+ ⎪⎝⎭试求在同一点的磁场强度表达式,并用图表示电场强度和传播速度之间相互关系;分析:根据电场强度与磁场强度的定量关系可得该点的磁场强度; 解:由于平面电磁波沿负z 方向传播,某点电场强度E 的振动方向沿x 轴正方向,根据电场强度、磁场强度和传播方向三者满足右旋关系,则该点磁场强度的振动方向沿负y 轴方向;由此,根据电场强度与磁场强度的定量关系式可得该点的磁场强度表示式为000.8cos 2A/m 3y x H E vt εππμ⎛⎫=-=-+ ⎪⎝⎭ 用坡印廷矢量S 的方向表示电磁波的传播方向;电场强度、磁场强度和电磁波的传播方向坡印廷矢量三者满足关系S E H =⨯;题13-19解图。

《新编基础物理学》第13章习题解答和分析

《新编基础物理学》第13章习题解答和分析

第13章 电磁场与麦克斯韦方程组13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。

已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。

导线框长为a ,宽为b ,求导线框中的感应电动势。

分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律md d i tΦε=-计算感应电动势,其中磁通量m d sB S Φ=⋅⎰, B 为两导线产生的磁场的叠加。

解:无限长直电流激发的磁感应强度为02IB rμ=π。

取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。

取回路的绕行正方向为顺时针。

由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。

通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭ 012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。

题图13-1解图13-1x13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。

大学物理13章习题详细答案

大学物理13章习题详细答案

习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。

(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== B A-Q/2Q/2Q/2Q/2A B -QQ13-4 两块靠近的平行金属板间原为真空。

使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。

保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。

圆柱面B 上带电荷,A 和C 都接地。

求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=rE 02II 2πελ= AB 0101I BA ln 2d 2d ABA BR Rr r U R R R R πελπελ=-==⎰⎰r E IIIB C 0202II BC ln 2d 2d CB CBR R r r U R R R R πελπελ===⎰⎰r EBC 02A B 01ln 2ln 2R R R R πελπελ= 因此 AB BC 21ln :ln:R R R R =λλ13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。

电磁场思考与练习题答案

电磁场思考与练习题答案

电磁场思考与练习题答案一、电磁场基本概念1. 列出麦克斯韦方程组的四个基本方程,并简要说明它们各自描述的物理现象。

2. 解释电场强度、磁场强度、电位移矢量、磁感应强度的定义及其单位。

3. 简述电磁场的物质性及其在能量传递中的作用。

4. 区分静电场、恒定电场和时变电场的特性。

5. 描述磁通量、磁感应线、磁通连续性原理的基本概念。

二、静电场问题1. 计算点电荷在空间某点的电场强度。

2. 画出等量同种电荷、等量异种电荷系统的电场线分布图。

3. 求解无限大平面电荷的电势分布。

4. 分析平行板电容器的电场强度、电势差与板间距、电荷量的关系。

5. 计算球形电容器的电容值。

三、恒定电场问题1. 画出均匀电场中导体和绝缘体的电场线分布。

2. 求解导体内部电场强度与电流密度的关系。

3. 计算直导线在空间某点的磁场强度。

4. 分析电流通过长直导线时,导线周围的磁感应线分布。

5. 求解无限长直导线产生的磁感应强度。

四、时变电磁场问题1. 描述时变电场和时变磁场的相互关系。

2. 计算矩形线圈在时变磁场中产生的感应电动势。

3. 画出螺线管内部的磁场分布。

4. 分析电磁波在真空中的传播速度和波长、频率的关系。

5. 求解电磁波在介质中的传播速度。

五、电磁场应用问题1. 计算电磁铁的磁感应强度与线圈匝数、电流的关系。

2. 分析变压器的工作原理及其电压、电流与匝数的关系。

3. 画出无线电发射天线和接收天线的电磁波传播示意图。

4. 讨论电磁波在通信领域的应用。

5. 简述电磁场在医疗设备中的应用。

六、电磁场数值计算问题1. 说明有限差分法和有限元法在电磁场计算中的应用。

2. 如何利用边界元法求解开放区域电磁场问题?3. 计算一个矩形波导中TE10模式下的电场和磁场分布。

4. 描述电磁场模拟软件的基本功能及其在工程中的应用。

5. 求解一个同心球坐标系中的拉普拉斯方程,以确定电势分布。

七、电磁兼容性问题1. 解释电磁干扰(EMI)的来源及其对电子设备的影响。

大学物理课后习题答案 电磁感应 电磁场 (电磁场)

大学物理课后习题答案 电磁感应  电磁场  (电磁场)
的方向由 B 到 A 即 x 轴负方向。 10、根据电容的定义 传导电流
C
q U
q CU
dq du C 由于全电流连续得: dt dt du Id Ic C 20 10 6 1.5 10 5 3 A dt d0 dD s dDR 2 d 0 ER 2 dE 0R 2 11、 I d dt dt dt dt dt Ic
E
q 4 0 R 2
r
q 4 0 R 2
cost i sin t j


dD d q d q jd 0E cos t i sin t j sin t i cos t j 2 2 dt dt 4R dt 4R


12、充电过程中上极板带正电故 p 处电场强度 的方向向下,且电场强度增大,位移电流密度 的方向向下即位移电流向下,圆柱状向下的位移 电流在 p 处产生的 H 根据右手法则是垂直 纸 B 向里 。
i

P
H E
i d D 13、 j d 因为 E 增大 故 dD 0 , jd 的方向和 E 相同。即垂直纸面向里。 dt
n D ds q0 即q自 说明电荷总伴随有电场。
s i 1
9、当 A 板带正电, B 板带负电,当将开关 K 合上时, AB 极间的电场方向由正电荷指向负
dD 电荷即沿 x 的正方向。位移电流密度 jd 的方向即 的方向,因电容器放电, D 减少 dt
dD 0 dD 的方向和 D 的方向相反, 故沿 x 轴负方向或根据全电流连续的性质, 位移电流
第十三章 1、[D]
电磁感应 电磁场 (电磁场)

大学物理课后习题答案 电磁感应 电磁场

大学物理课后习题答案 电磁感应   电磁场

第十三章 电磁感应 电磁场 1、[D]分析:应用楞次定律为分析的根据,若要产生乙线圈中的,则乙线圈中电流产生的电感应强度是由右向左,说明甲线圈中电流产生的由右向左的电感应强度在减小,即产生该磁场的电流在减小,由此可见,将抽出甲中铁心,nI B r 0μμ=,在I 不变时,B 减小。

2、[D]依据法拉第电磁感应规律,td d φε-=在上述条件下,ε应相同。

依据欧姆定律,RI ε=因为是不同的导体电阻率不同,所以R 不同,I 也不同。

3、[B]应用楞次定律分析,在I 增长时,垂直通过线圈平面内向外的磁通量是增大,因此感应电流产生的磁感强度垂直平面向里,为顺时针方向。

4、[C]分析:当a >>r 时,有以r 为半径的圆周内各点的B可视为常矢量。

断电前通过导体环的磁通量:2012r aIBS S B ππμφ==⋅=。

断电后通过导体环的磁通量:02=φ。

对纯电阻电路有:aRIr RRq 2)(120112μφφφ==--=5、[D]θαεcos d sin d )(d l vB l B v =⋅⨯=)(B v ⨯和l d 之间夹角2πθ=,∴0d =ε 0d ==⎰εε6、[D]在t ωθθ+=,θαεcos d sin d l vB =其中θ是)(B v⨯和l d 之间夹角r r l vB d cos d sin d ωθαε-== 2OP 21d BL r r B ωωε-=-=⎰O 处为高电势 221BL ωε=7、[D]两自感线圈顺接和反接的自感系数:M L L L 221++=顺21L L KM =10≤≤KM L L L 221-+=反图(1)为反接:1111ab 2L L K L L L -+=,由于1<K ,∴0ab >L 图(2)为反接:1111ab 2L L KL L L -+=,由于1=K ,∴0ab =L8、[C]V 0.8161225.0d d 11=-⨯-=∆∆-=-=tI LtI Lε9、[C]a Ia IaIB πμπμπμ000P 22=+=10、tS B td d d d )( ⋅-=-=φεt mIa nI a nI BS BS S B mωπμπμθcos cos 2020====⋅t mIa nI mωωπμεcos 20-=11、解:Wb 1057.1)1.0(1416.310562521--⨯=⨯⨯⨯===⋅=rB BS S B πφWb 1057.1612-⨯-=-=φφC 1014.3)(1612-⨯=--=φφRq12、(1)向右移动时,垂直纸面向内的φ减小。

大学物理课后题答案13

大学物理课后题答案13

习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章习题解答13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r 1,r 2。

已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。

导线框长为a 宽为b ,求导线框中的感应电动势。

分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律d d i tΦε=-计算感应电动势,其中磁通量s B d S Φ=⎰ ,B 为两导线产生的磁场的叠加。

解:无限长直电流激发的磁感应强度为02IB rμ=π。

取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。

取回路的绕行正方向为顺时针。

由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+, 垂直纸面向里通过微分面积dS adx =的磁通量为00122()2()I I d B dS B dS adx r x r x μμππ⎡⎤Φ===+⎢⎥++⎣⎦通过矩形线圈的磁通量为000122()2()bI I adx r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰ 012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭感生电动势012012012012d ln ln cos d 2()()ln cos 2i a r b r b I t t r r ar b r b I t r r μωΦεωμωω⎛⎫++=-=-+ ⎪π⎝⎭⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。

13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场题图13-1 题图13-2B中(B =0.5T )。

圆形线圈可绕通过圆心的轴O 1O 2转动,转速n =600rev/min 。

求圆线圈自图示的初始位置转过/2π时,(1) 线圈中的瞬时电流值(线圈的电阻为R =100Ω,不计自感); (2) 感应电流在圆心处产生的磁感应强度。

分析:应用法拉第电磁感应定律求解感应电动势。

应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度。

解:(1) 圆形线圈转动的角速度2=2060nπωπ= rad/s 设t =0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方向。

则t 时刻通过该回路的全磁通2cos cos NB S NBS t NB r t ψωπω===电动势 2d sin d i NB r t tψεπωω=-= 感应电流 2sin ii NB r t I R Rεπωω== 将圆线圈自图示的初始位置转过/2π时,2t πω= 代入已知数值 得: 0.99i I A =(2) 感应电流在圆心处产生的磁感应强度的大小为40 6.2210T 2ii I B Nrμ-==⨯i B 的方向与均匀外磁场B的方向垂直。

13-3 均匀磁场B被限制在半径R =10cm 的无限长圆柱形空间内,方向垂直纸面向里。

取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示。

设磁场以d 1T/s d B t =的匀速率增加,已知6cm Oa Ob ==,3πθ=,求等腰梯形回路abcd 感生电动势的大小和方向。

分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量。

解:设顺时针方向为等腰梯形回路绕行的正方向.则t 时刻通过该回路的磁通量B S BS Φ==题图13-3 题图13-4其中S 为等腰梯形abcd 中存在磁场部分的面积,其值为2211()sin 22S R oa θθ=- 电动势d d d d i B S t t Φε=-=-2211d ()sin 22d BR oa t θθ⎡⎤=--⎢⎥⎣⎦代入已知数值 33.6810V i ε-=-⨯“–”说明,电动势的实际方向为逆时针,即沿adcba 绕向。

用楞次定律也可直接判断电动势的方向为逆时针绕向。

13-4 如题图13-4所示,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v 沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:(1) 在任意时刻t 通过矩形线圈的磁通量m Φ; (2) 在图示位置时矩形线圈中的电动势i ε。

分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t 时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势。

解:(1) 设线圈回路的绕行方向为顺时针。

由于载流长直导线激发磁场为非均匀分布,02IB xμπ=。

因此,必须由积分求得t 时刻通过回路的磁通量。

取坐标Ox 垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻t 通过矩形线圈的磁通量为0d d ln 22b vt S a vt I Il b vt l x x a vtμμΦππ+++===+⎰⎰ B S(2)在图示位置时矩形圈中的感应电动势00()d d 2i t Ilv b a tabμΦεπ=-=-=电动势的方向沿顺时针绕向。

13-5 如题图13-5所示为水平面内的两条平行长直裸导线LM 与L M '',其间距离为l ,其左端与电动势为0ε的电源连接.匀强磁场B垂直于图面向里,一段直裸导线ab 横嵌在平行导线间(并可保持在导线上做无摩擦地滑动),电路接通,由于磁场力的作用,ab 从静止开始向右运动起来。

求:(1) ab 达到的最大速度;(2) ab 到最大速度时通过电源的电流I 。

分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题。

当接通电源后,ab 中产生电流。

该通电导线受安培力的作用而向右加速运动,由于ab 向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab 不受安培力作用,此时ab 达到最大速度。

解:(1)电路接通,由于磁场力的作用,ab 从静止开始向右运动起来。

设ab 运动的速度为v ,则此时直导线ab 所产生的动生电动势i Blv ε=,方向由b 指向a .由全电路欧姆定理可得此时电路中的电流为0Blvi Rε-=ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时0i =。

所以ab 达到的最大速度为max v Blε=(2)ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时通过电路的电流i =0。

所以通过电源的电流也等于零。

13-6 如题图13-6所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转,O 1O 2在离细杆a 端L /5处。

若已知均匀磁场B平行于O 1O 2轴。

求ab 两端间的电势差U a -U b . 分析:由动生电动势表达式先求出每段的电动势,再将ab 的电动势看成是oa 和ob 二者电动势的代数和,ab 两端的电势差大小即为ab 间的动生电动势大小。

求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元dl ,先由动生电动势公式计算线元dl的两端的动生电动势i d ε,再积分计算整段的动生电动势。

解:设金属细杆ab 与竖直轴O 1O 2交于点O ,将ab 两端间的动生电动势看成ao 与ob 两段动生电动势的串联。

取ob 方向为导线的正方向,在铜棒上取极小的一段线元dl,方向为ob方向。

线元运动的速度大小为v l ω=。

由于,,v B dl互相垂直。

所以dl 两端的动生电动势()i d v B dl vBdl B ldl εω=⨯=-=-ob 的动生电动势为242501416d d 2550Lob i abL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势ob ε的方向由b 指向O 。

同理oa 的动生电动势为题图13-5 题图13-6225011d d 2550L oa i baL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势oa ε的方向由a 指向O 。

所以ab 两端间的的动生电动势为2310ab ao ob oa ob B L εεεεεω=+=-+=-动生电动势ab ε的方向由a 指向了b ;a 端带负电,b 端带正电。

ab 两端间的电势差2310a b ab U U B L εω-==-b 端电势高于a 端。

13-7 如题图13-7所示,导线L 以角速度ω绕其端点O 旋转,导线L 与电流I 在共同的平面内,O 点到长直电流I 的距离为a ,且a >L ,求导线L 在与水平方向成θ角时的动生电动势的大小和方向。

分析:载流长直导线产生磁场,导线L绕O 旋转切割磁力线。

由于切割是不均匀的磁场,而且导体各处的运动速度不同,所以要微分运动导线,先由动生电动势公式计算线元dl的两端的动生电动势i d ε,再积分计算整段的总动生电动势。

解:取OP 方向为导线的正方向,在导线OP 上某处取极小的一段线元dl,方向为OP 方向。

线元运动的速度大小为v l ω=。

由于,,v B dl互相垂直。

所以dl两端的动生电动势()d v B dl vBdl B ldl εω=⨯=-=-将载流长直导线在该处激发磁场02(cos )IB a l μπθ=+代入,积分得导线L 在与水平方向线成θ角时的动生电动势为:()00d 2cos L i OP i I ldla l ωμεεπθ==-+⎰⎰ 020(cos )(cos )2cos (cos )LIa l ad l a l ωμθθπθθ+-=+⎰题图13-7 题图13-802+cos cos In 2cos I a L L a a ωμθθπθ⎛⎫=--⎪ ⎭⎝ 动生电动势的方向由P 指向O 。

13-8 如题图13-8所示半径为r 的长直密绕空心螺线管,单位长度的绕线匝数为n ,所加交变电流为I =I 0sin ωt 。

今在管的垂直平面上放置一半径为2r ,电阻为R 的导线环,其圆心恰好在螺线管轴线上。

(1)计算导线环上涡旋电场E 的值且说明其方向; (2)计算导线上的感应电流i I ;(3)计算导线环与螺线管间的互感系数M 。

分析:电流变化,螺线管内部磁场也变化,由磁场的柱对称性可知,由变化磁场所激发的感生电场也具有相应的对称性,感生电场线是一系列的同心圆。

根据感生电场的环路定理,可求出感生电场强度。

由法拉第电磁感应定律及欧姆定律求感应电流,由互感系数定义式求互感系数。

解:(1)以半径为2r 的导线环为闭合回路L ,取回路L 的绕行正方向与B 呈右旋关系,自上向下看为逆时针方向。

相关文档
最新文档