2018年兰州市中考数学试卷

合集下载

【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案

【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案

题型一 规律探索类型一 数与式规律探索 1.(2017·百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B )A .-121B .-100C .100D .121 2.(2017·武汉)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为(导学号 35694235)(B )A .9B .10C .11D .123.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n+1=__(n +1)2__.4.若x 是不等于1的实数,我们把11-x 称为x 的差倒数,如2的差倒数是11-2=-1,-1的差倒数为11-(-1)=12,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,以此类推,则x 2018=__34__.5.观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=__1016064__.6.小明写出如下一组数:15,-39,717,-1533,…,请用你发现的规律,猜想第2014个数为__-22014-122015+1__.7.(2017·云南)观察下列各个等式的规律: 第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3,…请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 解:(1)第四个等式为:52-42-12=4;(2)第n 个等式为:(n +1)2-n 2-12=n;证明如下:∵(n +1)2-n 2-12=n 2+2n +1-n 2-12=2n 2=n ,∴左边=右边,等式成立.类型二 图形规律探索 1.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为(导学号 35694236)(C )A .121B .362C .364D .7292.如图,在△ABC 中,BC =1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为__12n__(n 为正整数).3.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=__m22017__°.4.如图,是一组按照某种规律摆放成的图案,则图⑤中三角形的个数是(C )A .8B .9C .16D .17 5.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需(B )根火柴.A .156B .157C .158D .1596.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为__(n +1)2__(用含n 的代数式表示).(导学号 35694237)类型三 与坐标系结合的规律探索1.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B 2016的横坐标为(D )A .5B .12C .10070D .100802.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…,根据这个规律探索可得第100个点的坐标为(D )A .(14,0)B .(14,-1)C .(14,1)D .(14,2)3.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D 的坐标为.4.(2017·赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P ′(-y +1,x +2),我们把点P ′(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为__(2,0)__.(导学号 35694238)5.如图,在平面直角坐标系中有一菱形OABC,且∠A=120°,点O、B在y轴上,OA =1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为__(1345.5,2)__.题型二尺规作图类型一作与两条直线距离有关的点1.(2017·陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)(导学号35694239)解:如解图,点P即为所求.2.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)解:如解图所示,作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.3.(2017·绥化)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)解:如解图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于点P.点P即为所求的点.4.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)解:如解图,点D即为所求.类型二作角平分线和垂直平分线1.(2017·福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.2.(2017·赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.(1)解:如解图所示,AF即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.3.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN;(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连接BD,求∠DBC的度数.(导学号35694240)解:(1)如解图①即为所求垂直平分线MN;(2)如解图②,连接BD,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC =∠C =12(180°-∠A)=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 4.如图,已知△ABC 中,∠ABC =90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC 的垂直平分线l ,交AC 于点O ;②连接BO 并延长,在BO 的延长线上截取OD ,使得OD =OB ; ③连接DA 、DC ;(2)判断四边形ABCD 的形状,并说明理由. (1)①②③如解图所示; (2)四边形ABCD 是矩形,理由:∵在Rt △ABC 中,∠ABC =90°,BO 是AC 边上的中线, ∴BO =12AC ,∵BO =DO ,AO =CO ,∴AO =CO =BO =DO ,∴四边形ABCD 是矩形.类型三 作圆1.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如解图所示,⊙P 即为所作的圆.2.如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B =60°,AB =3,求⊙P 的面积.解:(1)如解图所示, ⊙P 为所求作的圆; (2)∵∠B =60°, BP 平分∠ABC ,∴∠ABP =30°, ∵tan ∠ABP =AP AB, ∴AP =3, ∴S ⊙P =3π.3.(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD ,OE , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线. (1)解:作图如解图①;(2)证明:如解图②,连接OC ,∵OA =OC ,∠A =25°,∴∠BOC =50°, 又∵∠B =40°,∴∠BOC +∠B =90°, ∴∠OCB =90°,∴OC ⊥BC ,∴BC 是⊙O 的切线.5.如图,在直角三角形ABC 中,∠ABC =90°. (1)先作∠ACB 的平分线,设它交AB 边于点O ,再以点O 为圆心OB 为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC 是所作⊙O 的切线;(3)若BC =3,sin A =12,求△AOC 的面积.(1)解:作图如解图所示:(2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∴OB =OE ,∴AC 是所作⊙O 的切线;(3)解:∵sin A =12,∠ABC =90°,∴∠A =30°,∴∠ACO =∠OCB =12∠ACB =30°,∵BC =3,∴AC =23,BO =BC tan 30°=3³33=1, ∴S △AOC =12AC·OE =12³23³1= 3.题型三 与三角形、四边形有关的证明与计算类型一 与三角形有关的证明与计算 1.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM , 在△BAD 和△NAM 中,⎩⎨⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS ),∴∠B =∠ANM. 2.(2017·孝感)如图,已知AB =CD ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,BF =DE ,求证:AB ∥CD.证明:∵AE ⊥BD , CF ⊥BD ,∴∠AEB =∠CFD =90°, ∵BF =DE ,∴BF +EF =DE +EF , ∴BE =DF.在Rt △AEB 和Rt △CFD 中,⎩⎨⎧AB =CD ,BE =DF ,∴Rt △AEB ≌Rt △CFD(HL ), ∴∠B =∠D ,∴AB ∥CD. 3.(2017·连云港)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC.(1)解:∠ABE =∠ACD ;理由如下:在△ABE 和△ACD 中,⎩⎨⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD(SAS ),∴∠ABE =∠ACD ; (2)证明:∵AB =AC , ∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD , ∴∠FBC =∠FCB , ∴FB =FC , ∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC. 4.(2017·荆门)已知:如图,在Rt △ACB 中,∠ACB =90°,点D 是AB 的中点,点E 是CD 的中点,过点C 作CF ∥AB 交AE 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠DCF =120°,DE =2,求BC 的长.(1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF ,∴∠BAF =∠AFC , 在△ADE 与△FCE 中,⎩⎨⎧∠DAF =∠AFC ,∠AED =∠FEC ,DE =CE ,∴△ADE ≌△FCE(AAS ); (2)解:由(1)得,CD =2DE , ∵DE =2,∴CD =4.∵点D 为AB 的中点,∠ACB =90°, ∴AB =2CD =8,AD =CD =12AB.∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12³60°=30°,∴BC =12AB =12³8=4.5.(2017·重庆A )在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC.(1)如图①,若AB =32,BC =5,求AC 的长;(2)如图②,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF.(导学号 35694241)(1)解:AC =13;(2)证明:如解图,延长EF 到点G ,使得FG =EF ,连接BG. ∵DM =MC ,∠BMD =∠AMC , BM =AM ,∴△BMD ≌△AMC(SAS ), ∴AC =BD ,又∵CE =AC ,∴BD =CE , ∵BF =FC ,∠BFG =∠CFE , FG =FE ,∴△BFG ≌△CFE(SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDG =∠G =∠CEF. 6.(2017·呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线. (1)求证:BD =CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.(1)证明:由题意得,AB =AC , ∵BD ,CE 分别是两腰上的中线, ∴AD =12AC ,AE =12AB ,∴AD =AE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠A =∠A ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ; (2)解:四边形DEMN 是正方形,证明:略7.△ABC 的三条角平分线相交于点I ,过点I 作DI ⊥IC ,交AC 于点D. (1)如图①,求证:∠AIB =∠ADI ;(2)如图②,延长BI ,交外角∠ACE 的平分线于点F. ①判断DI 与CF 的位置关系,并说明理由; ②若∠BAC =70°,求∠F 的度数.(1)证明:∵AI 、BI 分别平分∠BAC ,∠ABC , ∴∠BAI =12∠BAC ,∠ABI =12∠ABC ,∴∠BAI +∠ABI =12(∠BAC +∠ABC)=12(180°-∠ACB)=90°-12∠ACB ,∴在△ABI 中,∠AIB =180°-(∠BAI +∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB ,∵CI 平分∠ACB ,∴∠DCI =12∠ACB ,∵DI ⊥IC ,∴∠DIC =90°,∴∠ADI =∠DIC +∠DCI =90°+12∠ACB ,∴∠AIB =∠ADI ;(2)解:①结论:DI ∥CF.理由:∵∠IDC =90°-∠DCI =90°-12∠ACB ,∵CF 平分∠ACE ,∴∠ACF =12∠ACE =12(180°-∠ACB)=90°-12∠ACB ,∴∠IDC =∠ACF ,∴DI ∥CF ;②∵∠ACE =∠ABC +∠BAC ,∴∠ACE -∠ABC =∠BAC =70°, ∵∠FCE =∠FBC +∠F , ∴∠F =∠FCE -∠FBC ,∵∠FCE =12∠ACE ,∠FBC =12∠ABC ,∴∠F =12∠ACE -12∠ABC =12(∠ACE -∠ABC)=35°.8.(8分)(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B 、C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.(导学号 35694242)解:(1)∠AMQ =45°+α;理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α, ∵QH ⊥AP , ∴∠AHM =90°, ∴∠AMQ =180°-∠AHM -∠PAB =45°+α;(2)PQ =2MB.理由如下:如解图,连接AQ ,作ME ⊥QB , ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠PAC =α, ∴∠QAM =45°+α=∠AMQ ,∴AP =AQ =QM , 在△APC 和△QME 中,⎩⎨⎧∠MQE =∠PAC ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ),∴PC =ME , ∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ=2MB.类型二 与四边形有关的证明与计算1.在▱ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF. (1)求证:△ADE ≌△CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF(SAS );(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =EB ,∴四边形DEBF 是平行四边形,又∵DF =FB ,∴四边形DEBF 为菱形.2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC.(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长. (导学号 35694243)(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD ,∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠BAD =∠ADB , ∴AB =BD =5,设BF =x ,则52-x 2=62-(5-x)2, 解得x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =485. 3.(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE(SSS ), ∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD , ∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形; (2)∵BE =BC ,∴∠BCE =∠BEC , ∵∠CBE ∶∠BCE =2∶3, ∴∠CBE =180°³22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形ABCD 是正方形.4.如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠DAF =∠F =45°.∵AE 是∠BAD 的平分线, ∴∠EAB =∠DAE =45°, ∴∠DAB =90°,又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:如解图,过点B 作BH ⊥AE 于点H , ∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠DCB =∠D =90°,∵AB =14,DE =8,∴CE =6. 在Rt △ADE 中,∠DAE =45°, ∴AD =DE =8,∴BC =8. 在Rt △BCE 中,由勾股定理得BE =BC 2+CE 2=10, 在Rt △AHB 中,∠HAB =45°, ∴BH =AB·sin 45°=72, ∵在Rt △BHE 中,∠BHE =90°, ∴sin ∠AEB =BH BE =7210.5.(2017·大庆)如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE =BF.(1)求证:四边形BDEF 为平行四边形; (2)当∠C =45°,BD =2时,求D ,F 两点间的距离.(导学号 35694244) (1)证明:∵△ABC 是等腰三角形, ∴∠ABC =∠C ,∵EG ∥BC ,DE ∥AC , ∴∠AEG =∠ABC =∠C ,∴四边形CDEG 是平行四边形, ∴∠DEG =∠C , ∵BE =BF ,∴∠BFE =∠BEF =∠AEG =∠ABC , ∴∠F =∠DEG ,∴BF ∥DE , ∴四边形BDEF 为平行四边形; (2)解:∵∠C =45°,∴∠ABC =∠BFE =∠BEF =45°, ∴△BDE 、△BEF 是等腰直角三角形,∴BF =BE =22BD =2, 作FM ⊥BD 于点M ,连接DF ,如解图所示,则△BFM 是等腰直角三角形, ∴FM =BM =22BF =1, ∴DM =3,在Rt △DFM 中,由勾股定理得: DF =12+32=10,即D ,F 两点间的距离为10. 6.(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AEG =∠BFG , ∵EF 垂直平分AB , ∴AG =BG ,在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF(AAS );(2)解:四边形AFBE 是菱形,理由如下: ∵△AGE ≌△BGF ,∴AE =BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形, 又∵EF ⊥AB ,∴四边形AFBE 是菱形.7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF ∶∠FDC =3∶2,DF ⊥AC ,则∠BDF 的度数是多少?(1)证明:∵AO =CO ,BO =DO∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°-36°=54°, ∵四边形ABCD 是矩形, ∴OC =OD ,∴∠ODC =54°,∴∠BDF =∠ODC -∠FDC =18°. 8.(2017·娄底)如图,在▱ABCD 中,各内角的平分线分别相交于点E ,F ,G ,H. (1)求证:△ABG ≌△CDE ;(2)猜一猜:四边形EFGH 是什么样的特殊四边形?证明你的猜想; (3)若AB =6,BC =4,∠DAB =60°,求四边形EFGH 的面积.(1)证明:∵GA 平分∠BAD ,EC 平分∠BCD , ∴∠BAG =12∠BAD ,∠DCE =12∠DCB ,∵在▱ABCD 中,∠BAD =∠DCB ,AB =CD ,∴∠BAG =∠DCE ,同理可得,∠ABG =∠CDE ,∵在△ABG 和△CDE 中,⎩⎨⎧∠BAG =∠DCE ,AB =CD ,∠ABG =∠CDE ,∴△ABG ≌△CDE(ASA ); (2)解:四边形EFGH 是矩形.证明:∵GA 平分∠BAD ,GB 平分∠ABC , ∴∠GAB =12∠BAD ,∠GBA =12∠ABC ,∵在▱ABCD 中,∠DAB +∠ABC =180°,∴∠GAB +∠GBA =12(∠DAB +∠ABC)=90°,即∠AGB =90°,同理可得,∠DEC =90°,∠AHD =90°=∠EHG , ∴四边形EFGH 是矩形;(3)解:依题意得:∠BAG =12∠BAD =30°,∵AB =6,∴BG =12AB =3,AG =33=CE ,∵BC =4,∠BCF =12∠BCD =30°,∴BF =12BC =2,CF =23,∴EF =33-23=3,GF =3-2=1, ∴S 矩形EFGH 的面积=EF·GF = 3.题型四解直角三角形的实际应用1.(2017·镇江)如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15 m,求实验楼的垂直高度即CD长.(精确到1 m,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:作AE⊥CD于E,如解图,∵AB=15 m,∴DE=AB=15 m,∵∠DAE=45°,∴AE=DE=15 m,在Rt△ACE中,tan∠CAE=CE AE,则CE=AE·tan37°=15³0.75≈11 m,∴CD=CE+DE=11+15=26 m.答:实验楼的垂直高度CD长为26 m.2.(2017·宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米,求河的宽度.(结果保留根号)解:过点A作AD⊥BC于点D,如解图,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=x m,则tan 30°=x x +100=33, 解得x =50(3+1).答:河的宽度为50(3+1) m . 3.(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A 处测得正前方小岛C 的俯角为30°,面向小岛方向继续飞行10 km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)(导学号 35694245)解:过点C 作CD ⊥AB 于点D ,如解图,设CD =x , ∵∠CBD =45°, ∴BD =CD =x ,在Rt △ACD 中, ∵tan ∠CAD =CDAD,∴AD =CD tan ∠CAD =x tan 30°=x33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5.答:飞机飞行的高度为(53-5) km . 4.(2016·菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.解:如解图,作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°, ∠ABD =30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20(1+3),CD+BD=BC,即x+3x=20(1+3),解得:x=20,∴AC=2x=202(海里).答:A、C之间的距离为20 2 海里.5.(2017·荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:如解图,过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3,CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=3x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=33,在Rt △AMC 中, ∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC , ∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF , ∴3x -3=x +33,解得x =6+33, ∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米. 答:旗杆AB 的高度约为18.4米. 6.(2016·贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732)(导学号 35694246)解:由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10,在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=103,∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米), ∵2.7米<3米,∴该建筑物需要拆除.7.(2017·鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度. 解:(1)如解图,设DE =x ,∵AB =DF =2,∴EF =DE -DF =x -2, ∵∠EAF =30°, ∴AF =EFtan ∠EAF =x -233=3(x -2),又∵CD =DE tan ∠DCE =x 3=33x ,BC =AB tan ∠ACB =233=23,∴BD =BC +CD =23+33x , 由AF =BD 可得3(x -2)=23+33x , 解得:x =6,∴树DE 的高度为6米;(2)延长NM 交DB 延长线于点P ,如解图,则AM =BP =3, 由(1)知CD =33x =33³6=23,BC =23, ∴PD =BP +BC +CD =3+23+23=3+43,∵∠NDP =45°,且MP =AB =2, ∴NP =PD =3+43,∴NM =NP -MP =3+43-2=1+43, ∴食堂MN 的高度为1+4 3 米.题型五 与圆有关的证明与计算类型一 与切线判定有关的证明与计算1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC =22,求DF 的长. (导学号 35694247)(1)证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)解:连接AD ,如解图, ∵AB 是⊙O 的直径, ∴AD ⊥BC ,又∵AB =AC ,∴BD =DC =2,∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC ∽△DFC ,∴AD DF =AC DC ,∴14DF =42,∴DF =72. 2.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点D ,∠ABD =∠ACB. (1)求证:AB 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =4,tan ∠AEB =53,AB ∶BC =2∶3,求⊙O 的直径.(1)证明:∵BC 是直径, ∴∠BDC =90°,∴∠ACB +∠DBC =90°,∵∠ABD =∠ACB , ∴∠ABD +∠DBC =90°, ∴∠ABC =90°, ∴AB ⊥BC , ∴AB 是⊙O 的切线;(2)解:在Rt △AEB 中,tan ∠AEB =53,∴AB BE =53,即AB =53BE =203, 在Rt △ABC 中,AB BC =23,∴BC =32AB =10,∴⊙O 的直径为10.3.如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1)求证:DE 是⊙O 的切线; (2)若OF =2,求AC 的长度.(导学号 35694248)(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DAC , ∵OA =OD ,∴∠DAO =∠ODA ,图①∴∠DAC =∠ODA ,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE =90°, ∴OD ⊥DE , ∴DE 是⊙O 的切线;图②(2)解:如解图②,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.4.(2017·张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.(1)证明:连接OD,如解图所示,∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD =60°,∵DF ⊥OD ,∴∠ODG =90°,∴∠G =30°, ∴DG =3OD =63,∴S 阴影部分=S △ODG -S 扇形OBD =12³6³63-60π³62360=183-6π.5.(2017·安顺)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE.(1)求证:BE 与⊙O 相切;(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.(1)证明:连接OC ,如解图, ∵CE 为切线,∴OC ⊥CE , ∴∠OCE =90°,∵OD ⊥BC ,∴CD =BD , 即OD 垂中平分BC , ∴EC =EB ,在△OCE 和△OBE 中,⎩⎨⎧OC =OB ,OE =OE ,EC =EB ,∴△OCE ≌△OBE ,∴∠OBE =∠OCE =90°, ∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD =r -1, 在Rt △OBD 中,BD =CD =12BC =3,∴(r -1)2+(3)2=r 2,解得r =2, ∵tan ∠BOD =BDOD =3,∴∠BOD =60°,∴∠BOC =2∠BOD =120°, 在Rt △OBE 中,BE =3OB =23, ∴S 阴影部分=S 四边形OBEC -S 扇形BOC =2S △OBE -S 扇形BOC=2³12³2³23-120π³22360=43-43π.类型二 与切线性质有关的证明与计算 1.(2017·绵阳)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA =CN ;(2)连接OF ,若cos ∠DFA =45,AN =210,求⊙O 的直径的长度.(1)证明:连接OF ,则∠OAF =∠OFA ,如解图①所示, ∵ME 与⊙O 相切, ∴OF ⊥ME. ∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF. ∵ME ∥AC ,∴∠M =∠C =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°, ∴∠ANC =90°-∠OAF ,∠BAC =90°-∠C =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC , ∴CA =CN ;(2)解:连接OC ,如解图②所示. ∵cos ∠DFA =45,∠DFA =∠ACH , ∴CH AC =45. 设CH =4a ,则AC =5a ,AH =3a , ∵CA =CN ,∴NH =a ,∴AN =AH 2+NH 2=(3a )2+a 2=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设⊙O 的半径为r ,则OH =r -6,在Rt △OCH 中,OC =r ,CH =8,OH =r -6, ∴OC 2=CH 2+OH 2,r 2=82+(r -6)2, 解得:r =253,∴⊙O 的直径的长度为2r =503.2.(2017·大连)如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB ,BD 是⊙O 的切线,AD 与BC 相交于点E.(1)求证:BD =BE ;(2)若DE =2,BD =5,求CE 的长. (导学号 35694249)(1)证明:设∠BAD =α,∵AD 平分∠BAC ,∴∠CAD =∠BAD =α,∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB =90°, ∴∠ABC =90°-2α,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴∠DBE =2α,∠BED =∠BAD +∠ABC =90°-α, ∴∠D =180°-∠DBE -∠BED =90°-α, ∴∠D =∠BED ,∴BD =BE ;(2)解:设AD 交⊙O 于点F ,CE =x ,则AC =2x ,连接BF ,如解图, ∵AB 是⊙O 的直径, ∴∠AFB =90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2, ∵∠BAD +∠D =90°,∠D +∠FBD =90°, ∴∠FBD =∠BAD =α,∴tan α=FD BF =12,∴AB =BF sin α=255=25,在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2, 解得x =-5(舍去)或x =355,∴CE =355.3.(2017·南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D.(1)求证:PO 平分∠APC ; (2)连接DB ,若∠C =30°,求证:DB ∥AC.证明:(1)如解图,连接OB , ∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA =OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP =∠OBP =90°,∵∠C =30°, ∴∠APC =90°-30°=60°, ∵PO 平分∠APC ,∴∠OPC =12∠APC =12³60°=30°,∴∠POB =90°-∠OPC =90°-30°=60°,又∵OD =OB ,∴△ODB 是等边三角形, ∴∠OBD =60°,∴∠DBP =∠OBP -∠OBD =90°-60°=30°, ∴∠DBP =∠C ,∴DB ∥AC.4.如图,直线l 经过点A(4,0),B(0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.(1)∵A(4,0),B(0,3),∴直线l 的解析式为:y =-34x +3;(2)作MH ⊥AB ,垂足为H ,如解图所示, ∵M 在y 轴上,∴设M(0,t),2S △ABM =BM·AO =AB·MH , ∴|3-t|³4=5³2, 解得t 1=12,t 2=112,∴M 1(0,12),M 2(0,112).题型六 二次函数与几何图形综合题类型一 探究特殊三角形的存在性问题 1.(2017·乌鲁木齐)如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P ,使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(导学号 35694250)解:(1)∵点B(4,m)在直线y =x +1上, ∴m =4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线解析式可得 ⎩⎨⎧a -b +c =0,16a +4b +c =5,25a +5b +c =0, 解得⎩⎨⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)①设P(x ,-x 2+4x +5),则E(x ,x +1),D(x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P(2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合,不合题意,舍去,∴P(6,-7);综上可知,P 点坐标为(2,9)或(6,-7);②点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5)时,△BEC 为等腰三角形.2.(2017·阜新)如图,抛物线y =-x 2+bx +c 的图象与x 轴交于A(-5,0),B(1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求抛物线的函数表达式;(2)如图①,点E(x ,y)为抛物线上一点,且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,得到矩形EHDF ,求矩形EHDF 周长的最大值;(3)如图②,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A ,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)把A(-5,0),B(1,0)代入y =-x 2+bx +c ,得到⎩⎨⎧-25-5b +c =0,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =5.∴抛物线的函数表达式为y =-x 2-4x +5;(2)如解图①,∵抛物线的对称轴为直线x =-2,E(x ,-x 2-4x +5), ∴EH =-x 2-4x +5, EF =-2-x ,∴矩形EFDH 的周长=2(EH +EF)=2(-x 2-5x +3)=-2(x +52)2+372,∵-2<0,∴x =-52时,矩形EHDF 的周长最大,最大值为372;(3) 如解图②,设P(-2,m),①当∠ACP =90°时, AC 2+PC 2=PA 2,∴(52)2+22+(m -5)2=32+m 2, 解得m =7, ∴P 1(-2,7).②当∠CAP =90°时, AC 2+PA 2=PC 2,∴(52)2+32+m 2=22+(m -5)2, 解得m =-3,∴P 2(-2,-3).③当∠APC =90°时,PA 2+PC 2=AC 2,∴32+m 2+22+(m -5)2=(52)2, 解得m =6或m =-1,∴P 3(-2,6),P 4(-2,-1),综上所述,满足条件的点P 坐标为(-2,7)或(-2,-3)或(-2,6)或(-2,-1). 3.(2017·重庆A )如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到抛物线y′,y ′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q ,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.解:(1)直线AE 的解析式为y =33x +33.(2)设直线CE 的解析式为y =mx -3, ∴直线CE 的解析式为y =233x - 3. 过点P 作PF ∥y 轴,交CE 于点F.如解图①, 设点P 的坐标为(x ,33x 2-233x -3), 则点F(x ,233x -3),则FP =-33x 2+433x.∴△EPC 的面积=-233x 2+833x.∴当x =2时,△EPC 的面积最大.∴P(2,-3).如解图②,作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 于N 、M.∵K 是CB 的中点,∴K(32,32).∴tan ∠KCP =33.∵OD =1,OC =3, ∴tan ∠OCD =33. ∴∠OCD =∠KCP =30°. ∴∠KCD =30°.∵K 是BC 的中点,∠OCB =60°, ∴OC =CK.∴点O 与点K 关于CD 对称. ∴点G 与点O 重合. ∴点G(0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∴KM +MN +NK =MH +MN +GN.当点G 、N 、M 、H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH. ∴GH =(32)2+(332)2=3. ∴KM +MN +NK 的最小值为3.(3)点Q 的坐标为(3,-43+2213)或(3,-43-2213)或(3,23)或(3,-235).类型二 探究特殊四边形的存在性问题1.(2017·宜宾)如图,抛物线y =-x 2+bx +c 与x 轴分别交于A(-1,0),B(5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(导学号 35694251)解:(1)抛物线的解析式为y =-x 2+4x +5; (2)∵AD =5,且OA =1,∴OD =6, 又∵CD =8,∴C(-6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=-x 2+4x +5,解得x =1或x =3,∴C ′点的坐标为(1,8)或(3,8), ∵C(-6,8),∴当点C 落在抛物线上时,向右平移了7或9个单位,∴m 的值为7或9;(3)Q 点的坐标为(-2,-7)或(6,-7)或(4,5)时,以点B 、E 、P 、Q 四点为顶点的四边形为平行四边形.。

2018年中考数学试题(含答案)

2018年中考数学试题(含答案)

一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 2 14.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。

甘肃省兰州市2018年中考数学试卷(word版含解析)

甘肃省兰州市2018年中考数学试卷(word版含解析)

甘肃省兰州市2018年中考数学试卷(word版含解析)2018年甘肃省兰州市中考数学试卷(word版含解析)一、选择题(本大题共12小题,共48.0分)1.的绝对值是A. B. C. 2018 D.【答案】C【解析】解:的绝对值是:2018.故选:C.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是A.B.C.D.【答案】A【解析】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.根据从正面看得到的视图是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为A. 元B. 元C.元 D. 元【答案】C【解析】解:亿元元,故选:C.用科学记数法表示较大的数时,一般形式为,其中,n 为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为,其中,确定a与n的值是解题的关键.4.下列二次根式中,是最简二次根式的是A. B. C. D.【答案】B【解析】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.根据最简二次根式的定义对各选项分析判断利用排除法求解.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.如图,,,,则的度数是A.B.C.D.【答案】A【解析】解:,,,,的度数是:.故选:A.直接利用平行线的性质结合等腰三角形的性质得出的度数.此题主要考查了平行线的性质和等腰三角形的性质,正确得出的度数是解题关键.6.下列计算正确的是A. B. C. D.【答案】D【解析】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确.相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出的面积.本题主要考查等边三角形的性质、相似三角形性质及三角形的中位线定理,解题的关键是掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.7.如图,矩形ABCD中,,,且BE与DF之间的距离为3,则AE的长是A.B.C.D.【答案】C【解析】解:如图所示:过点D作,垂足为G,则.,,,≌..设,则,在中,,,解得:.过点D作,垂足为G,则,首先证明≌,由全等三角形的性质可得到,设,则,在中依据勾股定理列方程求解即可.本题主要考查的是矩形的性质、勾股定理的应用,依据题意列出关于x的方程是解题的关键.8.如图,将▱ABD沿对角线BD折叠,使点A落在点E处,交BC于点F,若,,则为A.B.C.D.【答案】B【解析】解:,,由折叠可得,,又,,又,中,,,由平行四边形的性质和折叠的性质,得出,由三角形的外角性质求出,再由三角形内角和定理求出,即可得到结果.本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出的度数是解决问题的关键.9.关于x的分式方程的解为负数,则a的取值范围是A. B. C. 且D.且【答案】D【解析】解:分式方程去分母得:,即,根据分式方程解为负数,得到,且,解得:且.故选:D.分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.10.如图,已知二次函数的图象如图所示,有下列5个结论;;;;的实数其中正确结论的有A.B.C.D.【答案】B【解析】解:对称轴在y轴的右侧,,由图象可知:,,故不正确;当时,,,故正确;由对称知,当时,函数值大于0,即,故正确;,,,,,故不正确;当时,y的值最大此时,,而当时,,所以,故,即,故正确.故正确.故选:B.由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定,熟练掌握二次函数的性质是关键.11.如图,抛物线与x轴交于点A、B,把抛物线在x轴及其下方的部分记作,将向左平移得到,与x轴交于点B、D,若直线与、共有3个不同的交点,则m的取值范围是A. B. C. D.【答案】C【解析】解:抛物线与x轴交于点A、B,抛物线向左平移4个单位长度平移后解析式当直线过B点,有2个交点当直线与抛物线相切时,有2个交点相切如图若直线与、共有3个不同的交点,--故选:C.首先求出点A和点B的坐标,然后求出解析式,分别求出直线与抛物线相切时m的值以及直线过点B时m的值,结合图形即可得到答案本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题(本大题共4小题,共16.0分)12.因式分解:______.【答案】【解析】解:.故答案为先提公因式,再利用平方差公式分解因式即可;本题考查因式分解提公因式法,解题的关键是熟练掌握因式分解的方法,属于中考常考题型、13.不等式组的解集为______【答案】【解析】解:解不等式得:,解不等式得:,不等式组的解集为,故答案为:.先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.14.如图,的外接圆O的半径为3,,则劣弧的长是______结果保留【答案】【解析】解:且根据弧长公式的长故答案为根据同弧所对的圆心角是圆周角的2倍,可求,根据弧长公式可求劣弧的长.本题考查了三角形的外接圆与外心,同弧所对的圆心角是圆周角的2倍,弧长公式,关键是熟练运用弧长公式解决问题.15.如图,M、N是正方形ABCD的边CD上的两个动点,满足,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是______.【答案】【解析】解:如图,在正方形ABCD中,,,,在和中,,≌,,在和中,,≌,,,,,取AD的中点O,连接OF、OC,则,在中,根据三角形的三边关系,,当O、F、C三点共线时,CF的长度最小,最小值.故答案为:.先判断出≌,得出,进而判断出≌,得出,即可判断出,根据直角三角形斜边上的中线等于斜边的一半可得,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出CF最小时点F的位置是解题关键.三、计算题(本大题共4小题,共22.0分)16.计算:【答案】解:.【解析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.解方程:.【答案】解:即,原方程的解为,【解析】先找出a,b,c,再求出,根据公式即可求出答案.本题主要考查对解一元二次方程提公因式法、公式法,因式分解等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.18.先化简,再求值:,其中.【答案】解:,当时,原式.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月按30天计算,这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天且x为整数的销售量为y件.直接写出y与x的函数关系式;设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【答案】解:由题意可知;根据题意可得:,,,,函数有最大值,当时,w有最大值为3200元,第20天的利润最大,最大利润是3200元.【解析】根据销量原价的销量增加的销量即可得到y与x的函数关系式;根据每天售出的件数每件盈利利润即可得到的W与x之间的函数关系式,即可得出结论.此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.四、解答题(本大题共8小题,共64.0分)20.如图,在中.利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;利用尺规作图,作出中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑【答案】解:如图,点P即为所求;如图,线段PD即为所求.【解析】由点P到AB的距离的长等于PC的长知点P在平分线上,再根据角平分线的尺规作图即可得;根据过直线外一点作已知直线的垂线的尺规作图即可得.本题考查作图复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题,属于中考常考题型.21.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:______,______.该调查统计数据的中位数是______,众数是______.请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【答案】17;20;2次;2次【解析】解:被调查的总人数为人,,,即,故答案为:17、20;由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为:2次、2次;扇形统计图中“3次”所对应扇形的圆心角的度数为;估计该校学生在一周内借阅图书“4次及以上”的人数为人.先由1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;根据中位数和众数的定义求解;用乘以“3次”对应的百分比即可得;用总人数乘以样本中“4次及以上”的人数所占比例即可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标画树状图列表,写出点M所有可能的坐标;求点在函数的图象上的概率.【答案】解:画树状图得:共有12种等可能的结果、、、、、、、、、、、;在所有12种等可能结果中,在函数的图象上的有、、这3种结果,点在函数的图象上的概率为.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果;找打点在函数的图象上的情况,利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.23.如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为,,求CD的高度结果保留根号【答案】解:作于点F,设米,在中,,则,在直角中,米,在直角中,,则米.,即.解得:,则米.答:CD的高度是米.【解析】作于点F,设米,在直角中利用三角函数用x 表示出BF的长,在直角中表示出CE的长,然后根据即可列方程求得x的值,进而求得CD的长.本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.24.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.求一次函数和反比例函数的表达式;请直接写出时,x的取值范围;过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.【答案】解:点在反比例函数的图象上,,反比例函数的解析式为,点在反比例函数的图象上,,则点B的坐标为,由题意得,,解得,,则一次函数解析式为:;由函数图象可知,当或时,;,,,由题意得,,在中,,即,解得,,当点C在点D的左侧时,点C的坐标为,当点C在点D的右侧时,点C的坐标为,当点C的坐标为或时,.【解析】利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;利用数形结合思想解答;根据直角三角形的性质得到,根据正切的定义求出CD,分点C 在点D的左侧、点C在点D的右侧两种情况解答.本题考查的是一次函数和反比例函数的知识,掌握待定系数法求函数解析式的一般步骤、灵活运用分情况讨论思想、数形结合思想是解题的关键.25.如图,在中,过点C作,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若,,,求AB的长.【答案】解:是AC的中点,,,,在和中,,≌,,又,即,四边形AFCD是平行四边形;,∽,,即,解得:,四边形AFCD是平行四边形,,.【解析】由E是AC的中点知,由知,据此根据“AAS”即可证≌,从而得,结合即可得证;证∽得,据此求得,由及可得答案.本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.26.如图,AB为的直径,C为上一点,D为BA延长线上一点,.求证:DC为的切线;线段DF分别交AC,BC于点E,F且,的半径为5,,求CF的长.【答案】证明:连接OC,为的直径,,,,,,,即,为的切线;解:中,,,,,,,∽,,设,,中,,,舍或,,,,设,,,,,∽,,,,.【解析】根据圆周角定理得:,根据同圆的半径相等和已知相等的角代换可得:,可得结论;先根据三角函数计算,,证明∽,得,设,,利用勾股定理列方程可得x的值,证明∽,列比例式可得CF的长.本题考查切线的判定和性质、相似三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考常考题型.27.如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.求抛物线的表达式;求证:AB平分;抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.【答案】解:将,代入得:,解得:,.抛物线的解析式为.,,.取,则.由两点间的距离公式可知.,,..在和中,,,,≌,,平分;如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为,则.,,...,.同理:.又,,.点M的坐标为或.【解析】将,代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值;先求得AC的长,然后取,则,连接BD,接下来,证明,然后依据SSS可证明≌,接下来,依据全等三角形的性质可得到;作抛物线的对称轴交x轴与点E,交BC与点F,作点A作,作,分别交抛物线的对称轴与、M,依据点A和点B的坐标可得到,从而可得到或,从而可得到FM和的长,故此可得到点和点M的坐标.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM和的长是解题的关键.。

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。

选择题和填空题共计65分,解答题共计85分。

试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。

二、选择题分析选择题共计15道,每道2分,共计30分。

选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。

如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。

A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。

解答题部分难度适中,考查了学生的运算能力和理解能力。

基础题型占多数,部分题目需要思维拓展,需要学生多加思考。

如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。

2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。

如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。

2018兰州中考数学试卷真题

2018兰州中考数学试卷真题

2018兰州中考数学试卷真题解析与解答一、选择题1. 设A={0, 1, 2, 3, 4, 5},B={1, 3, 5, 7, 9},则A∪B=_________。

(A) {0, 1, 2, 3, 4, 5, 7, 9}(B) {0, 1, 2, 3, 4, 5}(C) {1, 3, 5}(D) {0, 2, 4, 7, 9}解答:选择(A) {0, 1, 2, 3, 4, 5, 7, 9}。

根据集合的并运算定义,A∪B表示A和B的元素的集合。

A={0, 1, 2, 3, 4, 5},B={1, 3, 5, 7, 9},将A和B的元素合并得到{0, 1, 2, 3, 4, 5, 7, 9},故选(A)。

2. 若正方形ABCD的边长为10cm,则其对角线AC的长度为_________cm。

(A) 5√2(B) 10√2(C) 10(D) 20解答:选择(B) 10√2。

对角线AC的长度等于正方形边长的√2倍,即AC=10√2,故选(B)。

3. 在三角形ABC中,∠B=90°,AB=10cm,BC=12cm,则AC的长度为_________cm。

(A) 22(B) 7(C) 6(D) 5解答:选择(A) 22。

根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

AB为直角三角形的斜边,AB^2=BC^2+AC^2,代入已知数据得10^2=12^2+AC^2,解得AC=√(10^2-12^2)=√(100-144)=√(-44)∈无解。

因此,根据常识得知题目存在错误。

二、填空题1. 若已知x=3和y=4,则x+y=_________。

解答:填7。

根据已知数据,可直接计算x+y=3+4=7。

2. 若已知x=2,则x^2+2x=_________。

解答:填10。

将已知的x=2代入表达式x^2+2x中,得到2^2+2×2=4+4=8。

三、解答题1. 有一个数字比它的三分之一大5,求这个数字。

2018年甘肃省兰州市中考数学试卷-答案

2018年甘肃省兰州市中考数学试卷-答案

兰州市2018年初中学业水平考试 数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2018-的绝对值是:2018.故选:C.【考点】绝对值2.【答案】A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A .【考点】简单组合体的三视图3.【答案】C【解析】1 159.56亿元=111.1595610⨯元,故选:C .【考点】用科学记数法表示较大的数. 4.【答案】B【解析】A ,错误;B 是最简二次根式,正确;C =,错误;D =,错误;故选:B .【考点】最简二次根式的定义.5.【答案】A【解析】解:∵AB CD ∥,∴165ACD ∠=∠=o ,∵AD CD =,∴65DCA CAD ∠=∠=o ,∴∠2的度数是:180656550--=o o o o .故选:A .【考点】平行线的性质和等腰三角形的性质.6.【答案】D【解析】解:A 、236a b ab ⋅=,故此选项错误;B 、347a a a ⋅=,故此选项错误;C 、2242(3)9a b a b -=,故此选项错误;D 、42222a a a a ÷+=,正确.故选:D .【考点】单项式乘以单项式以及积的乘方运算和合并同类项.7.【答案】A【解析】解:∵等边ABC △的边长为4,∴24ABC S ==△ ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE//BC ,1 2DE BC =,1 2AD AB =,12AE AC =, 即12AD AE DE AB AC BC ===, ∴△ADE ∽△ABC ,相似比为12, 故ADE S △:ABC △=1:4,即11 44ADE ABC S S ==⨯=△△, 故选:A . 【考点】等边三角形的性质、相似三角形性质及三角形的中位线定理.8.【答案】C【解析】解:如图所示:过点D 作DG BE ⊥,垂足为G ,则3GD =.∵A G AEB GED AB GD 3∠∠∠∠====,,,∴AEB GED △≌△.∴AE EG =.设AE EG x ==,则4ED x =-,在Rt DEG △中,2222223(4)ED GE GD x x =++=-,,解得:78x =.故选:C .【考点】矩形的性质、勾股定理的应用9.【答案】B【解析】解:∵AD//BC ,∴∠ADB=∠DBC ,由折叠可得∠ADB=∠BDF ,∴∠DBC=∠BDF ,又∵40DFC ∠=o ,∴20DBC BDF ADB ∠=∠=∠=o ,又∵48ABD ∠=o ,∴△ABD 中,1802048112A =--=o o o o ,∴112E A ∠=∠=o ,故选:B .【考点】平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用.10.【答案】D【解析】解:分式方程去分母得:12x x a +=+,即1x a =-,根据分式方程解为负数,得到10a -<,且11a -≠-,解得:a >1且a ≠2.故选:D .【考点】分式方程的解11.【答案】B【解析】解:①∵对称轴在y 轴的右侧,∴0ab <,由图象可知:0c >,∴0abc <,故①不正确;②当1x =-时,0y a b c =-+<,∴b a c ->,故②正确;③由对称知,当x =2时,函数值大于0,即420y a b c =++>,故③正确; ④∵12b x a=-=, ∴2b a =-,∵0a b c -+<,∴20a a c ++<,3a c <-,故④不正确;⑤当x =1时,y 的值最大。

2018年全国中考数学真题试题甘肃兰州中考数学(解析版-精品文档)

2018年全国中考数学真题试题甘肃兰州中考数学(解析版-精品文档)

2018年山东省日照市初中毕业、升学考试数学(满分120分,时间120分钟)一、选择题(本大题共12小题,每小题4分,满分48分)1.(2018甘肃省兰州市,1,4分) -2018的绝对值是____________.A.12018B.-2018C.2018D.-12018【答案】C【解析】负数的绝对值是其相反数,所以|-2018|=2018,故选择C.【知识点】绝对值2.(2018甘肃省兰州市,2,4分)如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( ).A. B. C. D.【答案】A【解析】从正面看第一列有2个正方体,第二列有1个正方体,第三列有1个正方体.故选A.【知识点】三视图3.(2018甘肃省兰州市,3,4分)据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( )A.1159.56×108元B. 11.5956×1010元C.1.15956×1011元D.1.15956×108元【答案】C【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.故1159.56亿=1.15956×1011. 【知识点】科学记数法4.(2018甘肃省兰州市,4,4分) 下列二次根式中,是最简二次根式的是( )18 B .13 C .27 D .12【答案】B【解析】因为18=32,27=33,12=23由最简二次根式需要同时满足两个条件:(1)被开方数中各因数或因式的指数都为1;(2)被开方数不含分母知,13为最简二次根式. 【知识点】最简二次根式5.(2018甘肃省兰州市,5,4分) 如图,AB//CD ,AD =CD ,∠1=65°则∠2的度数是( ) A .50° B .60° C .65° D .70°【答案】A【解析】由两直线平行,内错角相等,因为AB //CD ,所以∠2=∠BAD ,由三角形内角和公式且AD =CD ,可知,∠CAD =22-180∠︒,又∠2+∠1+∠CAD =180°,可知∠2=50°. 【知识点】平行线的性质 平角的概念 等腰三角形的性质6.(2018甘肃省兰州市,6,4分)下列计算正确的是( ) A .ab a a 532=⋅ B .1243a a a =⋅C .24226)3-b a b a =( D . a 2+a 2+a 2=3a 2 【答案】D【解析】因为2a 2·3a =6a 2,所以选项A 错误;因为a 3·a 4=a 7,所以选项B 错误;因为,所以24229)3-b a b a =(选项C 错误;a 2+a 2+a 2=3a 2,所以选项D 正确.故选D .【知识点】同底数幂的运算 同底数幂的乘法 积的乘方7.(2018甘肃省兰州市,7,4分) 如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE的面积是( ) A .3 B .23 C .433 D .32【答案】A【解析】边长为4的等边三角形的面积为12×4×23=43,因为D ,E 分别为AB ,AC 的中点,所以△ADE ∽△ABC ,所以S △ADE :S △ABC =1:4,所以S △ADE =14×43=3,故选A 。【知识点】三角形中位线 相似三角形的判定和性质8.(2018甘肃省兰州市,8,4分) 如图,矩形ABCD 中,AB =3,BC =4,BE //DF 且BE 与DF 之间的距离为3,则AE 的长度是A.7 B .83 C .87 D .85【答案】C【解析】作EG ⊥DF 于G ,,因为BE ∥DF ,所以∠BEG =90°, 所以∠AEB +∠DEG =90°,又∠AEB +∠ABE =90°,所以∠DEG =∠ABE ,因为AB =EG =3,所以△ABE ≌△GED ,所以ED =BE ,在Rt △ABE 中,AE 2+AB 2=BE 2=(4-AE )2,解得AE =78,故选C 。设AE =x ,则BE =29x ,由3×BE =3×DE ,ABCDEF第8题图(第7题)CAE D B所以BE =DE .即29x +=4-x ,解得x =87. 【知识点】平行四边形的性质 全等三角形的判定和性质 勾股定理9.(2018甘肃省兰州市,9,4分)如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =48°,∠CFD =40°,则∠EA .102°B .112°C .122°D .92° 【答案】B【解析】因为∠DFC =∠BFE =40°,由折叠的性质知△ABD ≌△CBD ≌△CDB ,所以∠FBD =∠FDB =20°,∠ABD =∠EBD =48°,所以∠EBF =28°,所以∠E =180°-∠EBF -∠EFB =180°-28°-40°=112°,故选B 。【知识点】平行四边形的性质 折叠的性质 全等三角形的判定和性质 10.(2018甘肃省兰州市,10,4分) 关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为 A. a >1 B .a <1 C .a <1且a ≠-2 D .a >1且a ≠2 【答案】D【解析】解分式方程得x =1-a ,因为分式方程的解为负数,所以1-a <0,所以a >1,又x +1≠0,所以1-a ≠-1,a ≠2,故选D 。【知识点】分式方程的解法 字母系数值的确定11.(2018甘肃省兰州市,11,4分) 如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论:①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其DA. ①②③B. ②③⑤C. ②③④D. ③④⑤ 【答案】C【解析】因为二次函数开口向下,所以a <0,因为对称轴在x 轴正半轴,所以b >0,因为二次函数与y 轴交于正半轴,所以c >0,所以abc <0,①错误;当x =-1时,a -b +c <0,所以b -a >c ,②正确;由图象知当x =2时,4a +2b +c >0, ③正确;由对称轴为x =1得-2ba=-1,所以b =2a , 当x =1时,a +b +c >0,所以3a >-c ,④正确; 当x =m 时,am 2+bm +c <24ac b 4a -=c -2b 4a=c -a >0,a +b =-c <0,所以⑤不一定正确,所以正确的结论是②③④,故选C 。【知识点】二次函数的图象和性质12.(2018甘肃省兰州市,12,4分)如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、C 2共有三个不同的交点,则m 的取值范围是xA. 25-m 845<<- B. 21-m 829<<-C. 25-m 829<<-D. 21-m 845<<-【答案】C【解析】由抛物线C 1的解析式得C 2的解析式为y =12(x -3)2-2=12x 2-3x +52,由于y =12x +m 与两抛物线有3个不同交点,所以至少于两个抛物线有两个不同的交点,令y =12x +m 与y =12x 2-7x +452有两个不同交点,解得m >-458;令y =12x +m 与y =12x 2-3x +52有两个不同交点,解得m >-298;当直线y =12x +m 经过(5,0)时,解得m =-52,由图像观察直线与两抛物线有三个交点必与y =12x 2-3x +52有两个交点且m <-52,所以m 的取值范围是-298<m <-52,故选C 。【知识点】二次函数的性质二、填空题:本大题共4小题,每小题4分,共16分.13.(2018甘肃省兰州市,13,4分)因式分解:32y y x -= . 【答案】y (x +y )(x -y )【解析】x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ).ODABC 2C 1第12题图【知识点】因式分解14.(2018甘肃省兰州市,14,4分) 不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .【答案】-1<x <3【解析】不等式(1)得到:x <3, 不等式(2)得到:x >-1, 所以,不等式组的解集是:-1<x <3. 【知识点】不等式组的解法15.(2018甘肃省兰州市,15,4分) 如图,△ABC 的外接圆O 的半径为3,∠C =55°,则劣弧AB 的长是 . 【答案】116π【解析】因为∠C =55°,所以∠AOB =110°,所以弧AB =1103180π⨯=116π。 【知识点】圆周角 圆心角 弧长计算16.(2018甘肃省兰州市,16,4分) 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是.【答案】25-2【解析】连接BD 交AC 于O ,取AD 中点P ,由于AM =BN , ∠ADM =∠N第16题图MFEDBA CBCN =90°,AD =BC ,所以△ADM ≌△BCN ,所以DM =CN ,当点M 与点D 重合时CF =CD =6,当点M 与点C 重合时CF =CO 观察图形可以确定点F 在以AD 为直径的圆弧上运动,CF 的最小值为CP 与圆弧的交点。由勾股定理得CP CF 的最小值为【知识点】正方形 动点问题三、解答题(本大题共12小题,满分86分,解答应写出文字说明、证明过程或演算步骤17.(2018甘肃省兰州市,17,5分) (5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.【思路分析】根据负整数指数幂的性质,零指数幂的运算法则,绝对值的化简法则进行运算。 【解题过程】2-71)12(14=+--+=原式. 【知识点】实数的计算18.(2018甘肃省兰州市,18,5分) 解方程:02232=--x x . 【思路分析】根据配方法或求根公式法求解。 【解题过程】解法一:移项,得3x 2-2x =2,配方,得3(x -31)2=37, (3分)解得x 1=371+,x 2=371- . (5分) 解法二:因为a =3,b =-2,c =-2,所以△=(-2)2-4×3×(-2)=4+24=28。所以x =223±⨯,所以x 1=13+,x 2=13-。 【知识点】一元二次方程解法19.(2018甘肃省兰州市,19,5分) 先化简,再求值:12)143(--÷---x x x x x ,其中21=x . 【思路分析】【解题过程】原式=2x 3x+41x x ---÷21x x --=221x x --()·12x x --=x -2.当x =12时,原式=12-2=-32。【知识点】分式化简求值20.(2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC⊥AC,要使P到AB的距离(PD的长)等于PC的长,即求∠A的角平分线与BC的交点.【解题过程】(1)作∠A的平分线AD,交BC于P;(2)过点P作直线AB的垂线,垂中为D。【知识点】尺规作图21.(2018甘肃省兰州市,21,7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表借阅图书的次数次1次2次3次4次及以上人数7 13 a10 3学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:2次0次1次263次b%4次及以(1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数.【思路分析】(1)由借阅图书1次的统计表得借阅图书1次的人数为13,由学生借阅次数统计图得借阅图书1次的人数占总人数的26%,所以调查总人数为13÷26%=50人;a =50-7-13-10-3=17人;10÷50=20%,所以b =20;(2)该调查统计数据中的中位数是2次,众数是2次; (3)“3次”所对的圆心角度数是360°×20%=72°; (4)一周内借阅图书“4次及以上”的人数为2000×350=120人。 【解题过程】 (1)17,20, (2)2,2(3)360°⨯20%=72°; (4)1205032000=⨯(人) 【知识点】统计的应用 中位数 众数 样本估计总体22.(2018甘肃省兰州市,22,7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ). (1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.【思路分析】(1)把所有可能的情况列出来即可;(2)找出符合的点坐标,即可求出概率. 【解题过程】(1)画树状图如下:,所以点M 所有可能的坐标为(1,4),(1,2),(1,3),(2,1),(2,4),(2,3),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12个. 或列表如下:x14 4(2)点(1,2),(2,3),(3,4)在函数y =x +1的图象上,所以点M 在函数y =x +1的图象上的概率是312=14。、【知识点】统计 概率23.(2018甘肃省兰州市,23,7分) (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE为18米,在B 处,E 处分别测得CD 顶部点D的仰角为30°,60°.求CD 的高度.(结果保留根号)【思路分析】作BF ⊥CD 于F ,然后在两个直角三角形中分别表示出BF ,CE ,然后利用BF 和CE 相等即可求解.【解题过程】作BF ⊥CD 于F ,设CE =x 米,因为∠DEC =60°,所以DC x 米。DF -2)米,因为∠FBD =30°,所以BF x -2)米。因为BA ⊥AC ,DC ⊥AC ,所以四边形BACF 为矩形,所以BF =AC ,所以x -2)=x +18,解得x 答:CD 的高度是米。 【知识点】解直角三角形 三角函数24.(2018甘肃省兰州市,24,7分) 7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x ≤30,且x 为整数)的销量为y 件. (1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【思路分析】(1)从第一天起单价均比前一天降1元,销售量每天增加2件,故y =40+2(x -1)=2x +38; (2)利润(w )=销量(y )×单位利润(单位价格-单位成本). 利润=销量×单位利润,将单位利润表示出来,再求二次函数的最大值即可. 【解题过程】(1)y =38+2x ;【解析】:(2)()()[]1580145382----+=x x w =-2(x-21)2+3200故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为3200元. 【知识点】一次函数 二次函数 最大利润25.(2018甘肃省兰州市,25,8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xky =2的图像交于点A (1,2)和B (-2,m ). (1)求一次函数和反比例函数的表达式(2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE //x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标. 【思路分析】(1)将点A 坐标代入反比例函数解析式求得反比例函数解析式,将点B坐标代入反比函数解析式求得点B 坐标,由A,B 两点坐标代入一次函数解析式求得一次函数解析式;(2)看图中y 1图像在y 2图像上面的部分,写出横坐标集合即可;(3)用两点间的距离公式,表示出两段线段的距离,求解方程,即可求出.【解题过程】(1)将 A (1,2)代入x k y =2,得k=2,所以反比例函数的解析式为22y x=。

(完整版)2018年甘肃省中考数学试卷(含答案解析)

(完整版)2018年甘肃省中考数学试卷(含答案解析)

2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。

2018年甘肃省中考数学试卷(含答案解析)

2018年甘肃省中考数学试卷(含答案解析)

2018年甘肃省中考数学试卷(含答案解析) 2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确答案。

1.-2018的相反数是()A.-2018 B.2018 C.-1 D.12.下列计算结果等于x³的是()A.x⁶÷x² B.x⁴-xC D.x+x² D.x²·x3.若一个角为65°,则它的补角的度数为()A.25° B.35° C.115° D.125°4.已知ab≠0,且a²b³=2b³a²,下列变形错误的是()A.a²b³÷b³a²=1 B.2a=b³÷a² C.b³a²=a²b³ D.3a=2b5.若分式(x²-4)÷x的值为2或-2,则x的值是()A。

2或-2 B。

2 C。

-2 D。

06.甲、乙、丙、___四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s²如下表:平均数(环)方差s²甲 11.1 1.1乙 11.1 1.2丙 10.9 1.3丁 10.9 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲 B.乙 C.丙 D.丁7.关于x的一元二次方程x²+4x+k=0有两个实数根,则k 的取值范围是()A.k≤-4 B.k<-4 C.k≤4 D.k<48.如图,点E是正方形ABCD的边DC上一点,把△ADE 绕点A顺时针旋转90°,DE=2,到△ABF的位置,若四边形AECF的面积为25,则AE的长为()A。

5 B。

6 C。

7 D。

89.如图,⊙A过点O(0,1),C(11,0)的一点,连接BO,BD,则∠OBD的度数是()A.15° B.30° C.45° D.60°10.如图是二次函数y=ax²+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(m为实数);⑤当-1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤二、填空题:本大题共8小题,每小题4分,共32分。

2018年中考数学试卷及答案

2018年中考数学试卷及答案

2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。

甘肃省兰州市2018年中考数学试卷(有答案)

 甘肃省兰州市2018年中考数学试卷(有答案)

甘肃省兰州市2018年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分) 1.-2018的绝对值是( C ).2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( A ).A .B .C .D .3.据中国电子商务研究中心(100EC .CN )发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( C ) A.1159.56×108元 B.11.5956×1010元 C.1.15956×1011元 D.1.15956×108元4.下列二次根式中,是最简二次根式的是( B ).A.18B.13C.27D.12 5如图,AB//CD,AD =CD ,∠1=65°则∠2的度数是( A ) A .50° B .60° C .65° D .70°6.下列计算正确的是( D )A.ab a a 532=⋅B.1243a a a =⋅C.24226)3-b a b a =( D.22352a a a a =+÷ 7.如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 的面积是( A )A.3B.23 C.433 D.328.如图,矩形ABCD 中,AB =3,BC =4,BE//DF 且BE 与DF 之间的距离为3,则AE 的长度是( C ) A. 7 B .3 C .87 D .859.如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =48°,∠CFD =40°,则∠E 为( B ) A .102° B .112° C .122° D .92°(第7题)C AE D B10.关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( D ) A. a >1B .a <1C .a <1且a ≠-2D .a >1且a ≠2D.解析:化简得x =a -1<0(x ≠-1)即a>1且a ≠2.11.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论: ①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有( B ) A.①②③ B.②③⑤ C.②③④ D.③④⑤B.解析:开口向下,a<0,与y 轴交点在上方,c>0,021>ab x x -=+,即b>0,故0<abc ;x =-1时,y=a -b +c<0,故b -a>c ;x =2时,y =4a +2b +c<0;acx x =21是2到3之间的数x -1到0之间的数>-3,故3a<-c ;⑤式化解得,0)(2<+-+b a bm am ,0)1()1(2<b m a m -+-,无论m 大于1还是≤1,该式总成立,故⑤成立,即答案为B .12.如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、C 2共有三个不同的交点,则m 的A.25-m 845<<-B.21-m 829<<-C.25-m 829<<-D.21-m 845<<-C.解析:在y =2457212+-x x 中,令y =0,解得x 1=9,x 2=5,∴点A ,B 的坐标分别为(9,0),(5,0).∵C 2D是由C 1向左平移得到的,∴点D 的坐标为(1,0),C 2对应的函数解析式为y =23212--)(x =253212+-x x (1≤x≤5).当直线y =m x +21与C 2相切时,可知关于x 的一元二次方程253212+-x x =m x +21有两个相等的实数根,即方程x 2-7x +5-2m =0有两个相等的实数根,∴Δ=(-7)2-4×1×(5-2m )=0,解得m =829-.当直线y =m x +21过点B 时,可得0=m +⨯521,解得m =25-.如图,故当829-<m<25-,直线y =m x +21与C 1,C 2共有3个不同的交点.二、填空题:本大题共4小题,每小题3分,共24分. 13.因式分解:32y y x -= .y(x +y)(x -y)14.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .-1<x<3.O 的半径为3,∠C =55°,则劣弧AB 的长是 .π211.13. 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是 .OA CBN 第16题图 M F E D B AC353-三、解答题(本大题共11小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.解:2-71)12(14=+--+=原式.18.解方程:02232=--x x . 解:移项,得3x 2-2x =2,配方,得3(x -31)2=37, 解得x 1=371+,x 2=371- .19.先化简,再求值:12)143(--÷---x x x x x ,其中21=x .解:原式=211442--⋅-+-x x x x x =2+x ,代入21=x 得原式=25.20. (6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; (2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:∠A 的角平分线作法.作图略. 21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;B(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数. 解:(1)17,20%.310137%2613----÷=a =17,b =()%261310÷÷=20%;(2)10,10.由中位数和众数的定义即可得;(3)72°.360°⨯20%=72°; (4)120人.1205032000=⨯(人) 22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ).(1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.(2)4.解:一共12个点坐标,有三个点坐标在上面.23. (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 处,E 处分别60°.求CD 的高度.(结果保留根号)解:过B 点作CD 的垂线,垂足为F,设CD =x 米,则DF =(x -3)(米),BF =AC ,BF =)x(330tan 米=︒DE,AC =AE +CE=x CD 331830tan 18+=︒⋅+,即x x 33183+=, 解得,39=x ,即CD 长为93米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x≤30,且x 为整数)的销量为y 件. (1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?解:(1)y =38+2x ;解析:y =40+2(x -1)=2x +38;(2)()()[]1580145382----+=x x w =()20412122+--x故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为2041元.25.(8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xky =2的图像交于点A (1,2)和B (-2,m ).(1)求一次函数和反比例函数的表达式; (2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE//x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.解:(1)xy x y 2;121=+=(3)()),1(0,2+∞- (3)C 点的坐标为(1-3-11,31,和-+;解析:易知D (1,-1),设C 点坐标为(x ,-1),故AC =223)1(+-x ,BC =1-x ,由AC =2BC 可知,224BC AC =,即()()2221431-=+-x x ,解得313121-=+=x x ,,故C 点的坐标为()()1-3-11,31,和-+.26.(8分)如图,在∆ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G .连接AD 、CF .(1)求证:四边形AFCD 是平行四边形; (2)若GB =3,BC =6,BF =23,求AB 的长. 证明(1).//)(//是平行四边形四边形又△△又∵的中点是∵AFCD CDAF CD AF ASA CED AEF CEAE CED AEF DCE FAE CD AF CE AE AC E ∴=∴≅∴=∠=∠∠=∠∴=∴(2)6,29,29//=+=∴====∴BF AF AB CD AF CD CD BF GC GB GCD GBF CDBF 又代入数值,可得∽△易得△∵即AB 的长为6.D27.(9分)如图,AB 为圆O 的直径,C 为圆O 上的一点,D 为BA 延长线上的一点,B ACD ∠=∠. (1)求证:DC 为圆O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F ,且CEF ∠=45°,圆O 的半径为5,53sin =B ,求CF 的长.(1)连接.909090的切线是圆的直径是圆∵∵O CD CDOC OCA DAC OCB OCA ACB O AB OCB OBC OCOB ∴⊥∴︒=∠+∠∴︒=∠+∠∴︒=∠∴∠=∠∴= (2)解析:由∠CEF =45°,∠ACB =90°,可知,∠CFE =∠CEF =45°,即CF =CE . 由53sin =B ,可得AC =6,由勾股定理得,BC =8,设CF =CE =x ,由∠CDE =∠BDF ,∠ECD =∠FBD ,可知,△CED 相似于△BFD ,即①xxCD FD CE BF -==8,由∠CFD =∠AED ,∠EDA =∠FDC ,可知△CFD 相似于△AED ,即②x x ED FD AE CF -==6,联立①②得,724=x ,即CF 的长为724.28.(12分)如图,抛物线42-+=bx ax y 经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.解:(1)将A ,B 两点的坐标分别代入,D第28题图得⎩⎨⎧-=-+=--,44525,0439b a b a解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y .(2)证明:设直线AB 的表达式为y =kx +b’, 则⎩⎨⎧-=+=+-,4'5,0'3b k b k解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k故直线AB 的表达式为y =2321--x . 设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-). 易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489, 解得m =-9, 故此时点M 的坐标为(25,-9). 当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11).。

2018年甘肃省兰州市中考数学试卷(a卷)(带解析答案)

2018年甘肃省兰州市中考数学试卷(a卷)(带解析答案)
2018 年甘肃省兰州市中考数学试卷(A 卷)
参考答案与试题解析
一、选择题:本大题共 12 小题,每小题 4 分,共 48 分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.(4 分)﹣2018 的绝对值是( )
A.
B.﹣2018 C.2018 D.﹣
【考点】15:绝对值.菁优网版权所有 【解答】解:﹣2018 的绝对值是:2018. 故选:C.
成如图不完整的统计表. 学生借阅图书的次数统计表
借阅图 0 次 1 次 2 次 3 次 4 次及
书的次
以上

人数
7
13
a
10
3
请你根据统计图表中的信息,解答下列问题:
(1)a= 17 ,b= 20 .
(2)该调查统计数据的中位数是 2 次 ,众数是 2 次 .
(3)请计算扇形统计图中“3 次”所对应扇形的圆心角的度数;
A.①②③ B.②③⑤ C.②③④ D.③④⑤
【考点】H4
:二次函数图象与系数的关系. 菁优网版
权所有
【解答】解:①∵对称轴在 y 轴的右侧,
∴ab<0,
第 5页(共 21页)
由图象可知:c>0, ∴abc<0, 故①不正确; ②当 x=﹣1 时,y=a﹣b+c<0, ∴b﹣a>c, 故②正确; ③由对称知,当 x=2 时,函数值大于 0,即 y=4a+2b+c>0, 故③正确; ④∵x=﹣ =1, ∴b=﹣2a, ∵a﹣b+c<0, ∴a+2a+c<0, 3a<﹣c, 故④不正确; ⑤当 x=1 时,y 的值最大.此时,y=a+b+c, 而当 x=m 时,y=am2+bm+c, 所以 a+b+c>am2+bm+c(m≠1), 故 a+b>am2+bm,即 a+b>m(am+b), 故⑤正确. 故②③⑤正确. 故选:B.

2018年甘肃省兰州市中考数学试题及解析

2018年甘肃省兰州市中考数学试题及解析
2018 年甘肃省兰州市中考数学试卷(A 卷)
一、选择题(共 15 小题,每小题 4 分,满分 60 分)
1.(4 分)(2018•兰州)下列函数解析式中,一定为二次函数的是( )
A.y=3x﹣1
B.y=ax2+bx+c
C.s=2t2﹣2t+1
D.y=x2+
2.(4 分)(2018•兰州)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是 ()
A.
B.
C.
D.
二、填空题(共 5 小题,每小题 4 分,满分 20 分)
16.(4 分)(2018•兰州)若一元二次方程 ax2﹣bx﹣2018=0 有一根为 x=﹣1,则 a+b=

17.(4 分)(2018•兰州)如果 = = =k(b+d+f≠0),且 a+c+e=3(b+d+f),那么 k=
A.
B.
C.
D.
9.(4 分)(2018•兰州)如图,已知经过原点的⊙P 与 x、y 轴分别交于 A、B 两点,点 C 是劣弧 OB 上一点, 则∠ACB=( )
A.80°
B.90°
C.100°
D.无法确定
10.(4 分)(2018•兰州)如图,菱形 ABCD 中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为 E,F,连 接 EF,则的△AEF 的面积是( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17 D.(x﹣4)2=15
7.(4 分)(2018•兰州)下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形 B. 平行四边形的对角线互相平分 C. 矩形的对角线相等 D.对角线相等的四边形是矩形

2018甘肃省中考试题及答案(7套,104页)

2018甘肃省中考试题及答案(7套,104页)
22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据: ≈1.7, ≈1.4)
(FC)
(F,D)
(F,E)
2018年甘肃省白银市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确
1.(3分)﹣2018的相反数是( )
A.﹣2018B.2018C.﹣ D.
2.(3分)下列计算结果等于x3的是( )
A.x6÷x2B.x4﹣xC.x+x2D.x2•x
23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.
(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?
(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.
四、解答题(二):本大题共5小题,共50分。解答应写出必要的文字说明,证明过程或演算步骤
3.(3分)若一个角为65°,则它 的补角的度数为( )
A.25°B.35°C.115°D.125°
4.(3分)已知 = (a≠0,b≠0),下列变形错误的是( )
A. = B.2a=3bC. = D.3a=2b
5.(3分)若分式 的值为0,则x的值是( )
A.2或﹣2B.2C.﹣2D.0
6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数 与方差s2如下表:

2018年甘肃省兰州市中考数学试卷(A卷)含解析完美打印版

2018年甘肃省兰州市中考数学试卷(A卷)含解析完美打印版

2018年甘肃省兰州市中考数学试卷(A卷)含解析一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018C.2018D.﹣2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元4.(4分)下列二次根式中,是最简二次根式的是()A.B.C.D.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a27.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.28.(4分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠211.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b ﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=.14.(4分)不等式组的解集为15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°18.(5分)解方程:3x2﹣2x﹣2=0.19.(5分)先化简,再求值:(x﹣)÷,其中x=.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题:(1)a=,b=.(2)该调查统计数据的中位数是,众数是.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A (1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sin B=,求CF的长.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M 的坐标;若不存在,请说明理由.2018年甘肃省兰州市中考数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018C.2018D.﹣【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2018的绝对值是:2018.故选:C.2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1159.56亿元=1.15956×1011元,故选:C.4.(4分)下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°【分析】直接利用平行线的性质结合等腰三角形的性质得出∠2的度数.【解答】解:∵AB∥CD,∴∠1=∠ACD=65°,∵AD=CD,∴∠DCA=∠CAD=65°,∴∠2的度数是:180°﹣65°﹣65°=50°.故选:A.6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a2【分析】直接利用单项式乘以单项式以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、2a•3b=6ab,故此选项错误;B、a3•a4=a7,故此选项错误;C、(﹣3a2b)2=9a4b2,故此选项错误;D、a4÷a2+a2=2a2,正确.故选:D.7.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.2【分析】由于D、E是AB、AC的中点,因此DE是△ABC的中位线,由此可得△ADE和△ABC相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.【解答】解:∵等边△ABC的边长为4,∴S△ABC=×42=4,∵点D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,AD=AB,AE=AC,即===,∴△ADE∽△ABC,相似比为,故S△ADE:S△ABC=1:4,即S△ADE=S△ABC=×=,故选:A.8.(4分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.【分析】过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDF=∠DBC,由三角形的外角性质求出∠BDF=∠DBC=∠DFC=20°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.11.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b ﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案【解答】解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣﹣<m<﹣故选:C.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=y(x+y)(x﹣y).【分析】先提公因式,再利用平方差公式分解因式即可;【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)14.(4分)不等式组的解集为﹣1<x<3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)【分析】根据同弧所对的圆心角是圆周角的2倍,可求∠AOB=110°,根据弧长公式可求劣弧的长.【解答】解:∵∠AOB=2∠C且∠C=55°∴∠AOB=110°根据弧长公式的长==故答案为16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是3﹣3.【分析】先判断出Rt△ADM≌Rt△BCN(HL),得出∠DAM=∠CBN,进而判断出△DCE≌△BCE(SAS),得出∠CDE=∠CBE,即可判断出∠AFD=90°,根据直角三角形斜边上的中线等于斜边的一半可得OF=AD=3,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DAM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.18.(5分)解方程:3x2﹣2x﹣2=0.【分析】先找出a,b,c,再求出b2﹣4ac=28,根据公式即可求出答案.【解答】解:=即,∴原方程的解为,19.(5分)先化简,再求值:(x﹣)÷,其中x=.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷====x﹣2,当x=时,原式=﹣2=﹣.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【分析】(1)由点P到AB的距离(PD的长)等于PC的长知点P在∠BAC平分线上,再根据角平分线的尺规作图即可得;(2)根据过直线外一点作已知直线的垂线的尺规作图即可得.【解答】解:(1)如图,点P即为所求;(2)如图,线段PD即为所求.21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题:(1)a=17,b=20.(2)该调查统计数据的中位数是2次,众数是2次.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【分析】(1)先由1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;(2)根据中位数和众数的定义求解;(3)用360°乘以“3次”对应的百分比即可得;(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.【解答】解:(1)∵被调查的总人数为13÷26%=50人,∴a=50﹣(7+13+10+3)=17,b%=×100%=20%,即b=20,故答案为:17、20;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为:2次、2次;(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;(4)估计该校学生在一周内借阅图书“4次及以上”的人数为2000×=120人.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找到点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【解答】解:(1)画树状图得:共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)【分析】作BF⊥CD于点F,设DF=x米,在直角△DBF中利用三角函数用x表示出BF的长,在直角△DCE中表示出CE的长,然后根据BF﹣CE=AE即可列方程求得x的值,进而求得CD的长.【解答】解:作BF⊥CD于点F,设DF=x米,在Rt△DBF中,tan∠DBF=,则BF===x,在直角△DCE中,DC=x+CF=3+x(米),在直角△DCE中,tan∠DEC=,则EC===(x+3)米.∵BF﹣CE=AE,即x﹣(x+3)=18.解得:x=9+,则CD=9++3=9+(米).答:CD的高度是(9+)米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A (1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.【分析】(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C在点D的左侧、点C 在点D的右侧两种情况解答.【解答】解:(1)∵点A(1,2)在反比例函数y2=的图象上,∴k=1×2=2,∴反比例函数的解析式为y2=,∵点B(﹣2,m)在反比例函数y2=的图象上,∴m==﹣1,则点B的坐标为(﹣2,﹣1),由题意得,,解得,,则一次函数解析式为:y1=x+1;(2)由函数图象可知,当﹣2<x<0或x>1时,y1>y2;(3)∵AD⊥BE,AC=2CD,∴∠DAC=30°,由题意得,AD=2+1=3,在Rt△ADC中,tan∠DAC=,即=,解得,CD=,当点C在点D的左侧时,点C的坐标为(1﹣,﹣1),当点C在点D的右侧时,点C的坐标为(+1,﹣1),∴当点C的坐标为(1﹣,﹣1)或(+1,﹣1)时,AC=2CD.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sin B=,求CF的长.【分析】(1)根据圆周角定理得:∠ACB=∠BCO+∠OCA=90°,根据同圆的半径相等和已知相等的角代换可得:∠OCD=90°,可得结论;(2)先根据三角函数计算AC=6,BC=8,证明△CAD∽△BCD,得,设AD=3x,CD=4x,利用勾股定理列方程可得x的值,证明△CED∽△BFD,列比例式可得CF的长.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sin B=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(1)将A(﹣3,0),B(5,﹣4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS 可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=,从而可得到tan∠M′AE=2或tan ∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【解答】解:(1)将A(﹣3,0),B(5,﹣4)代入得:,解得:a=,b=﹣.∴抛物线的解析式为y=x2﹣x﹣4.(2)∵AO=3,OC=4,∴AC=5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD==5.∵C(0,﹣4),B(5,﹣4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=,则AE=.∵A(﹣3,0),B(5,﹣4),∴tan∠EAB=.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(,11).同理:tan∠MBF=2.又∵BF=,∴FM=5,∴M(,﹣9).∴点M的坐标为(,11)或(,﹣9).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档