人教版数学八年级下册 第二十章基础过关测试卷(含解析)
人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)
人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )A .1个B .2个C .3个D .4个4、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A .最高分B .中位数C .极差D .平均分6、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为187、在对一组样本数据进行分析时,小华列出了方差的计算公式S 2=22222(5)(4)(4)(3)(3)5x x x x x -+-+-+-+-,下列说法错误的是( ) A .样本容量是5B .样本的中位数是4C .样本的平均数是3.8D .样本的众数是48、有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .49、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s 2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=1810、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.3、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.4、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.5、一组数据:2,5,7,3,5的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)(1)求这10名男同学的达标率是多少?(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?2、5,16,16,28,32,51,51的众数是什么?3、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.4、某单位要买一批直径为60mm的螺丝,现有甲、乙两个螺丝加工厂,它们生产的螺丝的材料相同,价格也相同,该单位分别从甲、乙两厂的产品中抽样调查了20个螺丝,它们的直径(单位:mm)如下:甲厂:60,59,59.8,59.7,60.2,60.3,61,60,60,60.5,59.5,60.3,60.1,60.2,60,59.9,59.7,59.8,60,60;乙厂:60.1,60,60,60.2,59.9,60.1,59.7,59.9,60,60,60,60.1,60.5,60.4,60,59.6,59.5,59.9,60.1,60.你认为该单位应买哪个厂的螺丝?5、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是,中位数是;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?---------参考答案-----------一、单选题1、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.2、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.3、C【解析】【分析】直接根据众数、中位数和平均数的定义求解即可得出答案.【详解】数据3出现了6次,次数最多,所以众数是3,故①正确;这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;平均数为22366210411⨯+⨯+⨯+=,故③、④错误;所以不正确的结论有②、③、④,故选:C.【点睛】本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.4、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S=D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.6、D【解析】【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()222212312311···10,?··2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎣⎦ ()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()1231323232?··32n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()22221231323232323232?··3232n x x x x n ⎡⎤+-++-++-+++-⎣⎦()()()()22221231910910910?··910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n =⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为5,4,4,3,3,则样本的容量是5,选项A 正确;样本的中位数是4,选项B 正确; 样本的平均数是54433 3.85++++=,选项C 正确; 样本的众数是3和4,选项D 错误;故选:D .【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、C【解析】【分析】找出数据中出现次数最多的数即可.【详解】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.【点睛】此题考查了众数.众数是这组数据中出现次数最多的数.9、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 2、8【解析】【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n '=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .3、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:532⨯⨯⨯(分),92+80+90=885+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.5、5【解析】【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.三、解答题1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒【分析】(1)求这10名男同学的达标人数除以总人数即可求解;(2)根据10名男同学的成绩即可求出平均数;(3)分别求出最快与最慢的时间,故可求解.【详解】解(1)从记录数据可知达标人数是7∴ 达标率=7÷10×100%=70%(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)∴这10名男同学的平均成绩是15.1秒(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)17-13.6=3.4(秒)∴最快的比最慢的快了3.4秒.【点睛】此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.2、16和51【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.3、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.4、买乙厂的螺丝【分析】分别求出甲乙两厂螺丝的平均数,极差,方差,然后根据平均数,极差,方差综合选取即可.【详解】 解:60.2+60.3+61+600+60+60.5+59.60+59+59.8+59.70+.1=6205+60.3+60.1+6.2+60+599+59.759.86060x +++⎛⎫⨯= ⎪⎝⎭甲 mm , 60.1+60+60+60.2+59.9+60.1+59.7+59.9+60+60+600+60.1+60.5+60.4+60+59.6+59.5+59.9+60.1+601620x ⎛⎫=⨯= ⎪⎝⎭乙 mm ; 61592mm R =-=甲,60.559.51mm R =-=乙;2222222222222222222(60-60)+(59-60)+(59.8-60)+(59.7-60)+(60.2-60)+(60.3-60)+(61-60)1=+(60-60)+(60-60)+(60.5-60)+(59.5-60)+(60.3-60)+(60.1-60)+(60.2-60)20+(60-60)+(59.9-60)+(59.7-60)+(59.8-60)+(60-60S ⨯甲220.152)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; 2222222222222222222(60.1-60)+(60-60)+(60-60)+(60.2-60)+(59.9-60)+(60.1-60)+(59.7-60)1=?+(59.9-60)+(60-60)+(60-60)+(60-60)+(60.1-60)+(60.5-60)+(60.4-60)20+(60-60)+(59.6-60)+(59.5-60)+(59.9-60)+(60.1-S 乙220.05160)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ∴从甲、乙两厂抽取的10个螺丝直径的平均数都是60mm ,但甲厂20个螺丝直径的极差为2mm ,方差为0.152;乙厂20个螺丝直径的极差为1mm ,方差为0.051.因此在同等条件下应买乙厂的螺丝.【点睛】本题考查了平均数,极差,方差,以及根据平均数,极差,方差做决策,熟练掌握计算平均数,极差,方差的方法是解本题的关键.5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)
人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。
人教版八年级下册数学第二十章测试题(附答案)
人教版八年级下册数学第二十章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.某校田径运动会有13名同学参加女子百米赛跑,她们预赛的成绩各不相同,取前6名参加决赛,小玥已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A. 方差B. 极差C. 平均数D. 中位数2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的( )A. 平均数改变,方差不变B. 平均数改变,方差改变C. 平均输不变,方差改变D. 平均数不变,方差不变3.小明想知道银河系里恒星大约有多少颗,他可以获取有关数据的方式是()A. 问卷调查B. 实地考察C. 查阅文献资料D. 实验4.下列说法中,错误的有().①一组数据的标准差是它的差的平方;②数据8,9,10,11,1l的众数是2;③如果数据,,…,的平均数为,那么;④数据0,-1,l,-2,1的中位数是A. 4个B. 3个C. 2个D. 1个5.某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9. 这组数据的平均数和众数分别是( )A. 7,7B. 6,8C. 6,7D. 7, 86.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10,12.5C. 11,12.5D. 11,107.某校九年级有19名同学参加跳绳比赛,预赛成绩各不相同,要取前9名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这19名同学成绩的()A. 中位数B. 众数C. 平均数D. 极差8.空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A. 扇形统计图B. 条形统计图C. 折线统计图D. 频数分布直方图9.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A. 93B. 95C. 94D. 9610.某一公司共有31名员工(包括经理),经理的工资高于其他员工的工资。
人教版数学八年级下册 第二十章 数据的分析 基础过关测试卷(含解析)
人教版数学八年级下册第二十章基础过关测试卷一、选择题1.如果一组数据-3、x、0、1、x、6、9、5的平均数为5,则x为( )A.22 B.11 C.8 D.52.某市5月份中连续8天的最高气温如下(单位:℃):32、30、34、36、36、33、37、38.这组数据的众数是( )A.34 B.37 C.36 D.353.如果一组数据为1、5、2、6、2,则这组数据的中位数为( )A.6 B.5 C.2 D.14.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15.则这20个数的平均数是()A.23B.1.15C.11.5D.12.55.某校有55名同学参加娄底市的英语风采大赛,预赛分数各不相同,取前28名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这55名同学分数的()A.众数B.中位数C.平均数D.方差6.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人5次成绩的平均数都是125分,方差分别是2s甲= 0.65,2s乙=0.55,2s丙=0.50,2s丁=0.45,则这5次测试成绩最稳定的是()A.甲B.乙C.丙D.丁7.在学校的体育训练中,小杰7次投掷实心球的成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A.9.7 m,9.9 mB.9.7 m,9.8 mC.9.8 m,9.7 mD.9.8 m,9.9 m8.若一组数据1、1、x、3、3的平均数为x,则这组数据的方差是( )A.4 B. C.D.29.在一次科技作品制作比赛中,某小组8件作品的成绩(单位:分)分别是:7、10、9、8、7、9、9、8,对这组数据而言,下列说法正确的是( )A.众数是9 B.中位数是8 C.平均数是8 D.方差是710.在方差计算公式中,数字m和n分别表示( )54552A.数据的个数和方差B.数据的平均数和个数C.数据的个数和平均数D.数据的方差和平均数二、填空题1.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女子排球队队员的平均年龄是_________岁.2.某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:个)15、20、35、24、36、28、24、42、32、44.根据统计情况,估计该小区这100户家庭平均使用塑料袋为___________个.3.有一组数据:3、4、5、6、7.其方差是___________.4.某商场一天中售出某品牌运动鞋11双,其中各种尺码的鞋的销售量如下表所示,则这11双鞋的尺码组成一组数据的中位数为____________.5.某校为庆祝中华人民共和国成立70周年,举办庆典仪式,庆典前夕,要从八年级8个班中选择部分学生组建护旗方阵,在选择学生时最值得我们关注的是学生身高的______(选填“平均数”“中位数”或“众数”).6.2022年北京一张家口冬季奥运会将于2022年2月4日至2022年2月20日在我国北京市和张家口市联合举行.在选拔参加冬奥会的冰上短道速滑运动员时,有甲、乙、丙3名运动员备选,他们速滑的平均成绩和方差如下表所示:如果要选择一名成绩优秀且稳定的人去参赛,应派____去.7.为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是,若要从中选一位发挥稳定的选手参加决赛,你认为派_________去参赛合适(选填“甲”“乙”“丙”或“丁”).8.若某组数据的方差计算公式是,则公式中________.三、解答题1.某养猪场要出售200只生猪,现在市场上生猪的价格为11元/kg,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的质量(单位:kg)如下:76,71,72,86,87.(1)计算这5只生猪的平均质量;(2)估计这200只生猪能卖多少钱.2.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,若期末评价成绩80分以上(含80分),则评为“优秀”.下表是小张和小王两位同学的成绩记录:(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩,①请计算小张的期末评价成绩为多少分;②小王期末考试(期末考试成绩为整数)最少考多少分才能达到优秀?3.某养鸡场有2 500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg)绘制出如下的统计图,请根据相关信息,解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2 500只鸡中,质量为2.0 kg的有多少只.4.为选拔参加全市中学生数学竞赛的学生,八(2)班组织了一次班内数学竞赛活动,竞赛活动分小组进行,其中甲、乙两组各5人,他们的成绩如图所示.(1)填写下表:(2)请计算甲、乙两组竞赛成绩的方差,并说明在这次数学竞赛中,哪一组的成绩更稳定.5.八年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制成如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).根据图表信息,回答问题:(1)用方差推断,____班的成绩波动较大;用优秀率和合格率推断,____班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些,为什么?第二十章基础过关测试卷1·B由平均数的计算公式得×(-3+x+0+1+x+6+9+5)=5,解得x= 11.2.C ∵数据32、30、34、36、36、33、37、38中,36出现的次数最多,∴这组数据的众数是36.故选C .3.C 将这组数据从小到大排列为l 、2、2、5、6,所以中位数为2. 4.C 由题意得(10x14+15x6)÷20=11.5.5.B 55个不同的成绩按从小到大排序后,中位数及中位数之后的成绩共有28个数,故只要知道自己的成绩和中位数就可以知道能否进入决赛了. 6.D ∵, ∴,∴成绩最稳定的是丁,故选D .7.B 根据中位数的定义,将7次成绩从小到大(或从大到小)排序,中间位置的数8197就是中位数,根据平均数的定义知,.8.B 数据1、1、x 、3、3的平均数为x ,∴×(1+1+x+3+3)=x ,解得x=2,则这组数据的方差是[(1-2)²+(1-2)²+(2-2)²+(3-2)²+(3-2)²]=,故选B .9.A 8件作品的成绩(分)按从小到大的顺序排列为7、7、8、8、9、9、9、10,9出现了3次,出现次数最多,故众数为9;中位数为(8+9)÷2=8.5;平均数为(7x2+8x2+9x3+10)÷8= 8.375;方差S 2 =×[2x(7-8.375)2+2x(8-8. 375)2 +3×(9-8. 375)2+(10-8.375)2]=0.984 375.所以A 正确,B 、C 、D 均错误.10.B 由方差的定义可知,数字m 表示的是样本数据的平均数,n 表示的是样本数据的个数,故选B . 二、 1.14解析:根据题意得岁。
人教版初中八年级数学下册第二十章《数据的分析》基础卷(含答案解析)
一、选择题1.反映一组数据变化范围的是( ) A .极差B .方差C .众数D .平均数2.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数3.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85B .90C .92D .894.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃5.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55 B .众数是60 C .平均数是54 D .方差是29 6.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .07.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个8.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形;其中正确的命题有( ) A .1个B .2个C .3个D .4个9.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .50分B .82分C .84分D .86分10.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8.5,9 B .8.5,8 C .8,8 D .8,9 11.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A .3B .4C .5D .912.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数13.数据5,2,3,0,5的众数是( ) A .0B .3C .6D .514.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩15.今年上半年,我市某俱乐部举行山地越野车大赛,其中8名选手某项得分如下表:则这8名选手得分的平均数是( ) A .88B .87C .86D .85二、填空题16.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.17.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.18.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 x45 45 42 S 2 1.82.31.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.19.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.20.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.21.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.22.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.23.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x 甲=82分,⎺x 乙=82分,S 2甲=245,S 2乙=190.那么成绩较为整齐的是__________班 24.一组数据:3、5、8、x 、6,若这组数据的极差为6,则x 的值为__________. 25.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.26.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 8.9 环,方差分别是 S 甲2=1.7,S 乙 2=1.2,则关于甲、乙两人在这次射击训练中成绩稳定是___________.(填“甲”或“乙”)三、解答题27.为了解学生的课外阅读情况,李老师随机调查了一部分学生,得到了他们上周双休日课外阅读时间(记为t,单位:h)的一组样本数据,其部分条形图和扇形图如下:(1)请补全条形图和扇形图;(2)试确定这组样本数据的中位数和众数;(3)估计全班学生上周双休日的平均课外阅读时间.28.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m的值为______.(2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分).(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?29.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a=(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.30.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.队列平均分中位数方差合格率优秀率七年级 6.7m 3.4190%n八年级7.17.5 1.6980%10%(1)根据图表中的数据,求a,b的值.(2)直接写出表中的m= ,n=.(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.。
人教版 八年级数学下册 第20章 数据的分析-基础检测-(包含答案)
人教版八年级数学下册第20章数据的分析-基础检测-(含答案)一、单选题(共有6道小题)1.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( ) A.众数是90 B.中位数是90 C.平均数是90 D.极差是152.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时3.某中学随机调查了15则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为()A. 6,7B. 7,7C. 7,6D.6,64.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:A.88,90 B.90,90 C.88,95 D.90,955.一组数据从小到大排列为2,4,8,x,10,14,若这组数据的中位数为9,则这组数据的众数为()A.6 B.8 C.9 D.106.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜根数,得到右图的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )A .13.5,20B .15,5C .13.5,14D .13,14二、填空题(共有6道小题)7.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是 分.8.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为 9.甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9; 乙:5,9,7,10,9; (1(2)教练根据这5次的成绩,选择甲...参加射击比赛, 教练的理由是 (3)如果乙再射1次,命中8环,那么乙射击成绩的方差____________.(填“变大”、“变小”或“不变”)10.某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为 元.11.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是________.12.一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是 .三、解答题(共有1道小题)13.为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.讲评卷一、单选题(共有6道小题)1.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( ) A.众数是90 B.中位数是90 C.平均数是90 D.极差是15参考答案:C2.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时参考答案:B.3.某中学随机调查了15则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为()A. 6,7B. 7,7C. 7,6D.6,6参考答案:D4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:A.88,90 B.90,90 C.88,95 D.90,95参考答案:B5.一组数据从小到大排列为2,4,8,x,10,14,若这组数据的中位数为9,则这组数据的众数为()A.6 B.8 C.9 D.10参考答案:D6.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜根数,得到右图的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是()A.13.5,20 B.15,5 C.13.5,14 D.13,14参考答案:C二、填空题(共有6道小题)7.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是分.参考答案:888.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为参考答案:949.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;(1(2)教练根据这5次的成绩,选择甲...参加射击比赛,教练的理由是(3)如果乙再射1次,命中8环,那么乙射击成绩的方差____________.(填“变大”、“变小”或“不变”)平均数 众数 中位数 方差甲 8 9 8 0.4 乙 8 9 9 3.2(2得稳定,故选甲; (3)变小10.某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为 元.参考答案:1711.若一组数据3,4,x ,5,8的平均数是4,则该组数据的中位数是________.参考答案:412.一组数据2,3,x ,y ,12中,唯一众数是12,平均数是6,这组数据的中位数是 .参考答案:3三、解答题(共有1道小题)13.为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?18元50%25元20%10元30%(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.参考答案:解:(1)根据题意得:40÷40%=100(人),则这一天上午7:00~12:00这一时间段共有100人闯红灯;(2)根据题意得:7﹣8点的人数为100×20%=20(人),8﹣9点的人数为100×15%=15(人),9﹣10点占=10%,10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人),补全图形,如图所示:9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°;(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人.。
2022-2023学年新人教版初中数学八年级下册第二十单元学习质量检测卷(附参考答案)
2022-2023学年新人教版初中数学八年级下册第二十单元学习质量检测卷时间:120分钟 满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)全国文明典范城市是全国文明城市的升级版,也是文明城市的标杆.2021年,长沙市抬高创建坐标,全力以赴推进“全国文明城市”向“全国文明典范城市”迭代升级.12月25日,长沙市文明办组织开展“长沙文明十二点”网络征集广纳建言活动,面向社会各界广泛征求意见和建议.芙蓉区某中学的小亮响应号召,对自己居住小区家庭使用垃圾袋的情况进行了调查,小亮随机调查了小区10户家庭一周垃圾袋的使用量,结果如下(单位:个):7,7,7,8,8,9,9,10,11,14,关于这组数据下列结论正确的是( ) A .平均数是10B .众数是7C .中位数是8D .极差是62.(3分)为了增强学生的安全意识,某校组织学生开展了安全知识竟赛活动,经过一轮初赛后,共有21人进入决赛,本次活动将按照决赛分数评出一等奖2名,二等奖3名,三等奖5名.小丽进入了决寨,要判断自己能否获奖,她应当关注决赛分数的( ) A .平均数B .众数C .中位数D .方差3.(3分)描述一组数据的离散程度,我们还可以用“平均差”.在一组数1x 、2x 、3x 、⋯、n x 中,各数据与它们的平均数x 的差的绝对值的平均数,即121(||||||)n T x x x x x x n=-+-+⋯+-叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是( )A .甲、乙两组数据的平均数相同B .乙组数据的平均差为4C .甲组数据的平均差是2D .甲组数据更加稳定4.(3分)在一次数学测验中,甲、乙、丙、丁四位同学的成绩(单位:分)分别是80,x ,80,70,若这四位同学成绩的众数与平均数恰好相等,则他们成绩的中位数是()A.90分B.85分C.80分D.75分5.(3分)某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙、丁的成绩分析如表所示:根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁6.(3分)某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是48分C.该班学生这次考试成绩的中位数是47分D.该班学生这次考试成绩的平均数是46分7.(3分)根据某市统计局发布的该市近5年的年度GDP增长率的有关数据,经济学家评论说,该市近5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的()比较小.A.中位数B.平均数C.众数D.方差8.(3分)对于一组数据1-,1-,4,2,下列结论不正确的是()A.平均数是1B.方差是3.5C.中位数是0.5D.众数是1-9.(3分)某组数据方差计算公式为:22222(2)3(3)2(4)x x xsn-+-+-=,由公式提供的信息,下列说法错误的是()A.样本的容量是3B.样本的中位数是3C .样本的众数是3D .样本的平均数是310.(3分)某校6名学生在2020年中考中的体育成绩(满分50分)统计如图所示,则这组数据的众数、中位数分别是( )A .50,48B .48,49C .50,49D .48,48二、填空题(共5小题,满分15分,每小题3分)11.(3分)若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x = .12.(3分)某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差223s =.后来小颖进行了补测,成绩是92分,则该班50人的数学测试成绩的方差 (填“变小”、“不变”、“变大” ).13.(3分)已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是5,那么另一组数据132x -,232x -,332x -,432x -,532x -的平均数和方差的和为 .14.(3分)为庆祝中国共产党建党100周年,某商校组织党史知识竞赛,根据小明、小刚5次预赛成绩绘制成统计图,下面三个推断: ①与小刚相比,小明5次成绩的极差大; ②与小刚相比,小明5次成绩的平均数大; ③与小刚相比,小明5次成绩的方差小; ④与小刚相比,小明的成绩比较稳定. 其中,所有合理推断的序号是 .15.(3分)小明所在班级为希望工程捐款,他统计了全班同学的捐款情况,并绘制成如图所示的统计图,根据统计图,可计算出全班同学平均每人捐款元.三.解答题(共10小题,满分75分)16.(7分)八年级举行锡越子比赛,每班推出5名学生参赛,按团体总分排列名次.下表是成绩最好的甲班和乙班各5名学生的比赛数据(单位:个).由于两班的总分、平均分都相等,数学老师提出:可否对所得数操作进一步处理,得出其他统计量作为评定的参考?同时,给出下列问题请你回答.(1)计算两班比赛数据的中位数;(2)计算两班比赛数据的方差;(3)根据以上新统计量,作为团体,你认为应该把冠军奖状发给哪一个班级?请简单地说明理由!17.(7分)某车间有工人10人,某月他们生产的零件个数统计如下表:(1)求这10名工人该月生产零件的平均个数;(2)为了调动工人的积极性,决定实行目标管理,对完成目标的工人进行适当的奖励.如果想让一半左右的工人都能获得奖励,请你从平均数、中位数、众数的角度进行分析,该如何确定月生产目标?18.(7分)农业农村经济在国民经济中占有重要地位,科技兴农、为促进乡村产业振兴提供有力支撑.为了解甲、乙两种新品猕猴桃的质量,进行了抽样调查.在相同条件下,随机抽取了甲、乙各25份样品,对大小、甜度等各方面进行了综合测评,并对数据进行收集、整理、描述和分析,下面给出了部分信息.a .测评分数(百分制)如下:甲 77 79 80 80 85 86 86 87 88 89 89 90 91 91 91 91 91 9293 95 95 96 97 98 98乙 69 87 79 79 8679 87 89 90 89 90 90 90 91 90 92 92 94 92 9596 96 97 98 98b .按如下分组整理、描述这两组样本数据:6070x < 7080x < 8090x < 90100x0 a9 14 13b16注:分数90分及以上为优秀,80~89分为合格,80分以下为不合格.c .甲、乙两种猕猴桃测评分数的平均数、众数、中位数如表所示:根据以上信息,回答下列问题:(1)写出表中a ,b ,c ,d 的值;(2)记甲种猕猴桃测评分数的方差为21s ,乙种猕猴桃测评分数的方差为22s ,则21s ,22s 的大小关系为 ;(3)根据抽样调查情况,可以推断 种猕猴桃的质量较好,理由为 .(至少从两个不同的角度说明推断的合理性)19.(7分)为进一步宣传防震减灾科普知识,增强学生应急避险和自救互救能力,某校组织七、八年级各200名学生进行“防震减灾知识测试”(满分100分).现分别在七、八年级中各随机抽取10名学生的测试成绩x (单位:分)进行统计、整理如下: 七年级:86,90,79,84,74,93,76,81,90,87. 八年级:85,76,90,81,84,92,81,84,83,84 七八年级测试成绩频数统计表7080x < 8090x < 903 4 17七八年级测试成绩分析统计表平均数 中位数 众数根据以上信息,解答下列问题: (1)a = ,b = ,c = .(2)规定分数不低于85分记为“优秀”,估计这两个年级测试成绩达到“优秀”的学生人数.(3)你认为哪个年级的学生掌握防震减灾科普知识的总体水平较好?请说明理由. 20.(7分)随着十九届六中全会的召开,中学生对时事新闻的关注度高涨.某校组织全校学生开展“时事新闻大比拼”比赛,并随机抽取九年级的25名学生的成绩(满分为100分)进行分析.收集数据:25名学生的成绩(满分为100分)统计如下(单位:分): 90,74,88,65,98,75,81,44,85,70,55,80,95,88,72,87,60,56,76,66,78,72,82,63,100整理数据:90100x <7590x <6075x <108分析数据:平均数中位数 方差 76190.88(1)将表格中的数据补充完整(3个); (2)“7590x <”这组数据的众数是 分;(3)若全校九年级有800名学生,请估计全校九年级有多少名学生成绩达到90分及以上?(4)若八年级成绩的平均数为76分,中位数为80分,方差为102.5,你认为哪个年级的成绩较好?请你做出评价.(至少从两个方面说明)21.(8分)2021年底,西安突发新冠肺炎疫情、在各方共同努力下,取得了抗击疫情的阶段性胜利.日前,新一波新冠肺炎疫情又在中国香港地区蔓延,同时深圳、呼和浩特等多地也出现散发病例.做好新冠肺炎疫情防控时刻不能放松,对中学生来说抗击疫情的最好办法是强身健体,提高免疫力.某校为了解九年级学生周末在家体育银炼的情况,在该校九年级随机抽收了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了如下数据(单位:分钟): 【收集数据】男生:28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105; 女生:29,35,36,48,55,56,62,69,69,72,73,78,88,88,90,98,99,109. 【整理数据】030x < 3060x < 6090x < 901 m7 158【分析数据】两组数据的平均数、中位数、众数如表:根据以上信息解答下列问题:(1)填空:m=,a=,b=;(2)如果该校九年级的男生有270人、女生有360人,估计该校九年级周末在家锻炼的时间在90分钟以上(不包含90分钟)同学的人数;(3)王老师看了表格数据后认为九年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.22.(8分)为了落实立德树人根本任务,积极响应“双减”政策要求,某校开设了丰富的劳动教育课程.某日,学生处对学校菜圃耕作情况进行了一次评分.从七、八年级各随机抽取20块菜圃,对这部分菜圃的评分进行整理和分析(采圃评分均为整数,满分为10分,9分(含9分)以上为“五星菜圃”).相关数据统计、整理如下:抽取八年级菜圃的评分(单位:分):7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10.七、八年级抽取的菜圃评分统计根据以上信息,解答下列问题:(1)填空:a=,b=;(2)该校七年级共19个班,每班有4块菜圃,估计该校七年级“五星菜圃”的数量;(3)根据以上数据分析,从一个方面评价两个年级的菜圃耕种情况谁更好.23.(8分)某校策划了一次有关党的知识竞赛,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将九年级一班和二班的成绩进行整理并绘制成如下统计图.请你根据以上提供的信息解答下列问题:(1)此次竞赛中,一班成绩在C级以上(包括C级)的人数为人.(2)请你根据平均数、众数、中位数等统计知识,综合阐述哪个班整体水平较高,可以评为一等奖?24.(8分)我校为了提高学生的文明意识,举办了“文明知识”测评活动.现从九年级一班和二班中各随机抽取20名学生的测评成绩(满分50分,45分及45分以上为优秀,40分及40分以上为合格)进行整理、描述和分析,给出了下面的部分信息.九年级一班20名学生的测评成绩(单位:分)分别为:44 50 40 40 50 45 45 45 49 45 44 42 49 42 49 49 45 42 38 42九年级二班20名学生的测评成绩统计图如图所示.两个班抽取的学生的测评成绩的平均数、众数、中位数如表:请你根据上面提供的所有信息,解容下列问题:(1)表中的a=,b=,c=.(2)根据以上数据,你认为在此次测评中,九年级一班的测评成绩好还是九年级二班的测评成绩好?请说明理由(说明一条理由即可);(3)已知学校九年级共800名学生参加了此次测评活动,通过计算,请你估计此次测评活动成绩合格的学生人数.25.(8分)某中学开展“唱歌”比赛活动,八(1),八(2)班各选出5名选手参加复赛,5名选手的复赛成绩(满分为100分),如图所示:(1)根据图示填写下表:(2)通过计算得知八(2)的平均成绩为85分,请计算八(1)的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)经计算八(1)班复赛成绩的方差为70,请计算八(2)班复赛成绩的方差,并说明哪个班学生的成绩比较稳定.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B ; 2.C ; 3.C ; 4.C ; 5.D ; 6.D ; 7.D ; 8.B ; 9.A ; 10.D ;二、填空题(共5小题,满分15分,每小题3分)11.1或6;12.变小;13.49;14.③④;15.41;三、解答题(共10小题,满分75分)16.(1)甲班的中位数为100,乙班的中位数为98;(2)甲班平均分为:1(1009811089103)1005⨯++++=, (2222221[(100100)(98100)(110100)(89100)103100)46.85S ⎤=⨯-+-+-+-+-=⎦甲; 乙班平均分为:1(891009511997)1005⨯++++=, 乙班的方差为:222221[(86100)(100100)(98100)(119100)(97100)]1145⨯-+-+-+-+-=; (3)应该把冠军奖状发给甲班.因为两班的平均分相同,但甲班的优秀率比乙班高,比赛数据的中位数也比乙班大,甲班比赛数据的方差比乙班小,说明甲班的成绩比乙班稳定,综合分析,甲班成绩好,所以应该把冠军奖状发给甲班.17.(1)根据题意得:1(60048022031804120)25810⨯++⨯+⨯+=(个). 答:这10名工人该月生产零件的平均个数为258个;(2)共有10名工人,∴中位数为(220180)2200+÷=(个),众数为180个,当定额为258个时,有2人达标,2人获奖,不利于提高工人的积极性;当定额为200个时,有5人达标,5人获奖,不利于提高工人的积极性;当定额为180个时,有9人达标,9人获奖,有利于提高大多数工人的积极性; 则定额为180个时,有利于提高大多数工人的积极性.18.(1)由题意可知,甲种猕猴桃的测评分数在7080x <中有2个,故2a =;乙种猕猴桃的测评分数在8090x <中有5个,故5b =;乙种猕猴桃的测评分数出现次数最多的是90,所以众数是90,即90c =;将甲种猕猴桃的测评分数从小到大排列处在中间位置的一个数是91,因此中位数是91,即91d =;(2)由甲、乙猕猴桃的测评分数大小波动情况,直观可得2212s s <,故答案为:<;(3)可以推断甲品种较好,理由为:①甲品种猕猴桃的测评分数的中位数、众数均比乙品种的高;②甲品种猕猴桃的测评分数方差比乙种小.故答案为:甲;①甲品种猕猴桃的测评分数的中位数、众数均比乙品种的高,②甲品种猕猴桃的测评分数方差比乙种小.19.(1)八年级的10名学生中有8名学生成绩低于90分,10712a ∴=--=,根据众数的定义可知:84c =,把七年级10名学生的测试成绩排好顺序为:74,76,79,81,84,86,87,90,90,93, 根据中位数的定义可知,该组数据的中位数为8486852b +==, 故答案为:2,85,84;(2)七年级10名学生的成绩中不低于85分的所占比例为51102=, 八年级10名学生的成绩中不低于85分的所占比例为310, ∴七年级测试成绩达到“优秀“的学生人数为:12001002⨯=(人), 八年级测试成绩达到“优秀“的学生人数为:32006010⨯=(人), ∴七、八年级测试成绩达到“优秀“的学生人数分别为100人和60人;(3)七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,∴八年级的学生掌握防震减灾科普知识的总体水平较好.20.(1)补全表格如下 90100x 7590x < 6075x <分析数据:补充完成下面的统计分析表:(2)“7590x<”这组数据75,76,78,80,81,82,85,87,88,88,∴这组数据的众数是88分,故答案为:88;(3)估计全校九年级成绩达到90分及以上的学生人数为480012825⨯=(人);(4)从平均数看,八年级和九年级平均数相等,两个年级的平均成绩相等;从中位数看,八年级的中位数大于九年级的中位数,所以八年级高分的人数多于九年级高分人数,八年级的成绩较好;从方差看,八年级的方差小于九年级的方差,所以八年级的成绩比九年级的成绩稳定,八年级的成绩较好;综上可知,八年级的成绩较好.21.(1)由题意知6m=,其众数70a=,女生锻炼时间的中位数为697270.52+=,故答案为:6、70、70.5;(2)估计该校九年级周末在家锻炼的时间在90分钟以上(不包含90分钟)同学的人数为4327036060601201818⨯+⨯=+=(人);(3)女生锻炼时间的平均数大于男生,女生锻炼时间的中位数大于男生.22.(1)抽取20块八年级菜圃的评分(单位:分)7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10.第10,11个数均为8,故八年级中位数8a=.根据扇形统计图可知七、八年级抽取的菜圃,七、八年级评为6分的共有4010%4⨯=(块),评为7分的共有4025%10⨯=(块),评为8分的共有4015%6⨯=(块),评为9分的共有4030%12⨯=(块),评为10分的共有4020%8⨯=(块),则七年级评为6分的有404-=(块),评为7分的有1055-=(块),评为8分的有660-=(块),评为9分的有1284-=(块),评为10分的有817-=(块),七年级评为10分的最多,故众数10b=.故答案为:8;10;(2)719426.62720⨯⨯=≈(块).故可估计该校七年级“五星菜圃”的数量约为27块;(3)七年级的菜圃耕种情况更好.理由如下:因为七年级菜圃的中位数高于八年级的中位数,七年级菜圃的众数高于八年级的众数.23.(1))(61225)(44%4%36%)21+++⨯++=(人).故答案为:21;(2)一班数据90出现12次,出现次数最多,所以众数为90,二班100分的有11人,90分的有1人,80分的有9人,70分的有4人,按从小到大顺序排列,中位数为80;①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班可以评为一等奖;②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班可以评为一等奖;③从B级以上(包括B级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班可以评为一等奖.24.(1)45分出现了次数最多,出现了5次,∴七年级众数是45分,45a∴=,八年级47分出现了5次,出现的次数最多,则47b =;把八年级的20名学生的测评成绩从小到大排列,中位数是第10、11个数的平均数, 则4547462c +==(分). 故答案为:45,47,46;(2)九年级二班的测评成绩好,由表知,九年级二班测评成绩的平均数和中位数均大于九年级一班,所以九年级二班测评成绩的平均水平和高分人数均比九年级一班高.(3)估计此次测评活动成绩合格的学生人数约为8680028040+⨯=(人). 25.(1)八(1)众数为85分,八(2)班的中位数为80分,故答案为:85,80;(2)八(1)的平均成绩是:75808585100855++++=(分); (3)从平均数上看,均为85分,水平相当,从中位数上看,八(1)班85分,八(2)班80分,(1)班好于(2)班, 所以八(1)班较好.(4)八(2)的方差是:2222211[(7085)(7585)(8085)(10085)(10085)]80016055⨯-+-+-+-+-=⨯=, 70160<,∴八(1)班学生的成绩比较稳定.。
人教版八年级数学下册第二十章-数据的分析综合测评试题(含解析)
人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用计算器计算方差时,要首先进入统计计算状态,需要按键()A.B.C.D.2、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是()A.2420米B.2333米C.2504.3米D.2566.6米3、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是( ) A .平均数B .中位数C .众数D .方差4、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )A .86分B .87分C .88分D .89分5、如果一组数据3,7,2,,4,6a 的平均数是5,则a 的值( ) A .8B .5C .4D .26、某校“安全知识”比赛有16名同学参加,规定前8名的同学进入决赛.若某同学想知道自己能否晋级,不仅要了解自己的成绩,还需要了解16名参赛同学成绩的( ) A .平均数B .中位数C .众数D .方差7、已知数据1x ,2x ,3x 的平均数 5x =,方差23S =,则数据12x ,22x ,32x 的平均数和方差分别为( ) A .5,12B .5,6C .10,12D .10,68、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的( )A.平均数B.众数C.中位数D.最高分与最低分的差9、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是()A.7 B.8 C.9 D.1010、一组数据x、0、1、﹣2、3的平均数是1,则这组数据的中位数是()A.0 B.1 C.2.5 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据4,3,6,x的平均数是4,则这组数据的方差是_________.2、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是______(精确到0.1),众数是______,中位数是______.3、已知一组数据a,b,c的方差为4,那么数据3a﹣2,3b﹣2,3c﹣2的方差是_____.4、为了落实教育部提出的“双减政策”,历下区各学校积极研发个性化、可选择的数学作业.一天,小明对他学习小组其他三位同学完成数学作业的时间进行了调查,得到的结果分别为:18分钟,20分钟,25分钟.然后他告诉大家说,我们四个人完成数学作业的平均时间是21分钟.请问小明同学完成数学作业的时间是______分钟.5、一组数据3,4,3,a,8的平均数为5,则这组数据的方差是______.三、解答题(5小题,每小题10分,共计50分)1、姚明在2005~2006赛季美国职业篮球联赛常规赛中表现优异,下面是他在这个赛季中,分别与“超音速”和“快船”队各四场比赛中的技术统计.(1)姚明在对阵“超音速”和“快船”两队各四场比赛中,平均每场得分是多少?(2)请你从得分的角度分析:姚明在与“超音速”和“快船”队的比赛中,对阵哪一个队的发挥比较稳定?(3)如果规定“综合得分”为:平均每场得分1+⨯平均每场篮板 1.2⨯+平均每场失误()1⨯-,且综合得分越高表现越好,那么请你利用这种评价方法,比较姚明在对阵哪一个队时表现更好.2、小明调查了班级中20名同学某月的家庭用电量,结果如图所示.若把每组中各个用电量用这组数据的中间值代替(如30~40kW·h的中间值为35kW·h),则这20名同学家这个月的平均用电量是多少?3、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:乙组成绩统计图根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,m ______,甲组成绩的中位数是______,乙组成绩的众数是______;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?4、下面是我国近几届奥运会所获金牌数,请指出其中的众数.5、某校春季运动会计划从七年级三个班中评选一个精神文明队,评比内容包括:“开幕式得分”,“纪律卫生”和“投稿及播稿情况”三项(得分均为整数分),三个班的各项得分(不完整)如图所示.(1)“开幕式”三个班得分的中位数是;“纪律卫生”三个班得分的众数是;(2)根据大会组委会的规定:“开幕式”,“纪律卫生”,“投稿及播稿情况”三项按4:4:2的比例确定总成绩,总成绩高的当选精神文明队,已知七年级一班的总成绩为79分.①请计算七年级二班的总成绩;②若七年级三班当选精神文明队,请求出七年级三班在“投稿及播稿情况”方面的最少得分?---------参考答案-----------一、单选题1、B【解析】【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;S的功能键,即可得出结果.③按求2x故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.2、C【解析】【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).【详解】把这11个数从小到大排列为:1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,共有11个数,中位数是第6个数2504.3,故选:C.【点睛】此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.3、D【解析】【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可. 【详解】解:由题意得:原来的平均数为1122324x +++==, 加入数字2之后的平均数为21223225x ++++==,∴平均数没有发生变化,故A 选项不符合题意; 原数据处在最中间的两个数为2和2, ∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2, ∴新数据的中位数为2,故B 选项不符合题意; 原数据中2出现的次数最多, ∴原数据的众数为2, 新数据中2出现的次数最多,∴新数据的众数为2,故C 选项不符合题意;原数据的方差为()()()22221112222320.54s ⎡⎤=-+⨯-+-=⎣⎦, 新数据的方差为()()()22222112322320.45s ⎡⎤=-+⨯-+-=⎣⎦, ∴方差发生了变化,故D 选项符合题意; 故选D . 【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义. 4、B 【解析】【分析】根据加权平均数的公式计算即可.【详解】解:小明该学期的总评得分=9010%9030%8560%9275187⨯+⨯+⨯=++=分.故选项B.【点睛】本题考查加权平均数,掌握加权平均数公式是解题关键.5、A【解析】【分析】根据平均数的计算公式计算即可;【详解】∵数据3,7,2,,4,6a的平均数是5,∴3724656a+++++=,∴8a=;故选A.【点睛】本题主要考查了平均数的计算,准确计算是解题的关键.6、B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知16人成绩的中位数是第8名和第9名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】解:由于16个人中,第8和第9名的成绩的平均数是中位数,故同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这16位同学的成绩的中位数. 故选:B . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 7、C 【解析】 【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可. 【详解】解:∵数据1x ,2x ,3x 的平均数5x =即:123++53x x x = ∴数据12x ,22x ,32x 的平均数为1231232+222()1033x x x x x x +++==又∵数据1x ,2x ,3x 的方差23S =即:()()()22212355533x x x -+-+-=∴数据12x ,22x ,32x 的方差为()()()()()()222222123123210210210454545=431233x x x x x x -+-+--+-+-=⨯=故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.8、C【解析】【分析】根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.9、C【解析】【分析】设报4的人心想的数是x ,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【详解】解:设报4的人心想的数是x ,报1的人心想的数是10﹣x ,报3的人心想的数是x ﹣6,报5的人心想的数是14﹣x ,报2的人心想的数是x ﹣12,所以有x ﹣12+x =2×3,解得x =9.故选:C .【点睛】此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解.10、B【解析】【分析】先根据算术平均数的定义列方程求出x 的值,再将这组数据从小到大重新排列,利用中位数的定义可得答案.【详解】解:∵数据x 、0、1、-2、3的平均数是1, ∴()1012315x ++-+=,解得x =3,所以这组数据为-2、0、1、3、3,所以这组数据的中位数为1,故选:B .【点睛】本题主要考查了中位数和算术平均数,解题的关键是掌握算术平均数和中位数的定义.二、填空题1、32【解析】【分析】先根据平均数的定义求出x 的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x 的平均数是4, 可得:43644x +++=, 解得:x =3, 方差为:22221(44)(34)(64)(34)4⎡⎤-+-+-+-⎣⎦=32, 故答案为:32.【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.2、 73.0 80,90 80【解析】【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【详解】解:(1)平均数是:1004+9011+8011+708+605+3004+11+11+8+5+8⨯⨯⨯⨯⨯ =73.0;(2)90分的有11人,80分的有11人,出现的次数最多,则众数是 80和90,(3)把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;73.0;80和90;80.【点睛】此题考查了平均数、众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),出现次数最多的数是众数.3、36【解析】【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得.【详解】解:∵数据a,b,c的方差为4,∴数据3a﹣2,3b﹣2,3c﹣2的方差32×4=36,故答案为:36.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.4、21【解析】【分析】设明同学完成数学作业的时间是x分钟,根据平均数的定义求解即可【详解】解:设明同学完成数学作业的时间是x分钟.由题意得,18+20+25+x=21×4,故答案为:21.【点睛】本题考查了平均数的计算,平均数是指在一组数据中所有数据之和再除以数据的个数.5、4.4【解析】【分析】根据数据的平均数可求得a ,再由方差计算公式可计算出此数据的平均数.【详解】 由题意得:1(3438)55a ⨯++++=解得:a =7 则方差为:222221(35)(45)(35)(75)(85) 4.45⎡⎤⨯-+-+-+-+-=⎣⎦ 故答案为:4.4.【点睛】本题考查了平均数与方差,掌握它们的计算公式是关键.三、解答题1、(1)25.25分,23.25分;(2)姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“快船”的比赛中表现更好.【分析】(1)根据平均数的计算方法,先求和,再除比赛次数即可得出平均每场的得分;(2)计算并比较得分的方差,根据方差的意义,即可得出结论;(3)根据“综合得分”的规定,分别计算姚明在比赛中的“综合得分”,再进行比较即可.解:(1)姚明在对阵“超音速”的四场比赛中平均得分为:()22292426425.25+++÷=(分); 在对阵“快船”的四场比赛中平均得分为:()25291722423.25+++÷=(分);(2)姚明在对阵“超音速”队的四场比赛中得分的方差为:2222211 (2222.25)(2922.25)(2422.25)(2622.25) 6.68754S ⎡⎤=-+-+-+-=⎣⎦, 姚明在对阵“快船”队的四场比赛中得分的方差为:2222221 (2523.25)(2923.25)(1723.25)(2223.25)19.18754S ⎡⎤=-+-+-+-=⎣⎦, ∵s 12<s 22,∴从得分的角度看,姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“超音速”的四场比赛中综合分为:()25.251111.2 2.75135.7⨯+⨯+⨯-=(分); 在对阵“快船”的四场比赛中综合得分为:()23.25112.75 1.22136.55⨯+⨯+⨯-=(分),从综合得分看,姚明在对阵“快船”的比赛中表现更好.【点睛】本题考查了平均数和方差的计算方法及意义.一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差为(2222121[()())n S x x x x x x n ⎤=-+-++-⎦ ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、56.5 kW·h【分析】根据统计图可得出每组对应的数量,然后求出总用电量除以总户数即可.【详解】解:根据图象可得:30~40kW·h 有2户;40~50kW·h 有3户;50~60kW·h 有8户;60~70kW·h 有4户;70~80kW·h 有3户;平均用电量是:()3524535586547532056.5⨯+⨯+⨯+⨯+⨯÷=(kW·h),答:这20名同学家这个月的平均用电量是56.5 kW·h.【点睛】题目主要考查从统计图中分析数据的集中趋势、求平均数,理解题意及运用算数平均数的计算方法是解题关键.3、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m 的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.【详解】解:(1)平均成绩为:7189951058.71955⨯+⨯+⨯+⨯=+++, 202963m =---=, 甲组成绩一共有20人,从小到大最中间为8和9,则中位数为898.52+=, 乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2)2798693108.520x ⨯+⨯+⨯+⨯==乙, ()()()()22222278.5988.5698.53108.50.7520S ⨯-+⨯-+⨯-+⨯-==乙,20.81S =甲,∴22S S >甲乙,∴乙组的成绩更加稳定.【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.4、16【分析】由题意根据众数的定义即一组数据中出现次数最多的数值进行分析即可得出答案.【详解】解:数据是我国近几届奥运会所获金牌数,分别为:5、16、16、28、32、51,其中16出现次数最多,所以数据的众数为:16.【点睛】本题考查众数的定义,熟练掌握众数的定义即一组数据中出现次数最多的数值是解题的关键,注意有时众数在一组数中有好几个.5、(1)85;85;(2)①七年级二班的总成绩为80;②七年级三班在“投稿及播稿情况”方面的最少得分是51分.【分析】(1)将三个班“开幕式”和“纪律卫生”列出来,从中找出中位数和众数即可;(2)①利用加权平均数计算出七年级三班的得分即可;②设七年级三班“投稿及播稿情况”的得分为x,因为三班的成绩要比二班的高,根据加权平均数计算与二班的成绩列出不等式求解即可.【详解】(1)“开幕式”三个班得分分别为:85,75,90,故中位数为85;“纪律卫生”三个班得分分别为:70,85,85,故众数为85;(2)①7548548028008044210⨯+⨯+⨯==++(分),故七年级二班的总成绩为:80分;②设七年级三班在“投稿及播稿情况”方面的得分为x分,若七年级三班当选精神文明对,则七年级三班的总成绩应比七年级二班精神文明成绩要高,则904854280442x⨯+⨯+⨯>++,解得50x>,∵x为整数,∴x最低为51,∴七年级三班在“投稿及播稿情况”方面的最少得分为51分.【点睛】本题考查了中位数、众数和加权平均数的计算,解题的关键是对定义的理解.。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。
2022年初中数学人教八下第二十章测试卷(1)(附答案)
第二十章卷〔1〕一、选择题1.假设3,2,x,5的平均数是4,那么x等于〔〕A.8 B.6 C.4 D.22.一组数据4,3,6,9,6,5的中位数和众数分别是〔〕A.5和 B.和6 C.5和6 D.6和63.数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数是〔〕A.2 B.1 C. D.﹣24.某中学足球队的18名队员的年龄情况如下表:那么这些队员年龄的众数和中位数分别是〔〕A.15,15 B.15,C.15,16 D.16,155.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的〔〕A.中位数B.众数C.平均数D.极差6.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是〔〕A.服装型号的平均数B.服装型号的众数C.服装型号的中位数D.最小的服装型号7.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:〔单位:个〕33 25 28 26 25 31如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为〔〕A.900个B.1080个C.1260个D.1800个8.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是〔〕A.2 B.4 C.8 D.169.样本甲的平均数=60,方差,样本乙的平均数=60,方差,那么这两组数据的波动情况为〔〕A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大 D.无法比拟两样本波动的大小二、填空题10.假设一组数据的方差为16,那么这组数据的标准差为.11.黎老师给出4个连续奇数组成一组数据,中位数是8,请你写出这4个数据:.12.第一小组共6名学生,在一次“引体向上〞的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了〔个〕.13.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是n,那么关于x,y的方程组的解是:.14.某中学为了了解全校的耗电情况抽查了10中全校每天的耗电量,数据如下表:那么表中数据的中位数是度;众数是度.15.对甲、乙两个小麦品种各100株小麦的株高x〔单位:m〕进行测量,算出平均数和方差为:,s甲2,,s乙2,于是可估计株高较整齐的小麦品种是.16.某次射击训练中,一小组的成绩如下表所示.假设该小组的平均成绩为环,那么成绩为8环的人数是.三、解答题17.为积极响应骨架“节能减排〞的号召,某小区开展节约用水活动,根据对该小区200户家庭用水情况统计分析,2021年6月份比5月份节约用水情况如表所示:那么6月份这200户家庭节水量的平均数是多少?18.一次数学测试结束后,学校要了解八年级〔共四个班〕学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:=,小明的算法正确吗?为什么?假设不正确,请写出正确的计算过程.19.济南以“泉水〞而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉〞活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中米3对应扇形的圆心角为度;(3)该小区300户居民5月份平均每户节约用水多少米3?20.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答以下问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?21.张明、李成两位同学初二学年10次数学单元自我检测的成绩〔成绩均为整数,且个位数为0〕分别如以下图所示:利用图中提供的信息,解答以下问题.(1)完成下表:(2)如果将90分以上〔含90分〕的成绩视为优秀,那么优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.答案1.假设3,2,x,5的平均数是4,那么x等于〔〕A.8 B.6 C.4 D.2【考点】算术平均数.【专题】选择题.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:∵数据3,2,x,5的平均数是4,∴〔3+2+x+5〕÷4=4,∴10+x=16,∴x=6.应选B.【点评】此题考查的是样本平均数的求法.熟记公式是解决此题的关键.2.一组数据4,3,6,9,6,5的中位数和众数分别是〔〕A.5和 B.和6 C.5和6 D.6和6【考点】众数;中位数.【专题】选择题.【分析】中位数是一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔或最中间两个数的平均数〕;众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中6是出现次数最多的,故众数是6;将这组数据已从小到大的顺序排列,处于中间位置的两个数是5、6,那么由中位数的定义可知,这组数据的中位数是〔5+6〕÷;应选B.【点评】此题为统计题,考查众数与中位数的意义.将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔或最中间两个数的平均数〕叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数是〔〕A.2 B.1 C. D.﹣2【考点】众数;中位数.【专题】选择题.【分析】根据中位数和众数的概念求解.【解答】解:∵数据﹣3,﹣2,1,3,6,x的中位数是1,∴x=1,那么该组数据的众数为1.应选B.【点评】此题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大〔或从大到小〕的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.4.某中学足球队的18名队员的年龄情况如下表:那么这些队员年龄的众数和中位数分别是〔〕A.15,15 B.15,C.15,16 D.16,15【考点】众数;中位数.【专题】选择题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数〔或两个数的平均数〕为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是.应选B.【点评】此题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,那么正中间的数字即为所求,如果是偶数个那么找中间两位数的平均数,中位数不一定是这组数据中的数.5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的〔〕A.中位数B.众数C.平均数D.极差【考点】平均数、中位数和众数的比拟.【专题】选择题.【分析】由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.【解答】解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.应选A.【点评】此题考查了用中位数的意义解决实际问题.将一组数据按照从小到大〔或从大到小〕的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.6.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是〔〕A.服装型号的平均数B.服装型号的众数C.服装型号的中位数D.最小的服装型号【考点】平均数、中位数和众数的比拟.【专题】选择题.【分析】天虹百货某服装销售商最感兴趣的是服装型号的销售量哪个最大.【解答】解:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.应选B.【点评】此题考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.7.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:〔单位:个〕33 25 28 26 25 31如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为〔〕A.900个B.1080个C.1260个D.1800个【考点】算术平均数;用样本估计总体.【专题】选择题.【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【解答】解:估计本周全班同学各家总共丢弃塑料袋的数量为×45=1260〔个〕.应选C.【点评】生产中遇到的估算产量问题,通常采用样本估计总体的方法.8.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是〔〕A.2 B.4 C.8 D.16【考点】方差.【专题】选择题.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,那么另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2=[〔x1﹣〕2+〔x2﹣〕2+…+〔x n﹣〕2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,那么另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2=[〔a1﹣〕2+〔a2﹣〕2+…+〔a n﹣〕2],∴S′2=[〔2a1﹣2〕2+〔2a2﹣2〕2+…+〔2a n﹣2〕2]=[4〔a1﹣〕2+4〔a2﹣〕2+…+4〔a n﹣〕2]=4S2=4×2=8.应选C.【点评】此题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据a1,a2,…,a n的方差是s2,那么另一组数据ka1,ka2,…,ka n的方差是k2s2.9.样本甲的平均数=60,方差,样本乙的平均数=60,方差,那么这两组数据的波动情况为〔〕A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大 D.无法比拟两样本波动的大小【考点】方差.【专题】选择题.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,说明这组数据分布比拟集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵=60,=60,,,∴<,∴乙样本的波动比甲样本大;应选C.【点评】此题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,说明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,说明这组数据分布比拟集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.假设一组数据的方差为16,那么这组数据的标准差为.【考点】标准差;方差.【专题】填空题.【分析】根据标准差即方差的算术平方根即可得出答案.【解答】解:∵一组数据的方差为16,∴这组数据的标准差为=4.故答案为:4.【点评】此题考查了标准差,掌握标准差即方差的算术平方根是此题的关键.11.黎老师给出4个连续奇数组成一组数据,中位数是8,请你写出这4个数据:.【考点】中位数.【专题】填空题.【分析】设这4个连续奇数为2x﹣3,2x﹣1,2x+1,2x+3,然后根据中位数的概念求解.【解答】解:设这4个连续奇数为2x﹣3,2x﹣1,2x+1,2x+3,那么=8,解得:x=4,那么这4个奇数为:5,7,9,11.故答案为:5,7,9,11.【点评】此题考查了中位数的知识,将一组数据按照从小到大〔或从大到小〕的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.12.第一小组共6名学生,在一次“引体向上〞的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了〔个〕.【考点】算术平均数.【专题】填空题.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:平均数=〔8+10+8+7+6+9〕÷6=8〔个〕.∴这6名学生平均每人做了8个.故答案为8.【点评】此题考查的是样本平均数的求法.熟记公式是解决此题的关键.13.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是n,那么关于x,y的方程组的解是:.【考点】解二元一次方程组;中位数;众数.【专题】填空题.【分析】找出数据的中位数与众数,确定出m与n的值,代入方程组求出解即可.【解答】解:数据9,11,11,7,10,8,12按照从小到大顺序排列为:7,8,9,10,11,11,12,∴中位数是m=10,众数是n=11,代入方程组得:,解得:,故答案为:.【点评】此题考查了解二元一次方程组,中位数,以及众数,熟练掌握运算法那么是解此题的关键.14.某中学为了了解全校的耗电情况抽查了10中全校每天的耗电量,数据如下表:那么表中数据的中位数是度;众数是度.【考点】众数;中位数.【专题】填空题.【分析】找出出现次数最多的数即为众数,排序后中间两天的用电量的平均数即为中位数.【解答】解:∵共10天,排序后位于第5和第6两天的度数均为113和113,∴中位数为113度,∵用电量为113度的天数最多,∴众数为113度.故答案为:113,113.【点评】此题考查了中位数、众数的定义,解题的关键是能够了解二者的定义,利用定义求解,难度不大.15.对甲、乙两个小麦品种各100株小麦的株高x〔单位:m〕进行测量,算出平均数和方差为:,s甲2,,s乙2,于是可估计株高较整齐的小麦品种是.【考点】方差;算术平均数.【专题】填空题.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,说明这组数据分布比拟集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵,,s甲2,s乙2,∴s甲2<s乙2,∴估计株高较整齐的小麦品种是甲.故答案为:甲.【点评】此题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,说明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,说明这组数据分布比拟集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.某次射击训练中,一小组的成绩如下表所示.假设该小组的平均成绩为环,那么成绩为8环的人数是.【考点】加权平均数.【专题】填空题.【分析】设成绩为8环的人数为x,那么根据平均数的计算公式即可求得x的值.【解答】解:设成绩为8环的人数为x,那么有6+7×3+8x+9××〔1+3+x+2〕,解得x=4.故填4.【点评】此题考查一组数据平均数的求法.熟记公式是解决此题的关键.17.为积极响应骨架“节能减排〞的号召,某小区开展节约用水活动,根据对该小区200户家庭用水情况统计分析,2021年6月份比5月份节约用水情况如表所示:那么6月份这200户家庭节水量的平均数是多少?【考点】加权平均数.【专题】解答题.【分析】根据加权平均数的计算公式即可求出答案.【解答】解:〔1×20+×80+2×40+×60〕÷200=〔20+120+80+150〕÷200=370÷〔m3〕.答:6月份这200户家庭节水量的平均数是3.【点评】此题考查了加权平均数的计算方法.平均数是指在一组数据中所有数据之和再除以数据的个数即可.18.一次数学测试结束后,学校要了解八年级〔共四个班〕学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:=,小明的算法正确吗?为什么?假设不正确,请写出正确的计算过程.【考点】加权平均数.【专题】解答题.【分析】利用加权平均数的计算方法:求出所有数据的和,然后除以数据的总个数即可.【解答】解:小明的算法不正确;该校八年级数学测试的平均成绩:.【点评】此题考查的是加权平均数的求法,掌握求平均数的方法:数据总和÷数据总个数=平均数是解决问题的关键.19.济南以“泉水〞而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉〞活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中米3对应扇形的圆心角为度;(3)该小区300户居民5月份平均每户节约用水多少米3?【考点】扇形统计图;统计表;加权平均数;中位数;众数.【专题】解答题.【分析】(1)众数是一组数据中出现次数最多的数据;将一组数据按照从小到大〔或从大到小〕的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数,根据定义可求解;(2)首先计算出节水量米3对应的居名民数所占百分比,再用360°×百分比即可;(3)根据加权平均数公式:假设n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,那么=,进行计算即可;【解答】解:(1)数据出现了100次,次数最多,所以节水量的众数是〔米3〕;位置处于中间的数是第150个和第151个,都是,故中位数是米3.(2)×100%×360°=120°;(3)〔50×1+80×+×100+3×70〕÷〔米3〕.答:该小区300户居民5月份平均每户节约用水米3.【点评】此题主要考查了统计表,扇形统计图,平均数,中位数与众数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.20.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答以下问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?【考点】条形统计图;中位数和众数;扇形统计图.【专题】解答题.【分析】(1)由捐2册的人数除以所占的百分比,即可确定出该班的学生数;(2)由该班的学生数减去其他的人数求出捐4册的学生数,补全条形统计图即可;(3)将捐书数按照从小到大顺序排列,找出中位数,找出捐书最多的数目确定出众数即可.【解答】解:(1)根据题意得:15÷30%=50〔人〕,那么该班学生有50人;(2)捐书4册的人数为50﹣〔10+15+8+5〕=12〔人〕,补全统计图,如下图:;(3)将捐书数按照从小到大顺序排列为:1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,其中第25,26个数为2,4,中位数为3册;2出现次数最多,即众数为2册.【点评】此题考查了条形统计图,扇形统计图,以及中位数、众数,弄清题意是解此题的关键.21.张明、李成两位同学初二学年10次数学单元自我检测的成绩〔成绩均为整数,且个位数为0〕分别如以下图所示:利用图中提供的信息,解答以下问题.(1)完成下表:(2)如果将90分以上〔含90分〕的成绩视为优秀,那么优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.【考点】算术平均数;中位数;众数;方差.【专题】解答题.【分析】(1)根据平均数、中位数、众数和方差的定义求解;(2)直接看图得到;(3)分析(1)的统计数据即可.【解答】解:(1)(2)如果将90分以上〔含90分〕的成绩视为优秀,那么优秀率高的同学是李成;(3)李成的学习要持之以恒,保持稳定;张明的学习还需加把劲,提高优秀率.【点评】此题考查的是平均数、众数、中位数和方差的概念.要学会从统计数据中得出正确的结论.期末测试〔2〕一、选择题1.假设有意义,那么m能取的最小整数值是〔〕A.m=0 B.m=1 C.m=2 D.m=32.以下各组数中,以它们为边长的线段不能构成直角三角形的是〔〕A.1,,B.3,4,5 C.5,12,13 D.2,2,33.以下二次根式中属于最简二次根式的是〔〕A. B. C.D.4.函数y=2x﹣5的图象经过〔〕A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限5.如图,矩形ABCD中,对角线AC,BD交于点O.假设∠AOB=60°,BD=8,那么AB的长为〔〕A.4 B.C.3 D.56.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,那么阴影局部的面积是〔〕A.16 B.18 C.19 D.217.某市一周的日最高气温如下图,那么该市这周的日最高气温的众数是〔〕A.25 B.26 C.27 D.288.P1〔﹣3,y1〕,P2〔2,y2〕是一次函数y=﹣x﹣1的图象上的两个点,那么y1,y2的大小关系是〔〕A.y1=y2B.y1<y2C.y1>y2D.不能确定9.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数〔秒〕51505150方差s2〔秒2〕根据表中数据,要从中选择一名成绩好又发挥稳定的运发动参加比赛,应该选择〔〕A.队员1 B.队员2 C.队员3 D.队员410.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,假设BF=12,AB=10,那么AE的长为〔〕A.13 B.14 C.15 D.1611.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,那么菱形ABCD的周长为〔〕A.5cm B.10cm C.20cm D.40cm12.一次函数y1=kx+b与y2=x+a的图象如图,那么以下结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是〔〕A.0 B.1 C.2 D.3二、填空题13.一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.14.函数中,自变量x的取值范围是.15.计算=.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在某一面着色〔如图〕,那么着色局部的面积为.17.如图,直线y=kx+b〔k≠0〕与x轴交于点〔﹣4,0〕,那么关于x的方程kx+b=0的解为x=.三、解答题18.当x=时,求x2﹣x+1的值.19.一艘轮船以16海里/时的速度离开港口〔如图〕,向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,它们离港口一个半小时后相距30海里〔即BA=30〕,问另一艘轮船的航行的方向是北偏西多少度?20.:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日〞.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:读书册数45678人数〔人〕6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.22.世界上大局部国家都使用摄氏温度〔℃〕,但美国、英国等国家的天气预报使用华氏温度〔℉〕.两种计量之间有如表对应:摄氏温度x〔℃〕…0510152025…华氏温度y〔℉〕…324150596877…华氏温度y〔℉〕是摄氏温度x〔℃〕的一次函数.(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)假设∠BAC=30°,AC=4,求菱形OCED的面积.24.:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y〔千米〕与行驶时间x〔小时〕之间的函数图象.(1)求甲车离出发地的距离y甲〔千米〕与行驶时间x〔小时〕之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙〔千米〕与行驶时间x〔小时〕之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.答案1.假设有意义,那么m能取的最小整数值是〔〕A.m=0 B.m=1 C.m=2 D.m=3【考点】二次根式有意义的条件.【专题】选择题.【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,那么满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.那么m能取的最小整数值是m=1.应选B.【点评】主要考查了二次根式的意义和性质.概念:式子〔a≥0〕叫二次根式;性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义.2.以下各组数中,以它们为边长的线段不能构成直角三角形的是〔〕A.1,,B.3,4,5 C.5,12,13 D.2,2,3【考点】勾股定理的逆定理.【专题】选择题.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+〔〕2=3=〔〕2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.应选D.【点评】此题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.以下二次根式中属于最简二次根式的是〔〕。
人教版八年级下册数学 第二十章 过关测试卷
人教版八年级下册数学第二十章 过关测试卷一、单选题(共30分)1.(本题3分)已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( ) A .1 B .2 C .3 D .42.(本题3分)已知一组数据5,4,x ,3,9的平均数为5,则这组数据的中位数是( ) A .3 B .4 C .5 D .6 3.(本题3分)已知一组数据1a ,2a ,3a ,4a ,5a 的平均数为5,则另一组数据15a +,25a -,35a +,45a -,55a +的平均数为( )A .4B .5C .6D .104.(本题3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,305.(本题3分)某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售A .100元B .95元C .98元D .97.5元 6.(本题3分)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:则这些队员投中次数的众数、中位数和平均数分别为( ) A .5,6,6 B .2,6,6 C .5,5,6 D .5,6,57.(本题3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B .在该班级所售图书价格组成的一组数据中,中位数是4C .在该班级所售图书价格组成的一纽数据中,众数是15D .在该班级所售图书价格组成的一组数据中,方差是28.(本题3分)为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是( )A .12岁B .13岁C .14岁D .15岁9.(本题3分)某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )A .50和48B .50和47C .48和48D .48和4310.(本题3分)下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有( )A .2212s s >B .2212s s =C .2212s s <D .无法确定二、填空题(共24分)11.(本题3分)在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:①这次数学测试成绩中,甲、乙两个班的平均水平相同;②甲班学生中数学成绩95分及以上的人数少; ③乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是______.(填序号)12. (本题3分)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_____小时.13.(本题3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是_____℃.14.(本题3分)已知一组无重复数据的中位数为80,可知这组数据中大于或小于这个中位数的数据各占________,中位数有________个.15.(本题3分)为筹备校文艺花会合唱比赛,班长就老师推荐的几首歌曲对全班同学作了民意调查,则最终决定选哪首歌曲,应该关注调查数据的_____.(填“平均数”或“中位数”或“众数”)16. (本题3分)某电脑公司销售部为了制订下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售员本月销售量的平均数、中位数、众数分别是________.17.(本题3分)10名射击运动员第一轮比赛的成绩如下表所示:则他们本轮比赛的平均成绩是________环.18. (本题3分)琪琪家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.三、解答题(共66分)19.(本题8分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下表所示:计算这10个西瓜的平均质量,并根据计算结果估计这亩地的西瓜产量约是多少kg?20.(本题8分)婷婷帮助母亲预算家庭4月份电费开支情况,如下表是她4月初连续8天每天早上电表显示的读数:(1)从表格可看出,在共________天时间内,用电________度,平均每天用电________度;(2)如果以此为样本来估计4月份(按30天计算)的用电量,那么4月份共用电多少度?(3)如果用电不超过100度时,按每度电0.53元收费;超过100度时,超出的部分按每度电0.56元收费,根据以上信息,估计婷婷家4月份的电费是多少元?21.(本题8分)阅读对人成长的影响是巨大的,联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了如下统计图表的一部分:图1图2一个学期平均一天阅读课外书籍所用时间统计表请你根据以上信息解答下列问题:(1)补全图1,图2;(2)这100名学生一个学期平均每人阅读课外书籍多少本,若该校共有3000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?(3)根据统计图和统计表,请你对该校学生阅读课外书籍的情况,谈谈你的看法.22.(本题10分)某公司招聘人才,对应聘者分别进行阅读能力、专业知识、表达能力三项测试,并将三项测试得分按3:5:2的比例确定每人的最终成绩,现欲从甲乙两选手中录取一人,已知两人的各项测试得分如下表(单位:分)①请通过相关的计算说明谁将被录用?②请对落选者今后的应聘提些合理的建议.23.(本题10分)从某食品厂生产的袋装食品中抽出样品20袋,检测各袋的质量是否符合标准,超过或不足的部分用正、负数表示,记录如下表:这批样品的平均质量比标准质量多还是少?24.(本题10分)某公司有10名销售业务员,去年每人完成的销售额情况如表:(1)求10名销售员销售额的平均数、中位数和众数.(单位:万元)(2)为了调动员工积极性,公司准备采取超额有奖措施,请问把标准定为多少万元时最合适?25.(本题12分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.。
2019年人教版八年级下册数学第20章测试卷及答案
人教版数学八年级下册第二十章数据的分析单元测试题一、选择题1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别( D )A.10和7B.5和7C.6和7D.5和62.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购(D )A.甲苗圃的树苗B.乙苗圃的树苗;C.丙苗圃的树苗D.丁苗圃的树苗3.(2017·安顺中考)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( B )A.16,10.5B.8,9C.16,8.5D.8,8.54.一组数据2,3,2,3,5的方差是( C )A.6B.3C.1.2D.25.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t)(A )A.1.5t B.1.20t C.1.05t D.1t6.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( B )A.甲B.乙C.丙D.丁7.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( C )A.学习水平一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低8.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有(A )A.1个B.2个C.3个D.4个9.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,那么另一组数据33x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是( D )B.2,1A.2,13C.4,2D.4,3310.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( C )A.7,7B.8,7.5C.7,7.5D.8,6.5二、填空题11.某班中考数学成绩如下:7人得100分,14人得90分,17人得80分,8人得70分,3人得60分,1人得50分,那么中考全班数学成绩的平均分为,中位数为,众数为.答案:82.2 80 8012.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.答案:-2•℃13..一组数据1,4,6,x的中位数和平均数相等,则x的值是__________.答案:-1或3或914.某校五个绿化小组一天的植树棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.答案:1.615.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.答案:27.3%16.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是__________(填序号).答案:①②③三、解答题17.(6分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:(1)共有25名员工,中位数是第13个数,则中位数是3 400元;3 000出现了11次,出现的次数最多,则众数是3 000元.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45 000元的影响,只有3个人的工资达到了6 276元,不恰当.18.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?答案:(1)=14(吨);(2)7000吨.19.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为________;b.可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)【解析】按如下分数段整理数据:=240(人);a.估计乙部门生产技能优秀的员工人数为400×1220b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高20.(8分)甲、乙两台机床同时生产同一种零件,在10天中两台机床每天生产的次品数如下:甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.(1)分别计算两组数据的平均数和方差;(2)从结果看,在10天中哪台机床出现次品的波动较小?(3)由此推测哪台机床的性能较好解:(1)甲的平均数是x 甲=110×(0+1+0+2+2+0+3+1+2+4)=1.5;乙的平均数是x 乙=110×(2+3+1+1+0+2+1+1+0+1)=1.2.甲的方差是s 甲2=110[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(4-1.5)2]=1.65;乙的方差是s 乙2=110[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(1-1.2)2]=0.76.(2)因为s 甲2=1.65,s 乙2=0.76,所以s 甲2>s 乙2,所以乙机床出现次品的波动较小. (3)乙的平均数比甲的平均数小,且s 甲2>s 乙2,所以乙机床的性能较好.21.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并,数据11,15,18,17,10,19且数据15,16,16,14,14,15的方差S甲2=23的方差S乙2=35).3答案:(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.22.(14分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少人?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解:(1)该班的学生总人数为15÷30%=50(名),穿175型校服的学生人数为50×20%=10(名).答:该班共有50名学生,其中穿175型校服的学生有10名. (2)穿185型校服的学生人数为50-3-15-15-10-5=50-48=2(名), 补全条形统计图,如图所示.×360°=14.4°.(3)185型校服所对应的扇形圆心角为250答:185型校服所对应的圆心角的大小为14.4°.(4)165型和170型出现的次数最多,都是15次,所以众数是165和170.共有50个数据,第25,26个数据都是170,所以中位数是170. 答:该班学生所穿校服型号的众数是165和170,中位数是170.。
人教版八年级数学(下册)第二十章测试卷(及答案)
人教版八年级数学(下册)第二十章测试卷1.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数2.某班开展1分钟仰卧起坐比赛活动,5名同学的成绩如下(单位:个):37,38,40,40,42.这组数据的众数是( )A.37B.38C.40D.423.某“中学生暑期环保小组”的同学,随机调查了幸福小区10户家庭一周内使用环保方便袋的数量,数据(单位:只)如下:6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2 000户家庭一周内需要环保方便袋约( )A.2 000只B.14 000只C.21 000只D.98 000只4.如果数据1,2,2,x的平均数与众数相同,那么x等于( )A.1B.2C.3D.45.已知两组数据x1,x2,…,x n和y1,y2,…,y n的平均数分别是和,则一组新的数据2x1-y1,2x2-y2,…,2x n-y n的平均数是( )A.2B.C.D.6.某人打靶,有m次每次中靶a环,有n次每次中靶b环,则平均每次中靶的环数为( )A.B.C.(am+bn)D.7.今年,某省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A.平均数是15B.众数是10C.中位数是17D.方差是8.如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是( )A.2B.4C.8D.169.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲55149191135乙55151110135某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)10.小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是元.11.如果样本方差s2=,那么这个样本的平均数为,样本容量为.12.八年级(1)班9名学生参加学校的植树活动,活动结束后,统计每人植树的情况,植了2棵树的有5人,植了4棵树的有3人,植了5棵树的有1人,那么平均每人植树棵.13.在一次跳水比赛中,6名裁判员同时给运动员完成的动作打分,成绩(单位:分)如下:9.7,9.2,9.6,8.9,9.2,9.4.则这个跳水运动员成绩的众数是,中位数是,平均数是.(保留到小数点后一位)14.已知7,4,3和m四个数的平均数是5;18,9,7,m和n五个数的平均数为10,则m和n的值分别为.15.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:百分制候选人教学技能考核成绩专业知识考核成绩甲8592乙9185丙8090(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人将被录取;(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.16.(10分)从甲、乙两种玉米苗中各选10株,分别测得它们的株高如下(单位:cm):甲:25,41,40,37,22,14,19,39,21,42;乙:27,16,44,27,44,16,40,40,16,40.(1)哪种玉米苗长得高?(2)哪种玉米苗长得齐?17.下表是某校八年级(1)班20名学生某次数学测验的成绩统计表:成绩(分)60708090100人数(人)15x y2(1)若这20名学生的平均分是84分,求x和y的值;(2)在(1)的条件下,这20名学生的本次测验成绩的众数和中位数分别是多少?18.某中学开展演讲比赛活动,八年级一班、二班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图1和图2所示.图1图2(1)根据上图填写下表:平均数中位数众数一班8585二班8580(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些?并说明理由.19.为了从甲、乙两名同学中选出一人参加射击比赛,在同等条件下,教练给甲、乙两名同学安排了一次射击测验,每人打10发子弹,下面是甲、乙两人射击情况的记录表(其中,乙的射击情况记录表部分被墨水污染看不清,但是教练记得乙射中9环、10环的子弹数均不为0发).甲中靶环数568910射中此靶的子弹数/发41221乙中靶环数567910射中此靶的子弹数/发313●●(1)求甲同学在这次测验中平均每次射中的环数;(2)根据这次测验情况,如果你是教练,你认为谁参加比赛比较合适?并说明理由.参考答案1.D2.C3.B4.C5.A6.D7.C8.C9.B10.2511.2 412.313.9.2 9.3 9.314.6,1015.解:(1) 甲的平均成绩是:(85+92)÷2=88.5(分),乙的平均成绩是:(91+85)÷2=88(分),丙的平均成绩是:(80+90)÷2=85(分),∵甲的平均成绩最高,∴候选人甲将被录取.故答案为甲.(2) 根据题意,得甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),因为乙的平均成绩最高,所以候选人乙将被录取.16.解:(1)×(25+41+40+37+22+14+19+39+21+42)=×300=30,×(27+16+44+27+44+16+40+40+16+40)=×310=31.因为,所以乙种玉米苗长得高.(2)×[(25-30)2+(41-30)2+…+(42-30)2]=×1 042=104.2,×[(27-31)2+(16-31)2+…+(40-31)2]=×1 288=128.8,因为,所以甲种玉米苗长得齐.17.解:(1) 由题意得,解得:即x的值为1,y的值为11.(2) ∵成绩为90分的人数最多,故众数为90,∵共有20人,∴将20名学生的成绩从低到高进行排序,第10和第11位学生的平均数为中位数,中位数为:=90.18.解:(1) 从上至下,从左至右依次填85,100.(2) 因为两班成绩的平均数相同,一班成绩的中位数高,所以一班的复赛成绩好些.(3) 因为一班、二班分数最高的两名选手的平均分分别为92.5分,100分,所以在每班参加复赛的选手中分别选出2人参加决赛,二班的实力更强一些.19.解:(1) 甲同学在这次测验中平均每次射中的环数=(5×4+6×1+8×2+9×2+10×1)÷10=7.(2) ①若这次测验中乙射中9环的子弹数为1发,则射中10环的子弹数为2发,那么乙平均每次射中的环数=(5×3+6×1+7×3+9×1+10×2)÷10=7.1.因为,所以应选择乙参加射击比赛.②若这次测验中乙射中9环的子弹数为2发,则射中10环的子弹数为1发,那么乙平均每次射中的环数=(5×3+6×1+7×3+9×2+10×1)÷10=7.甲同学在这次测验中的方差:=[4×(5-7)2+1×(6-7)2+2×(8-7)2+2×(9-7)2+1×(10-7)2]÷10=3.6;乙同学在这次测验中的方差:=[3×(5-7)2+1×(6-7)2+3×(7-7)2+2×(9-7)2+1×(10-7)2]÷10=3.0.因为,所以在这次测验中乙同学的成绩比甲同学的成绩更稳定,这时应选择乙参加射击比赛.综上所述,应选择乙参加比赛.。
人教版八年级数学下册第二十章检测卷(含答案解析)
第二十章《数据的分析》检测卷一、选择题(每题3分,共30分)1.一组数据6, 3, 9, 4, 3, 5, 12的中位数是()A. 3B. 4C. 5D. 62.有一组数据58, 53, 44, 36, 30, 29, 22, 21, 20, 18,这组数据的平均数是()A. 33B. 33.1C. 34.1D. 353.在端午节到来之前,学校食堂推荐了A, B, C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量最值得关注的是()A.方差B.平均数C.中位数D.众数4.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海同学这个学期体育的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是()A. 88.5分B. 86分C. 87 分D. 87.5分5. 一组数据2, 0, 1, x, 3的平均数是2,则这组数据的方差是()C. 1D. 36.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么关于该班40名同学一周参加体育锻炼时间的说法错误的是()A.平均数是8.625小时B.中位数是8小时C.众数是8小时D.锻炼时间超过8小时的有21人7.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31, 30, 34, 35,36, 34, 31,对这组数据下列说法正确的是()A.众数是35B.中位数是34C.平均数是35D.方差是68.某校要从四名学生中选拔一名参加市风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩 x 及其方差s 2如表所示,如果要10 . 2022年将在北京一一张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会又举办冬季奥运会的城市, 某校开设了冰球选修课,12名同 学被分成甲、乙两组进行训练,他们的身高(单位:cm )如下表所示.队员1 队员2队员3 队员4 队员5 队员6甲组 176 177 175 176 177 175 乙组178175170174183176设两组队员身高的平均数依次为 x 甲,x 乙,方差依次为S 2, S 2,下列关系中 正确的是()人.乂甲=乂乙,$2<$2 8.乂甲=乂乙,22>$2口乂甲<乂乙,82<$2口.乂甲〉乂乙,82>$2二、填空题(每题3分,共30分)11 .数据4, 7, 7, 8, 9的众数是.12 .需要对一批排球的质量是否符合标准进行检测, 其中质量超过标准的克数记为正数,不足标准的克数记为负数.现抽取 8个排球,通过检测所得数据如 下(单位:克):+1, —2, +1, 0, +2, —3, 0, +1,则这组数据的方差 是.13 .两组数据:3, a, 2b, 5与a, 6, b 的平均数都是6,若将这两组数据合并 为一组数据,则这组新数据的中位数为 .14 .三位同学在一次数学考试中的得分与他们三个人的平均成绩的差分别是-8,6, a, a =.9.如果一组数据a i, a 2,a 3,…,a n 的方差是2,那么一组新数据2a n 的方差是( )2a i , 2a 2, 2a 3,…,A. 2B. 4C. 8D. 1615.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并将测试得分按3 : 4 : 3的比确定测试总分.已知某位候选人的三项得分(单位: 分)分别为88, 72, 50,则这位候选人的测试总分为 .16.某班40名学生参加了一次献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数17. 一组数据1, 5, 7, x的中位数和平均数相等,则x的值是.18.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,那么根据图中的信息,他们成绩的方差的大小关系是 W明____________ 金林.(填法”孝或皂”)19.已知一组数据X1 , X2 ,…,x n的方差是s2,则新的一组数据ax1+ 1, ax2+1,…,ax n+ 1(a为非零常数)的方差是附含a和S的式子表示).20.王老板为了与客户签订合同,对自己鱼塘中鱼的总质量进行估计,第一次捞出100条,称得总质量为184 kg,并将每条鱼做好记号后放入水中,当它们完全混合于鱼群之后,又捞出200条,称得总质量为416 kg,且带有记号的鱼有20条,则王老板的鱼塘中估计有鱼_____________ 条,共重kg.三、解答题(21, 22题每题8分,23, 24题每题10分,25, 26题每题12分,共60分)21.为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销售量进行了统计,统计结果如图所示.(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7 大销售额最大的水果品种是 ; A .西瓜B .苹果 C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?22.某学校招聘教师,王明、李红和张丽参加了考试,评委从三个方面对他们进行打分,结果如下表所示(各项的?f分为30分),最后总分的计算按课堂教学效果的分数:教学理念的分数:教材处理能力的分数= 5 :2:3的比例计算,如果你是该学校的教学校长,你会录用哪一位应聘者?试说明理由.王明李红张丽课堂教学效果25 26 25教学理念23 24 25教材处理能力24 26 2523.在慈善日捐活动中,某学校团支部为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成如图所示的条形统计图.⑴这50名同学捐款的众数为元,中位数为(2)求这50名同学捐款的平均数.⑶该校共有600名学生参与捐款,请估计该校学生的捐款总数.24 .在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次, 命中的环数如下表所示.根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算求得X甲=8,端= 1.43试比较甲、乙两人谁的成绩更稳定.25.已知一组数据X1, X2,…,X6的平均数为1,方差为5.3(1)求X2+ X2 + …+ x6的值;(2)若在这组数据中加入另一个数据X7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).26.我市某中学七、八年级各选派10名选手参加学校举办的爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图如图所示,成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a, b.⑴请依据图表中的数据,求a, b的值;⑵直接写出表中的m, n的值;⑶有人说七年级的合格率、优秀率均高于八年级,所以七年级队的成绩比八年级队好,但也有人说八年级队的成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.71 .C 2.B 3.D 4.B 5.A6. B 点拨:众数是一组数据中出现次数最多的数据,故众数是 8小时;将这组数据按从小到大的顺序排列后,处于中间位置的两个数的平均数是 9,故中位数是9小时;锻炼时间超过8小时的有14+ 7 = 21(人).故选B. 7. B 8.B 9.C 10.A、11.7一 (1)12. 2.5 点拨:「x = 8(+1—2+1 + 0 + 2 —3+0+1)=0,• . s 2 = 1[(1 -0)2+(- 2-0)2 + (1 — 0)2 + (0— 0)2 + (2— 0)2 + (— 3— 0)2 + (0 — 0)2十 (1 —0)2] = 2.5.3, 4, 5, 6, 8, 8, 8,其中位数是 6.14. 2 15. 70.2分 16. 15元 17. — 1 或 3或 11 18. <19. a 2s 2点拨:二,数据ax 1 + 1, ax 2+ 1,…,ax n+1(a 为非零常数)的方差与数 据ax 1,ax 2,…,ax n (a 为非零常数)的方差相同,且数据x1,x 2,…,x n 的方 差是s 2,•.•数据ax 1 + 1, ax 2+1,…,ax n+1(a 为非零常数)的方差是a 2s 220. 1 000; 2 000三、21.解:(1)A(2)140 AC0= 600(千克).答:估计一个月(按30天计算)该水果店可销售苹果600千克.A,,、, 25>5+23>2 +24>3 八解:王明的最后总分为 C I O I Q =24.3(分),5十2十3答案平均数是7 >3+8X16+9X14+ 10M408.625(小时); 3+a + 2b+5=6,13. 6点拨:由题意得a + 6+b ~~3解得=6,a = 8,「•这组新数据是22.. 25.6> 25> 24.3,・•・李红将被录用.23.解:(1)15; 151(2)这50名同学捐款的平均数= 而X8)5+14M0+20X5+6>20+2><25) =50 13(元).⑶600 回=7 800(元).答:估计该校学生的捐款总数为7 800元.易错警示:本题容易出错的地方是在计算平均数时忘记乘以每个数的频数.24 .解:(1)由表可知甲命中环数的众数为 8环,乙命中环数的众数为10环.一屹丁 小业― 5+6+7+8+10+10+10 - 告… 2 1(2)乙的平均数为 x 乙= 7=8, 乙的方差为 距二五(5 一8)2+ (10 — 8)2+ …+ (10 — 8)2] =,= 3.71. . x 甲=8, s2 = 1.43.•・甲、乙的平均成绩一样,而甲的方差小于乙的方差, ••・甲的成绩更稳定.25 .解:(1)二.数据X 1, X 2,…,X 6的平均数为1,• ・ X 1 +X 2+ …+ X6= 1 >6=6.• • 6[(X — 1)2+ (X 2 — 1)2+ …+(X 6— 1)2] =61x 2+ X 2+ …+X 6— 2(X 1 +X 2+ …+ X 6)一 11 o o55+ 6] = 6(X 1+ X 2 +…+ X 6 — 2>6 + 6) = 6(X 1 + X 2+ …+ X 6) —1 = 3,• ■-X 2 + X 2+ …+x 6= 16.(2),,数据 X 1, X 2,…,X 7 的平均数为 1 ,X 1 + X 2+ …+X7= 1 ><7= 7.李红的最后总分为26>5 + 24>2 + 26刈= 25.6(分),张丽的最后总分为25>5 + 25>2 +25>3= 25(分). 5一3•X1 + X2+ …+ X6= 6, ••X7=1.8ZI 9 1 2 2 2r 5 .•・ &(X 1 — 1)2+ (X 2—1)2+…+ (X 6— 1)2] 6 3, 2 2 , 一 2 , 一 2(X 1— 1) + (X 2— 1) + …+ (X 6— 1) =10,.•.S 2 = 7[(X1-1)2 + (X2- 1)2+…+(X7—1)2] =1[10+(1 —1)2] =皇. 3X1 + 6a+7X1 + 8M + 9X + 10b=26 .解:⑴依题意得 6.7X0,a+1 + 1 + 1 + b = 90聆 10,(2)m=6, n = 20%.(3)(答案不唯一)①八年级队的平均分高于七年级队;②八年级队的成绩比七年级队稳定.解得 a=5,。
人教版数学八年级下册第二十章数据的分析测试题及答案
人教版数学八年级下册第二十章考试试题评卷人得分一、单选题1.某市测一周PM2.5的月均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和402.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为()A.89B.90C.92D.933.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2, 则原来那组数据的平均数是()A.50B.52C.48D.24.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是5.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,那么这组数据的众数与中位数分别是()A.-2和3B.-2和0.5C.-2和-1D.-2和-1.57.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是108.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③9.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如表,则该周PM2.5指数的众数和中位数分别是()PM2.5指数150155160165天数3211 A.150,150B.150,155C.155,150D.150,152.5 10.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲908395乙889095丙908890A.甲B.乙、丙C.甲、乙D.甲、丙评卷人得分二、填空题11.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.12.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为最后得分,则这名歌手的最后得分约为________.(结果保留一位小数)13.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)3839404142件数14312则这11件衬衫领口尺寸的众数是__________cm,中位数是__________cm.14.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,6.则这名学生射击环数的方差是_________.15.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是.16.物理老师布置了10道选择题作为课堂练习,如图是全班解题情况的统计,平均每个学生约做对了________道题;做对题数的中位数为________;众数为________.评卷人得分三、解答题17.某校规定学生期末数学总评成绩由三部分构成:卷面成绩、 课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、 84,则她这学期期末数学总评成绩是多少?18.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试成绩/分测试项目甲乙丙笔试929095面试859580图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?19.(本题满分8分)某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2011年3月份这3种文具盒的销售情况,并绘制统计图如下:(1)请在图②中把条形统计图补充完整.(2)小亮认为:该商店3月份这3种文具盒总的平均销售价格为()1101520153++=(元),你认为小亮的计算方法正确吗?如不正确,请计算出总的平均销售价格.20.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组121516141413乙组91410171618(1)请根据上表中的数据完成下表.(注:方差的计算结果精确到0.1)平均数中位数方差甲组乙组(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图.(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况进行简要评价.21.某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班,现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班10106107九年级(4)班108898九年级(8)班910969(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班作为市级先进班集体的候选班.22.某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.参考答案1.A【解析】试题分析:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选A.考点:中位数;众数.2.B【解析】试题分析:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.考点:加权平均数.3.B【解析】试题分析:由题意知,新的一组数据的平均数=1n[(1x﹣50)+(2x﹣50+…+(nx﹣50)]=1n[(12x x++…+nx)﹣50n]=2,∴1n(12x x++…+nx)﹣50=2,∴1n(12x x++…+nx)=52,即原来的一组数据的平均数为52.故选B.考点:算术平均数.4.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数5.D【解析】【分析】方差大小可以判断数据的稳定性.【详解】方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故答案选D.【点睛】本题考查方差,掌握方差越小则波动越小,稳定性也越好是关键.6.D【解析】先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.数据中出现次数最多的数,即为众数.解:据题意得(−2−2+3−2−x−1)÷6=−0.5,可得−x=1,所以这组数据是−2,−2,3,−2,1,−1,这组数据中出现次数最多的数是−2,所以这组数据的众数是−2;将一组数据从小到大重新排列−2,−2,−2,−1,1,3所以这组数据的最中间两个数是−2、−1,则这组数据的中位数是212--=−1.5.故选D.7.A【解析】【分析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为15(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=15[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.4.故选A.考点:方差;算术平均数;中位数;众数.8.D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B【解析】试题分析:众数即一组数据中出现次数最多的数,150出现3次,出现次数最多,所以众数为150;中位数是从小到大排序后,处于中间位置的数,或中间两个数的平均数,共7个数,第4个数是155,所以这组数据的中位数是155.故选B.考点:众数;中位数.10.C【解析】由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲、乙的学期总评成绩是优秀.故选C.11.88.【解析】试题分析:按3:3:4的比例算出本学期数学学期综合成绩即可:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88(分).考点:加权平均数.12.9.4【解析】这名歌手最后得分约为16(9.3+9.5+9.4+9.3+9.2+9.6)≈9.4(分).答案为:9.4.13.39;40【解析】尺寸出现次数最多的是39cm,所以,衬衫领口尺寸的众数是39cm,将11件衬衫的领口尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.14.3【解析】【分析】先计算数据的平均数后,再根据方差的公式计算.【详解】数据4,7,8,6,8,5,9,10,7,6的平均数4786859107610+++++++++==7;方差=2222222222 1[(47)(77)(87)(67)(87)(57)(97)(107)(77)(67)] 10-+-+-+-+-+-+-+-+-+-=3.故答案为3.【点睛】本题考查了方差的定义.一般地设n个数据,x1,x2,…x n的平均数为x,则方差S21n=[x1x-)2+(x2x-)2+…+(x n x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反15.90.【解析】∵100,80,x,90,90,这组数据的众数与平均数相等,∴这组数据的众数只能是90,否则,x=80或x=100时,出现两个众数,无法与平均数相等.∴(100+80+x+90+90)÷5=90,解得,x=90.∵当x=90时,数据为80,90,90,90,100,∴中位数是90.16.8.7898和10【解析】【分析】根据平均数、中位数和众数的定义求解.【详解】平均数=(7×5+8×15+9×11+10×15)÷46≈8.78;处于这组数据中间位置的数是9,9,那么由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,在这一组数据中8和10是出现次数最多的,故众数是8和10.故答案为:8.78;9;8和10.【点睛】本题为统计题,考查加权平均数、众数与中位数的意义,解题时要明确定义.17.88.8【解析】试题分析:利用加权平均数的公式即可求出答案.试题解析:由题意知,她这学期期末数学总评成绩=92×70%+80×20%+84×10%=88.8(分).考点:1.加权平均数;2.扇形统计图.18.(1)见解析;(2)甲68票,乙60票,丙56;(3)应该录取乙.【解析】【分析】(1)根据扇形统计图及统计表中的数据特征求解即可;(2)用200乘以扇形统计图中对应的百分比即可求得结果;(3)先根据加权平均数的计算公式求得三名候选人的平均成绩,再比较即可作出判断.(1)(2)甲的票数是:(票)乙的票数是:(票)丙的票数是:(票);(3)甲的平均成绩乙的平均成绩丙的平均成绩∵乙的平均成绩最高∴应该录取乙.【点睛】统计图的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.19.【解析】略20.(1)详见解析;(2)详见解析;(3)从折线图可以看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【解析】【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【详解】(1)填表如下:(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.21.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)推荐九年级(8)班作为市场先进班集体的候选班级合适.【解析】【分析】(1)根据平均数的公式求得各班的平均数,根据其出现次数较多的求得其众数,将其按从小到大的顺序排列中间的那个是中位数;(2)先设定一个比例,然后将该比例代入到各个班级中便可得到哪个班可作为候选.【详解】(1)设P1,P4,P8顺次为3个班考评分的平均数,W1,W4,W8顺次为三个班考评分的中位数,Z1,Z4,Z8顺次为三个班考评分的众数.则:P115=(10+10+6+10+7)=8.6(分),P415=(8+8+8+9+10)=8.6(分),P815=(9+10+9+6+9)=8.6(分),W1=10(分),W4=8(分),W8=9(分),Z1=10(分),Z4=8(分),Z8=9(分)∴平均数不能反映这三个班的考评结果的差异,而用中位数(或众数)能反映差异,且W1>W8>W4(Z1>Z8>Z4);(2)给出一种参考答案.选定行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1.设K1、K4、K8顺次为3个班的考评分,则:K1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5K4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7K8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9∵K8>K4>K1,∴推荐九年级(8)班作为市场先进班集体的候选班级合适.【点睛】本题考查了中位数,平均数,众数的运用及统计量的选择.学会用适当的统计量分析解决问题.22.(1)这四名候选人面试成绩的中位数为89(分);(2)表中x的值为86;(3)以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【解析】【分析】(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【详解】(1)这四名候选人面试成绩的中位数为:88902=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点睛】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.。
人教版初中八年级数学下册第二十章《数据的分析》经典测试卷(含答案解析)
一、选择题1.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ).A .1B .6C .1或6D .5或6C解析:C【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( ) A .甲B .乙C .丙D .丁B解析:B【分析】 直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁,∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙.故选B .【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.3.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年C解析:C【分析】 把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年, ∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C .【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( )A .2B .3C .5D .7C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x 的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x ,它们的众数为5,∴5出现的次数最多,故5x =,故选C .【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.5.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方C解析:C【分析】根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.【详解】A、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=x1+x2+x3+…+x n-n x=0,故此选项正确;D、一组数据的方差与极差没有关系,故此选项错误;故选C.【点睛】此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.6.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.8.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.9.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是400D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.10.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题11.已知一组数据:x1,x2,x3,…,x n的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3x n﹣2的方差是__________.27【分析】根据方差的定义得到把数据x1x2x3…xn都扩大3倍则方差扩大3的平方倍然后每个数据减2方差不变于是得到3x1﹣23x2﹣2…3xn﹣2的方差为27【详解】∵x1x2x3…xn的平均数是解析:27【分析】根据方差的定义得到把数据x1,x2,x3,…x n都扩大3倍,则方差扩大3的平方倍,然后每个数据减2,方差不变,于是得到3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.【详解】∵x1,x2,x3,…x n的平均数是2,方差是3,∴3x1,3x2,…3x n的方差=3×32=27,∴3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.故答案为27.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5【分析】首先求出10名选手的总成绩,再求出平均分即可.【详解】解:根据统计图可知,这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5.【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:__.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷 解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.15.若这8个数据-3, 2,-1,0,1,2,3,x的极差是11,则这组数据的平均数是______.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.①②④【解析】【分析】根据统计图中的数据可以得到一共多少人然后根据平均数中位数和众数的定义即可求得这组数据的平均数中位数和众数【详解】由统计图可知锻炼9小时的有6人锻炼10小时的有9人锻炼11小时的解析:①②④【解析】根据统计图中的数据可以得到一共多少人,然后根据平均数、中位数和众数的定义即可求得这组数据的平均数、中位数和众数.【详解】由统计图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,故该班学生共有6+9+10+8+7=40人,因此①错误;从统计图可以看出,该班一周锻炼时间为11小时的学生最多,因此②错误;该班学生一周锻炼时间的中位数是11小时,故③正确;该班学生一周锻炼的平均时间为69+910+1110+128+137=11.02540⨯⨯⨯⨯⨯小时,故④错误.故错误的有①②④【点睛】题考查折线统计图、平均数、中位数和众数的定义,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5.故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数.18.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.136【解析】【分析】根据中位数和众数的意义先求出后三位数由和为最大值求出前两个数然后求方差即可【详解】解:因为五个正整数从小到大排列后其中中位数是4这组数据的唯一众数是5所以这5个数据分别是xy4【解析】【分析】根据中位数和众数的意义先求出后三位数,由和为最大值求出前两个数,然后求方差即可.【详解】解:因为五个正整数从小到大排列后,其中中位数是4,这组数据的唯一众数是5.所以这5个数据分别是x,y,4,5,5,且x y 4<<,当这5个整数的和最大时,整数x,y 取最大值,此时x 2y 3==,, 所以这组数据的平均数()1192345555x =++++=, 22222211919191919S 23455555555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=1.36 【点睛】此题考查了中位数、众数的概念,牢记方差公式是解题关键.19.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x 的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x 的平均数是23565x ++++=165x +, ∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】 此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数解析:甲 【解析】 【分析】根据方差小的身高稳定判断即可. 【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S 甲乙,则两个队的队员的身高较整齐的是甲, 故答案为:甲 【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?解析:(1)40;补图见详解;(2)36°;(3)13200元. 【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解; (3)计算出本次调查的平均数,再根据题意列式计算即可求解. 【详解】解:(1)10÷25%=40(人), 40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元. 【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?解析:(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人. 【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可. 【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上, 第8个数据为85, 中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100,100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=, 答:此次测试成绩达到90分及以上的学生约有320人. 【点睛】本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.濮阳市团委举办“我的中国梦”为主题的知识竞赛,甲乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)请你将图②中条形统计图补充完整;(2)图①中,90分所在扇形的圆心角是 °;图③中80分有人.(3)分别求甲、乙两校成绩的平均分;(4)经计算知S2甲=135,S2乙=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.解析:(1)见解析;(2)108,4;(3)甲校85分,乙校85分;(4)见解析【分析】(1)甲校得“90分”的有6人,占调查人数的30%,可求出调查人数,再用总人数减其它分数段的人数,求出得100分的人数,从而补全统计图;(2)用360 乘以得90分的人数所占的百分比求出90分所在扇形的圆心角,用总人数减去乙校其它分数段的人数求出得80分的人数;(3)根据平均数的计算公式求出甲校和乙校的平均成绩;(4)从方差的大小,得出数据的离散程度.【详解】解:(1)甲校参赛的总人数是:630%20÷=(人),100分的人数有:206365---=(人),补全统计图如下:(2)图①中,90分所在扇形的圆心角是:36030%108︒⨯=︒,图③中80分有:207184---=(人),故答案为:108,4;(3)甲校的平均成绩是:1(7068039061005)8520⨯+⨯+⨯+⨯=(分),乙校的平均成绩是:1(7078049011008)8520⨯+⨯+⨯+⨯=(分).(4)甲、乙两校的平均分相同,22135175S S=<=乙甲,∴甲校的成绩离散程度较小,比较稳定.【点睛】此题考查中位数、平均数的意义,条形统计图、扇形统计图的意义,理解各个概念的内涵和外延是正确解答的前提.24.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解析:(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278,排序后位于中间位置的数为180,故中位数180, 数据90出现了4次,出现次数最多,故众数为90; (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.25.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .解析:(1)证明见解析;(2)4. 【解析】【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答. 【详解】(1)∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC , ∴四边形OCED 是平行四边形, 又∠COD=90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2. ∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为:12AC•BD=12×4×2=4, 故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.26.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一分析数据: 表二得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 解析:(1)2,5,93,98;(2)初一;(3)225 【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x 、y ;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级下册第二十章基础过关测试卷一、选择题1.如果一组数据-3、x、0、1、x、6、9、5的平均数为5,则x为( )A.22 B.11 C.8 D.52.某市5月份中连续8天的最高气温如下(单位:℃):32、30、34、36、36、33、37、38.这组数据的众数是( )A.34 B.37 C.36 D.353.如果一组数据为1、5、2、6、2,则这组数据的中位数为( )A.6 B.5 C.2 D.14.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15.则这20个数的平均数是()A.23B.1.15C.11.5D.12.55.某校有55名同学参加娄底市的英语风采大赛,预赛分数各不相同,取前28名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这55名同学分数的()A.众数B.中位数C.平均数D.方差6.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人5次成绩的平均数都是125分,方差分别是2s甲= 0.65,2s乙=0.55,2s丙=0.50,2s丁=0.45,则这5次测试成绩最稳定的是()A.甲B.乙C.丙D.丁7.在学校的体育训练中,小杰7次投掷实心球的成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A.9.7 m,9.9 mB.9.7 m,9.8 mC.9.8 m,9.7 mD.9.8 m,9.9 m8.若一组数据1、1、x、3、3的平均数为x,则这组数据的方差是( )A.4 B. C.D.29.在一次科技作品制作比赛中,某小组8件作品的成绩(单位:分)分别是:7、10、9、8、7、9、9、8,对这组数据而言,下列说法正确的是( )A.众数是9 B.中位数是8 C.平均数是8 D.方差是710.在方差计算公式中,数字m和n分别表示( ) A.数据的个数和方差B.数据的平均数和个数C.数据的个数和平均数D.数据的方差和平均数二、填空题1.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女子排球队队员的平均年龄是_________岁.2.某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:个)15、20、35、24、5455236、28、24、42、32、44.根据统计情况,估计该小区这100户家庭平均使用塑料袋为___________个.3.有一组数据:3、4、5、6、7.其方差是___________.4.某商场一天中售出某品牌运动鞋11双,其中各种尺码的鞋的销售量如下表所示,则这11双鞋的尺码组成一组数据的中位数为____________.5.某校为庆祝中华人民共和国成立70周年,举办庆典仪式,庆典前夕,要从八年级8个班中选择部分学生组建护旗方阵,在选择学生时最值得我们关注的是学生身高的______(选填“平均数”“中位数”或“众数”).6.2022年北京一张家口冬季奥运会将于2022年2月4日至2022年2月20日在我国北京市和张家口市联合举行.在选拔参加冬奥会的冰上短道速滑运动员时,有甲、乙、丙3名运动员备选,他们速滑的平均成绩和方差如下表所示:如果要选择一名成绩优秀且稳定的人去参赛,应派____去.7.为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是,若要从中选一位发挥稳定的选手参加决赛,你认为派_________去参赛合适(选填“甲”“乙”“丙”或“丁”).8.若某组数据的方差计算公式是,则公式中________.三、解答题1.某养猪场要出售200只生猪,现在市场上生猪的价格为11元/kg,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的质量(单位:kg)如下:76,71,72,86,87.(1)计算这5只生猪的平均质量;(2)估计这200只生猪能卖多少钱.2.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,若期末评价成绩80分以上(含80分),则评为“优秀”.下表是小张和小王两位同学的成绩记录:(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩,①请计算小张的期末评价成绩为多少分;②小王期末考试(期末考试成绩为整数)最少考多少分才能达到优秀?3.某养鸡场有2 500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg)绘制出如下的统计图,请根据相关信息,解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2 500只鸡中,质量为2.0 kg的有多少只.4.为选拔参加全市中学生数学竞赛的学生,八(2)班组织了一次班内数学竞赛活动,竞赛活动分小组进行,其中甲、乙两组各5人,他们的成绩如图所示.(1)填写下表:(2)请计算甲、乙两组竞赛成绩的方差,并说明在这次数学竞赛中,哪一组的成绩更稳定.5.八年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制成如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).根据图表信息,回答问题:(1)用方差推断,____班的成绩波动较大;用优秀率和合格率推断,____班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些,为什么?第二十章基础过关测试卷 1·B由平均数的计算公式得×(-3+x+0+1+x+6+9+5)=5,解得x= 11.2.C ∵数据32、30、34、36、36、33、37、38中,36出现的次数最多,∴这组数据的众数是36.故选C .3.C 将这组数据从小到大排列为l 、2、2、5、6,所以中位数为2. 4.C 由题意得(10x14+15x6)÷20=11.5.5.B 55个不同的成绩按从小到大排序后,中位数及中位数之后的成绩共有28个数,故只要知道自己的成绩和中位数就可以知道能否进入决赛了. 6.D ∵, ∴,∴成绩最稳定的是丁,故选D .7.B 根据中位数的定义,将7次成绩从小到大(或从大到小)排序,中间位置的数97就是中位数,根据平均数的定义知,.8.B 数据1、1、x 、3、3的平均数为x ,∴×(1+1+x+3+3)=x ,解得x=2,则这组数据的方差是[(1-2)²+(1-2)²+(2-2)²+(3-2)²+(3-2)²]=,故选B . 9.A 8件作品的成绩(分)按从小到大的顺序排列为7、7、8、8、9、9、9、10,9出现了3次,出现次数最多,故众数为9;中位数为(8+9)÷2=8.5;平均数为(7x2+8x2+9x3+10)÷8= 8.375;方差S 2 =×[2x(7-8.375)2+2x(8-8. 375)2 +3×(9-8. 375)2+(10-8.375)2]=0.984 375.所以A 正确,B 、C 、D 均错误.10.B 由方差的定义可知,数字m 表示的是样本数据的平均数,n 表示的是样本数据的个数,故选B . 二、1.14解析:根据题意得岁。
故该校女子排球队队员的平均年龄是14岁.2.30解析:估计该小区平均每户家庭使用塑料袋的个数为×( 15+20+35+24+36+28+24+42+32+44) = 30.3.2 解析:(3+4+5+6+7)÷5=5.S ²=(3-5)²+(4-5)²+(5-5)²+(6-5)²+(7-5)²]÷5=2.4.25 cm解析:处于这组数据中间位置的数是25 cm ,那么由中位数的定义可知,这组数据的中位数是25 cm .5.众数解析:由于众数是数据中出现次数最多的数,则在选择学生时最值得我们关注的是学生身高的众数. 6.丙815154101解析:观察题中表格可知,甲、丙的平均数小于乙的平均数,甲的方差大于丙的方差,∴丙的成绩优秀且稳定.故答案为丙. 7.甲解析:∵,而1.5<2.6<3.5<3.68.∴甲的成绩最稳定.∴派甲去参赛合适,故答案为甲.8.5解析:由题意可得。
三、1.解析:(1)这5只生猪的平均质量为(2)根据用样本估计总体的思想可估计这200只生猪的每只生猪的平均质量为78.4千克,因为生猪的价格为11元/kg ,∴这200只生猪能卖78.4x11x200=172 480(元).2.解析:(1)小张的期末评价成绩为分. (2)①小张的期末评价成绩为分.②设小王期末考试成绩为x 分, 根据题意得分,解得x≥84.3.∴小王期末考试(期末考试成绩为整数)最少考85分才能达到优秀. 3.解析:(1)观察条形统计图,得所以这组数据的平均数是1.52 kg ,将这组数据按从小到大的顺序排列,处于中间的两个数都是1.5 kg ,所以这组数据的中位数是1.5 kg .(2)在所抽取的样本中,质量为2.0 kg 的有4只,×100%= 8%,所以估计这2 500只鸡中,质量为2.0 kg 的数量占8%。
2500x8%= 200(只).故质量为2.0 kg 的约有200只.4.解析:(1)甲的平均数为×(80+85+95+90+95)= 89.乙的中位数是85.( 2)X[( 80- 89)2+( 85 - 89)2+( 95 - 89)2+( 90- 89)2+( 95 - 89)2]= 34, x [ ( 110-90)2+( 85-90)2+( 90-90)2+( 85-90)2+( 80_90)2] = 110,∴34<110..甲组的成绩更稳定. 5.解析:(1)二;一.(2)乙同学的推断比较科学合理,更客观些,理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,在该组数据中是极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以乙同学的推断比较科学合理,更客观些.5634741x =+++⨯=)(504。