2020年八年级数学下册 一次函数 课时作业本 变量与函数(含答案)
八年级数学下册 第十九章 一次函数 19.1 变量与函数 1
综合能力提升练
9.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没 有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水, 请写出y与x之间的函数关系式是( B ) A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100 10.已知点A( -1,1 ),B( 1,1 ),C( 2,4 )在同一个函数图象上,这个函数图象可能是( B )
综合能力提升练
8.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数 据:
支撑物的高度 h( cm )
10
20
30
40
50
60
70
80
小车下滑的时间
t( s )
4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50
下列说法错误的是( C ) A.当h=50 cm时,t=1.89 s B.随着h逐渐升高,t逐渐变小 C.h每增加10 cm,t减小1.23 s D.随着h逐渐升高,小车下滑的平均速度逐渐加快
综合能力提升练
11.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所 用水为 20 m3.
月用水量
不超过 12 m3 部分 超过 12 m3 不超过 18 m3 部分 超过 18 m3 部分
收费标准( /m3 )
元 2
2.5
3
12.同一温度的华氏度数y(
℉
)与摄氏度数x(
B.y=10x
C.y=110+x D.y=1������0
4.如图所示,△ABC中,已知BC=16,高AD=10,动点Q由C点沿CQ的面积为S,则S与x之间的函数关系式为( B )
人教版八年级下册数学第十九章 一次函数 含答案
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、对于函数y=﹣3x+1,下列结论正确的是( )A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限 C.当x>1时,y<0 D.y的值随x值的增大而增大2、一次函数的图象过点(0,2),且随的增大而增大,则m=()A.-1B.3C.1D.-1或33、如图,直线与双曲线(k>0,x>0)交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线(k>0,x>0)交于点B,若OA=3BC,则k的值为( )A.3B.6C.D.4、某市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A地方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路240米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1680米.其中正确的说法有()A.4个B.3个C.2个D.1个5、东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是千米,出租车费为15.5元,那么的最大值是()A.11B.8C.7D.56、当a≠0时,函数y=ax+1与函数在同一坐标系中的图象可能是A. B. C.D.7、已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k、b的取值情况为()A.k>0,b>0B.k>0,b<0C.k>l,b<0D.k>l,b>08、如图所示,函数和的图象相交于(-1,1),(2,2)两点.当y 1>y2时,x的取值范围是()A.x<-1B.-1<x<2C.x>2D.x<-1或x>29、如图,点A(a,1)、B(﹣1,b)都在双曲线上,点P、Q 分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是( )A. B. C. D.10、二次函数y=x2-2x+3,当函数值为2时,自变量的值是()A.x=-2B.x=2C.x=1D.x=-111、对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象与x轴的交点坐标是(0,4)D.函数的图象向下平移4个单位长度得y=﹣2x的图象12、如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上。
2020人教版八年级数学下册 课时作业本《一次函数--一次函数图像性质》(含答案)
2020人教版八年级数学下册 课时作业本《一次函数--一次函数图像性质》一、选择题1.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A.m=﹣1B.m=1C.m=±1D.m ≠12.一次函数y=kx+k 的图象可能是( )3.下列函数中,y 随x 的增大而减小的函数是( ) A.y=21x-6 B.y=6﹣2x C.y=21x+6 D.y=﹣6+2x 4.已知P 1(﹣2,y 1),P 2(3,y 2)是一次函数y=﹣x+b (b 为常数)的图象上的两个点,则y 1,y 2的大小关系是( )A.y 1<y 2B.y 1>y 2C.y 1=y 2D.不能确定5.某复印店复印收费y (元)与复印面数x (面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费( )A.0.2元B.0.4元C.0.45元D.0.5元6.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则b a的值是( ) A. 4 B. -2 C. 0.5 D. -0.57.关于函数y=-2x+1,下列结论正确的是 ( )A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=-2x+3平行D.y 随x 的增大而增大8.已知一次函数y=kx+b ﹣x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k,b 的取值情况为( )A.k >1,b <0B.k >1,b >0C.k >0,b >0D.k >0,b <0二、填空题9.一次函数y=(k-4)x+k2-16,当k取________时,它为正比例函数.10.一批机器零件共有200个,每天加工20个,则剩余量y(个)与加工天数x(天)之间的函数表达式为____________,自变量x的取值范围为____________.11.若一次函数y1=kx-b的图象经过第一、三、四象限,则一次函数y2=bx+k的图象经过第____________象限.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.三、解答题13.已知y是关于x的一次函数,且当x=1时,y=﹣4;当x=2时,y=﹣6.(1)求y关于x的函数表达式;(2)若﹣2<x<4,求y的取值范围;(3)试判断点P(a,﹣2a+3)是否在函数的图象上,并说明理由.14.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数的图象经过点B(-2,-1),与y轴交点为C,与x轴交点为D.(1)求一次函数的解析式;(2)求△AOD的面积.15.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.16.已知一次函数y=kx+b的图象经过点(1,4)和(2,2).(1)求这个一次函数;(2)画出这个函数的图象,与x轴的交点A、与y轴的交点B;并求出△AOB的面积;(3)在第四象限内,直线AB上有一点C使△AOC的面积等于△AOB的面积,请求出点C的坐标.参考答案1.A2.答案为:B.3.B4.答案为:C.5.答案为:B.6.答案为:D;7.C8.A.9.答案为:-4.10.答案为:y=-20x+200,0≤x≤10.11.答案为:一、二、三;12.答案为:y=100x-40;13.解:(1)设y与x的函数解析式是y=kx+b,根据题意得:k+b=-4,2k+b=-6,解得:k=-2,b=-2,则函数解析式是:y=﹣2x﹣2;(2)当x=﹣2时,y=2,当x=4时,y=﹣10,则y的范围是:﹣10<y<2;(3)当x=a是,y=﹣2a﹣2.则点P(a,﹣2a+3)不在函数的图象上.14.解:(1)∵正比例函数y=2x的图象经过点A(m,2),∴2=2m,∴m=1.∵一次函数的图象经过A(1,2),B(-2,-1),∴k+b=2,-2k+b=-1,解得k=1,b=1.∴一次函数的解析式为y=x+1.(2)当y=0时,x=-1,∴D(-1,0).∴OD=1.∴S△AOD=1.15.解:(1)∵y=(2m+1)x+m﹣3经过原点,是正比例函数,∴2m+1≠0,m-3=0.解得m=3.(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,解得m=1。
人教五四学制版八年级下册数学第26章 一次函数含答案
人教五四学制版八年级下册数学第26章一次函数含答案一、单选题(共15题,共计45分)1、甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v (千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量B.t是变量C.v是变量D.S是常量2、正比例函数y=kx的图象是经过原点的一条()A.射线B.双曲线C.线段D.直线3、下列四点中,在函数的图象上的点是()A. B. C. D.4、下列四个点,在正比例函数y=-x的图象上的点是)A.(2,5)B.(5,2)C.(2,-5)D.(5,-2)5、如图,中,,,,是的外接圆,点是优弧上任意一点(不包括点,),记四边形的周长为,的长为,则关于的函数关系式是()A. B. C. D.6、如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3B.4C.5D.67、已知正比例函数y= mx ( m≠0),y随x的增大而减小,则它和二次函数y=mx2+m 的图象大致是( ).A. B. C.D.8、已知一次函数y=kx+b的图象如图所示,则下列判断中不正确的是()A.方程kx+b=0的解是x=﹣3B.k>0,b<0C.当x<﹣3时,y<0 D.y随x的增大而增大9、当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.10、对于一次函数y=k2x﹣k(k是常数,k≠0)的图象,下列说法正确的是()A.是一条抛物线B.过点(,0)C.经过一、二象限 D.y随着x增大而减小11、在同一平面直角坐标系中,二次函数y1=ax²+bx与一次函数y2=ax+b的大致图象可能是()A. B. C.D.12、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是()A.1个B.2个C.3个D.4个13、如图所示的计算程序中,y与x之间的函数关系所对应的图像应为()A. B. C. D.14、正比例函数()的函数值随着增大而减小,则一次函数的图象大致是()A. B. C. D.15、如图,在第一象限内,点P(2,3)、M(a,2)是双曲线上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为()A.1.B.3.C.2.D. .二、填空题(共10题,共计30分)16、长方形的周长为10 ,其中一边为(其中),另一边为,则关于的函数表达式为________.17、请你写出一个将直线向下平移后的直线的解析式________.18、已知一次函数y=﹣x﹣(a﹣2)中,当a________时,该函数的图象与y 轴的交点坐标在x轴的下方.19、点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1________y2(选填“>”<”=”)20、如图所示,购买一种苹果,所付款金额y(元)与购买量x(kg)之间的函数图象由线段OA和射线AB组成,则一次购买3kg这种苹果比分三次每次购买1kg这种苹果可节省________元.21、声音在空气中的传播速度与温度的关系如表:温度(℃)0 5 10 15 20速度331 336 341 346 351若声音在空气中的传播速度是温度的一次函数;当时,声音的传播速度为________ .22、若一次函数y=kx+b的图象沿y轴向上平移3个单位后,得到图象的关系式是y=2x+2,则原一次函数的关系式为________.23、一次函数y=kx+b(kb<0)图象一定经过第________ 象限.24、已知函数y=(k+2)x+k2﹣4,当k________时,它是一次函数.25、一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为________元.三、解答题(共5题,共计25分)26、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.27、已知一次函数的图象与的图象平行,并且该函数图象经过点.求该函数的解析式,并在平面直角坐标系中画出该函数的图象.28、受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?29、如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=﹣x+70,y2=2x﹣38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量?30、鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋16 19 21 24 长(cm)22 28 32 38鞋码(号)(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上?(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?参考答案一、单选题(共15题,共计45分)1、A2、D4、D5、B6、A7、A8、B9、C10、B11、D12、C13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
人教版八年级下册数学第十九章 一次函数含答案(有答案)
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、在同一坐标系中,函数y=ax2与y=ax﹣a(a≠0)的图象的大致位置可能是()A. B. C.D.2、已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A. x=0B. x=1C. x=﹣2D. x=33、小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q4、以下各点中,在正比例函数y=2x图象上的是()A.(2,1)B.(1,2)C.(—1,2)D.(1,—2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)6、有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是()A. B. C.D.7、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根8、图中两直线l1, l2的交点坐标可以看作方程组( )的解.A. B. C. D.9、汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C.D.10、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,设第n(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是()A.y=4nB.y=3nC.y=6nD.y=3n+113、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;② 、两点的距离为5;③ 的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、关于x的反比例函数y=(k为常数)的图象如图所示,则一次函数y=kx+2﹣k的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距________米.17、如图,直线交坐标轴于两点,则不等式的解是________.18、如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为________.19、若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(﹣4,m)、N (﹣5,n)都在其图象上,则m和n的大小关系是________.20、甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为________.(并写出自变量取值范围)21、函数的图象经过的象限是________.22、如图平面直角坐标系中,直线y=kx+1与x轴交于点A点,与y轴交于B 点,P(a,b)是这条直线上一点,且a、b(a<b)是方程x2﹣6x+8=0的两根.Q是x轴上一动点,N是坐标平面内一点,以点P、B、Q、N四点为顶点的四边形恰好是矩形,则点N的坐标为________或________.23、一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.24、如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.25、已知平面上四点,,,,直线 y=mx-3m+2 将四边形分成面积相等的两部分,则的值为________.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、在直角坐标系中直接画出函数y=|x|的图象;若一次函数y=kx+b的图象分别过点A(-1,1),B(2,2),请你依据这两个函数的图象写出方程组的解.28、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知一次函数的图象经过和(-3,3)两点,求这个一次函数的表达式并画出它的图象.试判断点P(-1,1)是否在这个一次函数的图象上.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、D6、A7、A8、B9、B10、B11、C12、D13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、30、。
八年级下册数学第十九章练习册参考答案
八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。
人教版八年级数学下19.2.2一次函数(4)课时作业同步练习含答案
19.2.2 一次函数第9课时【巩固提优】1.为增强居民的节水意识,某市自2014年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y(元)与用水量x(立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是()A.240立方米B.236立方米C.220立方米D.200立方米2.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元第1题图第2题图第5题图第7题图3.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个4.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第()秒A.80 B.105 C.120 D.1505.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.6.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中数据信息,解答下列问题(1)求摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式为;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是cm.7.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.8.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?9.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【能力拔高】10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.11.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,两车之间的距离为300km?12.一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?参考答案1.C;2.A;3.C;4.C;5.5;6.y=1.5x+4.5(x是正整数),21;7.60≤v≤80;8.(1)y=﹣6x+60;(2)250千米;9.(1)4000,100;(2)0≤x(3)8分钟;10.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=﹣60x+540(8≤x≤9).11.(1)80,120;(2)y=200x﹣540(2.7≤x≤4.5);(3)x=1.2 h或4.2 h;12.(1)当2 000≤x≤2 600时,y=16x﹣15600;当2 600<x≤3 000时,y=2600×10=26000;(2)2 350≤x≤3000。
2020人教版八年级数学下册 课时作业本《一次函数--解答题专练》(含答案)
2020人教版八年级数学下册课时作业本《一次函数--解答题专练》1.甲乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留一小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为60km/h,两车间距离y(km)与乙车行驶时间x(h)之间的函数图象如下.(1)将图中( )填上适当的值,并求甲车从A到B的速度.(2)求从甲车返回到与乙车相遇过程中y与x的函数关系式,自变量取值范围。
(3) 求出甲车返回时行驶速度及AB两地的距离.2.五一假期过后,小明到校后发现忘记带数学课本.一看手表,离上课还有20分钟,他立刻步行返回家中取书,同时,他的父亲也发现小明忘记带数学课本,带上课本立刻以小明步行速度的2倍骑车赶往学校;父子在途中相遇,小明拿到课本后马上按原速步行返回学校,到校后发现迟到了4分钟.如图是父子俩离学校的路程s(米)与所用时间t(分钟)之间的函数关系,请结合图象,回答下列问题:(1)两人相遇处离学校的距离是多少米?(2)试求小明的父亲在赶往学校的过程中,路程s与时间t之间的函数解析式;(3)假如小明父子相遇拿到课本后,改由他的父亲骑车搭他到学校,他会迟到吗?如果会,迟到几分钟;如果不会,能提前几分钟到校?3.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水,某市对居民用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示.图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按____________元收取;超过5吨的部分,每吨按____________元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?4.某游泳池普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常销售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一平面直角坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.5.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元[毛利润=(售价-进价)×销售量].(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,才能使全部销售后获得的毛利润最大?求出最大毛利润.6.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发0.5 h与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?7.甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?8.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.9.如图所示,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.10.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?参考答案1. (1)60,甲车从A 到B 的行驶速度为100km/h.(2)设y=kx+b 把(4,60),(4.4,0)代入上式得∴y=-150x+660;自变量x 的取值范围为4≤x ≤4.4;(3)设甲车返回行驶速度为v km/h,有0.4×(60+v)=60,得v=90 km/h.A,B 两地的距离是3×100=300(km),即甲车从A 地到B 地时,速度为100km/h,时间为3小时.2.解:(1)在图象中可以看出,从出发到父子相遇花了12分钟.设小明步行速度为x 米/分,则小明父亲骑车速度为2x 米/分,根据题意,得12x +12×2x=2 880.解得x=80.∴两人相遇处离学校的距离是80×12=960(米).(2)设小明的父亲在赶往学校的过程中,路程s 与时间t 之间的函数关系式为s=kt +b.把(0,2 880)和(12,960)分别代入,得b=2880,12k+b=960,解得k=-160,b=2880,∴s=-160t +2 880.(3)在s=-160t +2 880中,令s=0,得0=-160t +2 880.解得t=18.∴20-18=2(分钟).答:如果由他的父亲骑车搭他到学校,他不会迟到,且能提前2分钟到校.3.解:(1)1.6 2.4;(2)当0≤x ≤5时,设y=kx ,将(5,8)代入,得8=5k ,即k=1.6.∴y 。
人教版八年级下册数学第十九章 一次函数 含答案
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是A. B. C. D.2、设正比例函数y=mx的图象经过点A(m,4),且y的值随x的增大而增大,则m=()A.2B.-2C.4D.-43、下列函数中,是一次函数的有()(1)y=πx (2)y=2x-1 (3)y= (4)y=2-3x (5)y=x2﹣1.A.4个B.3个C.2个D.1个4、如图,直线y=x+1分别与x轴、y轴交于点M,N,一组线段A1C1,A 2C2, A3C3,…AnCn的端点A1, A2, A3,…An依次是直线MN上的点,这组线段分别垂直平分线段OB1, B1B2, B2, B3,…,Bn﹣1Bn,若OB1=B1B2=B2B3=…=Bn﹣1Bn=4,则点An到x轴的距离为()A.4n﹣4B.4n﹣2C.2nD. 2n﹣25、某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为张,购票总价为元).方案一:购票总价由图中的折线所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,的值为()A.80B.120C.160D.2006、一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A. B. C. D.7、把直线y=-x+3向上平移m个单位长度后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<48、如图直线l1:y=ax+b,与直线l2:y=mx+a交于点A(1,3),那么不等式ax+b<mx+n的解集是()A.x>3B.x<3C.x>1D.x<19、下列函数,y随x增大而减小的是()A.y=10xB.y=x﹣1C.y=﹣3+11xD.y=﹣2x+110、函数的自变量的取值范围是()A. x≥ 2B. x< 2C. x> 2D. x≤ 211、如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A. B. C. D.12、已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是8,则k 的值为()A. 或-4B.- 或4C. 或-2D.2或-213、如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x 秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A. B. C. D.14、下列函数中,自变量的取值范围是的是( )A. B. C. D.15、将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x-1B.y=2x-2C.y=2x+1D.y=2x+2二、填空题(共10题,共计30分)16、将正比例函数y=﹣3x的图象向上平移5个单位,得到函数________的图象.17、函数y= 中自变量x的取值范围是________.18、若一次函数的图象如图所示,则此一次函数的解析式为________.19、如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组> > -2的解集是________20、已知函数y=(a+1)x+a2﹣1,当a________时,它是一次函数;当a________时,它是正比例函数.21、如图所示,购买一种苹果,所付款金额y(元)与购买量x(kg)之间的函数图象由线段OA和射线AB组成,则一次购买3kg这种苹果比分三次每次购买1kg这种苹果可节省________ 元.22、请写出一个一次函数的表达式,它的图象过点(0,﹣2),且y的值随x 值增大而减小,这表达式为:________.23、如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),不等式2x<kx+b<0的解集为________.24、一名老师带领x名学生到动物园参现,已知成人票每张30元,学生票每张10元,设门票的总费用为y元,则y与x的函数关系式为 ________ .25、若y与x的函数关系式为y=3x-2,当x=2时,y的值为________.三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.28、某地教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?29、说出直线y=3x+2与;y=5x﹣1与y=5x﹣4的相同之处.30、某服装专卖店销售的甲品牌西服去年销售总额为50000元,今年每件西服售价比去年便宜400元,若售出的西服件数相同,则销售总额将比去年降低20%.(1)求今年甲品牌西服的每件售价.(2)若该服装店计划需要增进一批乙品牌西服,且甲、乙两种品牌西服共60件,而且乙品牌西服的进货件数不超过甲品牌件数的2倍,请设计出获利最多的进货方案.附:今年乙品牌和甲品牌西服的进货和售价如表:甲品牌乙品牌进价(元/件)1100 1400售价(元/件)﹣2000参考答案一、单选题(共15题,共计45分)1、C2、A3、B5、D6、A7、C8、D9、D10、A11、A12、A13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
19.2.3 一次函数与方程、不等式 人教版八年级数学下册课时练习(含答案)
19.2.3一次函数与方程、不等式1.如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-32.下列图象中,以方程-2x+y-2=0的解为坐标的点组成的图象是( )3.一次函数y=kx+b的图像如图所示,则方程kx+b=0的解为( ).A.x=2B.y=2C.x=-1D.y=-14.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b>0的解集是( )A.x>﹣2B.x>3C.x<﹣2D.x<35.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k的取值范围是()A.﹣1≤k<0B.1≤k≤3C.k≥1D.k≥36.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<1解集为( )A.x<0B.0<x<3C.x>6D.3<x<67.如图,是在同一坐标系内作出的一次函数l1.l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A. B. C. D.8.当自变量x_______时,函数y=5x+4的值大于0;当x_______时,函数的值小于0.9.如图,已知函数y=x+b和y=ax+3图像交点为P,则不等式x+b>ax+3解集为_____.10.已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m n.(在横线上填“>”、“<”或“=”)11.已知两条直线y=kx-2和y=2x+b相交于点(-2,4),则这两条直线与y轴所围成的三角形的面积为_______.12.如图,平面直角坐标系中,▱OABC的顶点A坐标为(6,0),C点坐标为(2,2),若直线y=mx+2平分▱OABC的周长,则m的值为.13.某公园计划在健身区铺设广场砖,现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式为y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600 m2,那么公园选择哪个工程队施工更合算?14.已知一次函数y=-2x+4,完成下列问题:(1)求此函数图像与x轴、y轴的交点坐标;(2)画出此函数的图像;观察图像,当0≤y≤4时,x的取值范围是;(3)平移一次函数y=-2x+4的图像后经过点(-3,1),求平移后的函数表达式.15.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.参考答案1.D2.B3.C4.A.5.C6.D7.B8.答案为:>-0.8,<-0.89.答案为:x>110.答案为:>.11.答案为:1012.答案为:﹣0.25.13.解:(1)y甲=(2)当k>45时,选择甲工程队更合算;当0<k<45时,选择乙工程队更合算;当k=45时,选择两个工程队的花费一样.14.解:(1)当x=0时y=4,∴函数y=-2x+4的图像与y轴的交点坐标为(0,4);当y=0时,-2x+4=0,解得:x=2,∴函数y=-2x+4的图像与x轴的交点坐标(2,0).(2)图像略;观察图像,当0≤y≤4时,x的取值范围是0≤x≤2.(3)设平移后的函数表达式为y=-2x+b,将(-3,1)代入得:b+6=1,∴b=-5,∴y=-2x-5.答:平移后的直线函数表达式为:y=-2x-5.15.解:(1)2 (2)x=1,y=2; (3)经过点P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年八年级数学下册一次函数课时作业本
变量与函数
一、选择题
1.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=3x-1.其中y是x函数的是
()
A.①②③ B.①②③④ C.①③ D.①③④
2.对于圆的周长公式C=2πR,下列说法正确的是()
A.π、R是变量,2是常量
B.R是变量,π是常量
C.C是变量,π、R是常量
D.C、R是变量,2、π是常量
3.下列是关于变量x和y的四个关系式:①y=x;②y2=x;③2x2=y;④y2=2x.其中y是x函数的有( )
A.1个 B.2个 C.3个 D.4个
4.函数中自变量x的取值范围是( )
A.x≥﹣2
B.x≥﹣2且x≠1
C.x≠1
D.x≥﹣2或x≠1
5.下列各曲线中不能表示y是x的函数是().
A. B. C. D.
6.某人骑自行车沿直线旅行,先前进了akm,休息了一段时间后又按原路返回bkm(b<a),再前进
ckm,则此人离出发点的距离s与时间t的关系示意图是()
7.下列图象中,表示y是x的函数的是( )
8.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,•如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()
9.函数的自变量x的取值范围为()
A.x≠1 B.x>-1 C.x≥-1 D.x≥-1且 x≠1
10.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x
的关系式可以写为( )
A.y=12-4x
B.y=4x-12
C.y=12-x
D.以上都不对
11.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修
车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()
A. B. C.
D.
12.清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系. 下列说法错误的是()
A.清清等公交车时间为3分钟 B.清清步行的速度是80米/分
C.公交车的速度是500米/分 D.清清全程的平均速度为290米/分
二、填空题
13.3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.
14.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势
(1)上表中_____是自变量,_____是因变量.
(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.
15.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.
16.如图所示的计算程序中,y与x之间的函数表
达式为.
17.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)
与x(件)的函数表达式是.
18.在函数y=中,自变量x的取值范围
是.
三、解答题
19.写出下列问题中的关系式,并指出其中的变量和常量.
(1)直角三角形中一个锐角a与另一个锐角β之间的关系;
(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).
20.根据下面的运算程序,回答问题:
(1)若输入x=﹣3,请计算输出的结果y的值;
(2)若输入一个正数x时,输出y的值为12,请问输入的x值可能是多少?
21.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买
到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.
根据图中提供的信息回答下列问题:
(1)沙沙家到学校的路程是多少米?
(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?
(3)沙沙在书店停留了多少分钟?
(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
22.小明同学骑自行车去郊外春游,图中表示的是他离家的距离y(千米)与所用的时间(小时)
之间关系的函数图象.
(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?
(2)求小明出发两个半小时离家多远?
(3)求小明出发多长时间距家12千米?
23.已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP的面积S与时间t之
间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:
(1)图甲中的BC长是多少?
(2)图乙中的a是多少?
(3)图甲中的图形面积的多少?
(4)图乙中的b是多少?
参考答案
1.D
2.D
3.B
4.B
5.B
6.B
7.C
8.C
9.D
10.A
11.C
12.D
13.答案是:x和y;3和7;y=3x﹣7.
14.答案为:(1)年份,入学儿童人数;(2)2021;
15.答案为:t V 15
16.y=-2x+4
17.y=3.5x
18.答案为:x≥﹣,且x≠2.
19.解:(1)由题意得:α+β=90°,即α=90°﹣β;常量是90,变量是α,β.
(2)依题意得:y=30﹣0.5t.常量是30,0.5,变量是y、t.
20.解:(1)∵x=﹣3<0,∴
y==
=2
;
(2)若0≤x<2时,则=12,解得
x=,若x≥2时,则x3﹣15=12,解得x=3,综上所述,输入的x的值可能是或3.
21.(1)1500米;(2)12—14分钟最快,450米/分钟;(3)4分钟;(4)2700米;14分钟.
22.解:(1)由图象可知小明到达离家最远的地方需3小时.此时,他离家30千米.
(2)设CD的解析式为y=k1+b1,将C(2,15)、D(3,30),代入得解得∴ =15-15(2≤≤3).
当=2.5时,y=22.5.答:出发两个半小时,小明离家22.5千米.
(3)设过E、F两点的直线解析式为y=k2+b2,
将E(4,30),F(6,0),代入得解得∴ =-15+90.(当设过A、B两点的直线解析式为y=k3,∵ B(1,15),∴ y=15. •当y=12时,=.答:小明出发小时和
小时时距家12千米.
23.解: (1)图甲中的BC长是8cm.
(2)图乙中的a是24cm2
(3)图甲中的图形面积的60 cm2
(4)图乙中的b是17 秒。