midas斜拉桥建模要点
迈达斯斜桥与弯桥分析
斜桥与弯桥分析北京迈达斯技术有限公司2007年8月目录1. 斜桥 (1)1.1 概述 (1)1.2 斜交桥梁的受力特点 (1)1.3 建模方法 (2)2. 弯桥 (3)2.1 概述 (3)2.2 弯桥的受力特点 (3)2.3 建模方法 (4)2.4 弯桥建模例题 (5)1. 斜桥1.1 概述桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。
斜交桥受力性能较复杂,与正交桥有很大差别。
平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。
1.2 斜交桥梁的受力特点a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘起;(图1.2.1)b) 出现很大的扭矩;(图1.2.2)c) 板边缘或边梁最大弯矩向钝角方向靠拢。
(图1.2.3 ~ 图1.2.4)图1.2.1 斜交空心板桥支点反力图1.2.2 斜交空心板桥扭矩图图1.2.3 正、斜交板桥自重弯矩图(板单元)图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元)这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。
一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。
如果斜交角度超过20度就必须考虑上述效应的影响。
设计人员还应根据实际情况,找出适当的处理方案。
1.3 建模方法对斜交桥梁多用梁格法建立模型。
可用斜交梁格或正交梁格来建模。
对于斜交角度小于20度时,使用斜交梁格是非常方便的。
但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。
图1.3.1 斜交梁格与正交梁格2. 弯桥2.1 概述目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。
尤其在互通式立交的匝道桥设计中应用更为广泛。
目前出现了很多小半径的曲线梁桥,特别是匝道桥梁更是如此。
此类桥梁具有斜、弯、坡、异形等特点,给桥梁的线型设计和构造处理带来很大困难。
2.2 弯桥的受力特点a) 弯桥在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭共同作用的状态,其截面主拉应力往往比相应的直梁桥大得多(图2.2.1);图2.2.1 弯桥弯矩与扭矩b) 弯桥在外荷载的作用下,还会出现横向弯矩(图2.2.2);图2.2.2 横向弯矩c) 由于弯扭耦合,弯桥的变形比同样跨径直线桥要大,外边缘的挠度大于内边缘的挠度,而且曲率半径越小、桥越宽,这一趋势越明显。
Midas civil软件培训——斜拉桥专题
midas Civil 2010 斜拉桥专题—斜拉桥分析专题
斜拉桥
1)刚性支承连续梁法 刚性支承连续梁法是指成桥状态下,斜拉桥主梁的弯曲内力和刚性支承连续梁的内力状态
一致。因此可以非常容易地根据连续梁的支承反力确定斜拉索的初张力。
2)零位移法 零位移法的出发点是通过索力调整,使成桥状态下主梁和斜拉索的交点的位移为零。对于
基于恩斯特公式进行
反复迭代计算
其它静力荷载 按等效桁架单元考虑,
同上
基于恩斯特公式进行
反复迭代计算
备注
13
midas Civil 2010 斜拉桥专题—斜拉桥分析专题
不同结构中索单元的使用:
斜拉桥
• 悬索桥的主缆和吊杆:建议使用考虑大变形的悬索单元 • 大跨斜拉桥的斜拉索:对于近千米或者超过千米的斜拉桥建议使用考虑大 变形的索单元 • 中小跨斜拉桥的斜拉索:建议使用考虑恩斯特公式修正的等效桁架单元 • 拱桥的吊杆:建议使用桁架单元或只受拉桁架单元 • 系杆拱桥的系杆:建议使用桁架单元 • 体内预应力或体外预应力的钢索(钢束):与索单元无关,使用预应力荷 载功能按荷载来模拟即可。
9
midas Civil 2010 斜拉桥专题—斜拉桥分析专题
斜拉桥
但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果 是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得 到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初 始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的 影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时 合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。
midas斜拉桥建模
midas斜拉桥建模⽬录概要 1桥梁基本数据 2荷载 2设定建模环境 3定义材料和截⾯特性值 4成桥阶段分析 6建⽴模型 7建⽴加劲梁模型 8建⽴主塔 9建⽴拉索 11建⽴主塔⽀座 12输⼊边界条件 13索初拉⼒计算 14定义荷载⼯况 18输⼊荷载 19运⾏结构分析 24建⽴荷载组合 24计算未知荷载系数 25查看成桥阶段分析结果 29查看变形形状 29正装施⼯阶段分析 30正装施⼯阶段分析 34正装施⼯阶段分析 34正装分析模型 36定义施⼯阶段 38定义结构组 41定义边界组 48定义荷载组 53定义施⼯阶段 59施⼯阶段分析控制数据 64运⾏结构分析 65查看施⼯阶段分析结果 66查看变形形状 66查看弯矩 67查看轴⼒ 68查看计算未闭合配合⼒时使⽤的节点位移和内⼒值 69成桥阶段分析和正装分析结果⽐较 70概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之⼀。
为了决定安装拉索时的控制张拉⼒,⾸先要决定在成桥阶段恒载作⽤下的初始平衡状态,然后再按施⼯顺序进⾏施⼯阶段分析。
⼀般进⾏斜拉桥分析时⾸先通过倒拆分析计算初张拉⼒,然后进⾏正装施⼯阶段分析。
在本例题将介绍建⽴斜拉桥模型的⽅法、计算拉索初拉⼒的⽅法、施⼯阶段分析⽅法、采⽤未闭合配合⼒功能只利⽤成桥阶段分析张⼒进⾏正装分析的⽅法。
本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1. 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析步骤,本例题采⽤了较简单的分析模型,可能与实际桥梁设计内容有所差异。
本例题桥梁的基本数据如下。
桥梁形式三跨连续斜拉桥桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁⾼度主塔下部 : 20m ,主塔上部 : 40m图 2. ⽴⾯图荷载分类荷载类型荷载值⾃重⾃重程序内部⾃动计算索初拉⼒初拉⼒荷载满⾜成桥阶段初始平衡状态的索初拉⼒挂篮荷载节点荷载 80 tonf ⽀座强制位移强制位移10 cm使⽤MIDAS/Civil 软件内含的优化法则计算出索初拉⼒。
Midas做斜拉桥成桥阶段分析
查看施工阶段分析结果
62
查看变形形状 / 62
查看弯矩 / 63
查看轴力 / 64
施工阶段分析变化图形 / 65
概要
斜拉桥成桥阶段和施工阶段分析
斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型 式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计 理念的桥梁形式之一。
的材料表单里点击
键。
定义多种材料
时,使用
按钮
会更方便一些。
模型 / 特性值 / 材料 名称 (拉索) 类型 > 用户定义 弹性模量 (2.0e7) ; 比重 (7.85) ↵
泊松比 (0.3)
按上述方法参照表1输入主梁、索塔、主梁横向系梁、索塔横梁等的材料特性值。
表1 材料特性值
号
项目
1
拉索
2
主梁
3
索塔
4
主梁横向系梁
5
索塔横梁
弹性模量 (tonf/m2) 2.0×107 2.1×107 2.0×106 2.0×107 2.0×106
泊松比 0.3 0.3 0.17 0.3 0.17
比重 (tonf/m3) 7.85 7.85 2.5 7.85 2.5
图5 定义材料特性对话框 4
斜拉桥成桥阶段和施工阶段分析
正面 窗口选择 (图16的①) 激活
①
①
激活索塔构件
第1号索塔
图16 选择索塔构件
第2号索塔
17
高级应用例题
使用建立单元功能建立索塔横梁单元。
标准
节点号 (开)
捕捉单元(关)
模型 / 单元 / 建立单元 单元类型 > 一般梁/变截面梁 材料 > 5: 索塔横梁 截面 > 5: 索塔横梁 连接节点 (142,72) (145,73) (144,74) (147,75)
高墩多塔斜拉桥Midas全桥模型的建立-最新文档资料
高墩多塔斜拉桥Midas全桥模型的建立:This article is based on the principles of finite element to establish the MIDAS full bridge model.Respectively, It is considered the simulation of the bridge components, such as main beam, cable, pylon, tower pier, and the boundary conditions of the simulation, including connection between the tower, pier and beam, connection between cable and tower beam, and the support analog. This paper is reference for modeling onCable-stayed bridge with high-pier & multi-pylons.Keywords:Cable-stayed bridge with high-pier &multi-pylons, Midas/Civil, Full bridge model1引言在全桥空间结构分析中, 建立有限元数值模型至关重要,在全桥空间模型的建立过程中, 主要考虑以下几个方面的原则[1]:1) 结构形状的要求;2) 材料特征变化的要求;3) 连接单元特征的要求;4) 桥面恒载, 汽车荷载作用模拟的要求;5) 计算精度的要求;6) 求解过程中不出现病态的要求;依据以上基本原则,应用大型有限元程序Midas/Civil所提供的前处理模块建立空间结构分析模型。
通过把各种单元类型组合起来, 形成统一的全桥分析模型。
MIDAS做悬索桥斜拉桥分析
悬索桥分析:索单元初始刚度
平衡单元节点内力
荷载>初始荷载>大位移>平衡单元节点内力
该功能仅适用于施工阶段分析时,选择非线性分析的独立模型,并 且勾选了“包含平衡单元节点内力”选项时的情形。 可手动输入所有构件的平衡单元节点内力,也可通过“悬索桥分析 控制”自动计算生成,在成桥状态下,平衡单元节点内力与成桥恒载 相平衡,使结构处于0位移状态。 可考虑包括梁单元等的所有构件的平衡内力,对于自锚式悬索桥更 加适用,因自锚式悬索桥是索梁协同作用的结构,加劲梁的内力对刚 度影响也不可忽视。
悬索桥分析:索单元简介
pretension
只能传递单元的轴向拉力 随着内力的变化几何刚度发生变化 有了初始刚度索单元才能承受各种荷载
悬索桥分析:索单元初始刚度
MIDAS程序中的初始刚度:
定义索单元时 几何刚度初始荷载 平衡单元节点内力 初始单元内力
悬索桥分析:悬索桥建模助手
原理:程序内部自动分两个步骤进行迭代分析
第一步骤:根据建模助手中输入几何控制点参数、材料与截面、桥 面系荷载进行第一次几何非线性迭代分析。此时仅考虑悬索桥建模助 手对话框 “桥面系”栏中输入的荷载作为恒载进行分析,求出第一平 衡状态。(未包含索构件自重)
初始单元内力:仅适用于成桥荷载的小位移分析,如移动荷载、特征 值分析等。仅提供刚度。与上述三项无优先级。
悬索桥分析:初始平衡状态
初始平衡状态
悬索桥在成桥状态下处于平衡状态,又称为悬索桥的初始 平衡状态。
平衡状态下的相平衡荷载:
索单元的拉力以及各单元的内力 索、吊杆、加劲梁的自重 二期荷载等
斜拉桥分析:基本操作步骤
Midas civil软件培训——斜拉桥专题
midas Civil 2010斜拉桥专题Fra bibliotek斜拉桥分析专题
斜拉桥
但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果 是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得 到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,
结果>未知荷载系数 利用未知荷载系数功能,可以计算出最小误差范围内的能够满足特定约束条 件的最佳荷载系数,利用这些荷载系数计算拉索初拉力。 指定位移、反力、内力的“0”值以及最大最小值作为约束条件,拉索初拉力作 为变量(未知数)来计算。 计算未知荷载系数适用于线性结构体系,为了计算出最佳的索力,必须要输 入适当的约束条件。
斜拉桥
1)刚性支承连续梁法 刚性支承连续梁法是指成桥状态下,斜拉桥主梁的弯曲内力和刚性支承连续梁的内力状态 一致。因此可以非常容易地根据连续梁的支承反力确定斜拉索的初张力。 2)零位移法 零位移法的出发点是通过索力调整,使成桥状态下主梁和斜拉索的交点的位移为零。对于 采用满堂支架一次落架的斜拉桥体系,其结果与刚性支承连续梁法的结果基本一致。 上述2种方法用于确定主跨和边跨对称的单塔斜拉桥的索力是最为有效的,对于主跨和边 跨几乎对称的3跨斜拉桥次之,对于主跨和边跨的不对称性较大的斜拉桥,几乎失去了作用 (因为这两种方法必然导致比较大的塔根弯矩,失去了索力优化的意义)。 3)倒拆和正装法 倒拆法是斜拉桥安装计算广泛采用的一种方法,通过倒拆、正装交替计算,确定各施工阶 段的安装参数,使结构逐步达到预定的线形和内力状态。
可以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支
承的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。
Midas对矮塔斜拉桥有限元建模
基于Midas对矮塔斜拉桥的有限元建模分析【摘要】矮塔斜拉桥之所以被广泛应用、快速发展源于其合理的结构体系,结构受力清晰、明确,具有经济、美观、施工方便、适用跨径灵活多变等优点。
本文以某市矮塔斜拉桥为案例进行有限元建模分析,通过这个过程去了解斜拉桥的施工方法和流程,为今后类似桥梁工程设计施工提供借鉴。
1、某市矮塔斜拉桥主要情况该桥位于某市高速公路,桥梁结构形式采用双塔三跨预应力混凝土单索面,设计荷载为公路-I级,桥面横坡为双向2.0%,主桥宽度25.50米[2*10.72(行车道)+3.00米(中间带)+2*0.5(防撞栏)],5cm沥青砼磨耗层+ 10cm厚的水泥砼桥面铺装。
2、桥跨布置2.1主梁尺寸:跨径组合为100m+180m+100m,即边跨跨径100m,主跨跨径180m,塔根部无索区长度34m,与主跨径比值为0.188,跨中无索区长度48m,与主跨径比值为0.267,边跨无索区长度取34m,与边跨跨径比值为0.34。
2.2索塔尺寸:截面采用矩形,横桥向为2.2m,纵桥向由有索区段4.5m渐变为塔底的8.0m,塔高26m。
2.3斜拉索布置:采用单索面双排索布置,取梁上索距为4m,塔上索距为1.2m。
全桥共36对斜拉索,编号从索塔根部至跨中(从里到外)分别为C1~C9,拉索倾角为19.21~21.51°。
3、主要结构设计施工要点3.1、主梁:主梁采用变高度单箱三室截面,斜腹板,顶板宽25.5m,顶板悬臂长度4.00m。
3.2、顶板厚度:顶板厚度为30cm,悬臂板端部厚30cm,根部板厚40cm。
3.3底板厚度:底板板厚由跨中40cm变厚至支点处140cm,边腹板厚为60cm,中腹板板厚为50cm。
3.4、腹板厚度:边腹板厚为60cm,中腹板板厚为50cm。
3.5、中室和边室横隔板厚度分别为30cm和30cm。
端横梁的厚度150cm。
3.6、主梁节段划分:主梁零号块长度为10m,悬臂施工标准节段长度分为3.5m、3、3.2、2.5和19×4.00m几种,全桥共设3个合龙段,其长度为2.00和1.6米,悬臂施工的节段最大重量为4500kN,边跨现浇段长度8m。
midasCivil斜拉桥专题—斜拉桥设计思路专题演示文稿
二、斜拉桥索力调整理论
斜拉桥不仅具有优美的外形,而且具有良好的力学性能,其主要优点在于:恒载作用下, 拉索的索力是可以调整的。斜拉桥可以认为是大跨径的体外预应力结构。 在力学性能方面,当在恒载作用时,斜拉索的作用并不仅仅是弹性支承,更重要的是它能 通过千斤顶主动地施加平衡外荷载的初张力,正是因为斜拉索的索力是可以调整的,斜拉索才
和活载共同作用下,上翼缘的最大应力和材料允许应力之比等于下翼缘的最大应力和材料允许
应力之比。 6)影响矩阵法 以上简单介绍了斜拉桥索力调整的几种方法,实际施工中的索力调整是比较复杂的, 而且实践性很强。结构分析工程师的经验非常重要,只有多次反复试算才可以得到比较满 意的索力。例如:对于锚固在支座上方或附近部位的斜拉索的索力对主梁的弯矩和位移的 影响非常小,如果取主梁上的位移或弯矩作为控制值,会导致病态方程。对于辅助墩附近
的斜拉索建议人为假定索力进行试算,以得到理想的结构内力和线形。
Hale Waihona Puke 三、 midas Civil中的斜拉桥功能
斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、 材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。但对于 斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重 要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主 要调整作用的就是斜拉索的张拉力。
一、斜拉桥概述
斜拉桥的上部结构是由梁、索、塔三个主要部分组成,它是一种桥面体系以加劲梁受压(密 索)或受弯(稀索)为主,支承体系以斜索受拉及桥塔受压为主的桥梁。
1956年,瑞典建成的Stroemsund 桥拉开了现代斜拉桥建设的序幕。随后 斜拉桥建设如雨后春笋般蓬勃发展,其 跨径已经进入以前悬索桥适用的特大跨 径范围。
midas-civil-斜拉桥专题—斜拉桥设计专题教程文件
二、斜拉桥索力调整理论
斜拉桥不仅具有优美的外形,而且具有良好的力学性能,其主要优点在于:恒载作用下,拉 索的索力是可以调整的。斜拉桥可以认为是大跨径的体外预应力结构。
在力学性能方面,当在恒载作用时,斜拉索的作用并不仅仅是弹性支承,更重要的是它能通 过千斤顶主动地施加平衡外荷载的初张力,正是因为斜拉索的索力是可以调整的,斜拉索才可 以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支承 的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。
第二步:利用算得的成桥状态的初拉力(不再是单位力), 建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需 要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施 工阶段分析控制对话框中选择“体内力”。
第三步:根据倒拆分析得到的各施工阶段拉索的内力,将 其按初拉力输入建立正装施工阶段的模型并进行分析。此时 斜拉索仍可采用只受拉索单元来模拟,但在施工阶段分析控 制对话框中选择“体外力”。
三、 midas Civil中的斜拉桥功能
斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、 材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。但对于 斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重 要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主 要调整作用的就是斜拉索的张拉力。
活载共同作用下,上翼缘的最大应力和材料允许应力之比等于下翼缘的最大应力和材料允许应 力之比。
6)影响矩阵法
以上简单介绍了斜拉桥索力调整的几种方法,实际施工中的索力调整是比较复杂的, 且实践性很强。结构分析工程师的经验非常重要,只有多次反复试算才可以得到比较满 的索力。例如:对于锚固在支座上方或附近部位的斜拉索的索力对主梁的弯矩和位移的 响非常小,如果取主梁上的位移或弯矩作为控制值,会导致病态方程。对于辅助墩附近 斜拉索建议人为假定索力进行试算,以得到理想的结构内力和线形。
Midas做斜拉桥成桥阶段分析
输入边界条件 / 25
计算拉索初拉力 / 28
输入荷载条件 / 29
输入荷载 / 30
运行结构分析 / 34
建立荷载组合 / 34
计算未知荷载系数 / 35
查看成桥阶段分析结果
39
查看变形形状 / 39
施工阶段分析
40
施工阶段分类 / 41 逆施工阶段分类 / 42 逆施工阶段分析 / 43 输入拉索初拉力 / 45 定义施工阶段 / 49 定义结构群 / 50 指定边界群 / 53 指定荷载群 / 56 建立施工阶段 / 59 输入施工阶段分析数据 / 61 运行结构分析 / 61
7
高级应用例题
生成二维模型
在MIDAS/CIVIL提供的斜拉桥建模助手中输入结构的一些基本数据,程序将自动生 成斜拉桥的二维模型。
在斜拉桥建模助手中输入下面数据。
只要在斜拉桥建 模助手中输入拉索、 主梁、索塔的材料和 截面特性值以及基本 布置,程序将自动生 成斜拉桥二维模型。
将拉索和吊杆的 单元类型选择为桁架 单元时,拉索和吊杆 将按桁架单元单元计 算;选择为只受拉单 元(索单元)时,线性 分析时拉索按等效桁 架单元计算,非线性 分析时拉索按弹性悬 索单元计算。
Izz (m4) 0.0 4.7620 8.1230 0.1331 7.9920
图6 定义截面特性对话框 5
高级应用例题
成桥阶段分析
本例题在建立了成桥阶段模型后将计算因自重和二期恒载引起的拉索初拉力。然 后利用拉索的初拉力做成桥阶段初始平衡状态分析。
首先使用MIDAS/CIVIL提供的斜拉桥建模助手功能生成二维斜拉桥模型,然后利用 二维模型通过复制等手段建立三维斜拉桥模型。
使用包含有优化法则的未知荷载系数功能可以很方便地求出成桥阶段的拉索初拉 力。
midas斜拉桥建模
目录概要 1桥梁基本数据 2荷载 2设定建模环境 3定义材料和截面特性值 4成桥阶段分析 6建立模型 7建立加劲梁模型 8建立主塔 9建立拉索 11建立主塔支座 12输入边界条件 13索初拉力计算 14定义荷载工况 18输入荷载 19运行结构分析 24建立荷载组合 24计算未知荷载系数 25查看成桥阶段分析结果 29查看变形形状 29正装施工阶段分析 30正装施工阶段分析 34正装施工阶段分析 34正装分析模型 36定义施工阶段 38定义结构组 41定义边界组 48定义荷载组 53定义施工阶段 59施工阶段分析控制数据 64运行结构分析 65查看施工阶段分析结果 66查看变形形状 66查看弯矩 67查看轴力 68查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。
在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。
本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1. 斜拉桥分析模型桥梁基本数据 为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计内容有所差异。
本例题桥梁的基本数据如下。
桥梁形式 三跨连续斜拉桥 桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁高度 主塔下部 : 20m ,主塔上部 : 40m 图 2. 立面图 荷载 分 类 荷载类型 荷载值 自重 自重 程序内部自动计算 索初拉力 初拉力荷载 满足成桥阶段初始平衡状态的 索初拉力 挂篮荷载 节点荷载 80 tonf 支座强制位移 强制位移 10 cm使用MIDAS/Civil 软件内含的优化法则计算出索初拉力。
Midas斜拉桥建模和正装施工阶段分析
目录概要 1桥梁基本数据 2荷载 2设定建模环境 3定义材料和截面特性值 4成桥阶段分析 6建立模型 7建立加劲梁模型 8建立主塔 9建立拉索 11建立主塔支座 12输入边界条件 13索初拉力计算 14定义荷载工况 18输入荷载 19运行结构分析 24建立荷载组合 24计算未知荷载系数 25查看成桥阶段分析结果 29查看变形形状 29正装施工阶段分析 30正装施工阶段分析 34正装施工阶段分析 34正装分析模型 36定义施工阶段 38定义结构组 41定义边界组 48定义荷载组 53定义施工阶段 59施工阶段分析控制数据 64运行结构分析 65查看施工阶段分析结果 66查看变形形状 66查看弯矩 67查看轴力 68查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。
在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。
本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1. 斜拉桥分析模型桥梁基本数据 为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计内容有所差异。
本例题桥梁的基本数据如下。
桥梁形式 三跨连续斜拉桥 桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁高度 主塔下部 : 20m ,主塔上部 : 40m 图 2. 立面图 荷载 分 类 荷载类型 荷载值 自重 自重 程序内部自动计算 索初拉力 初拉力荷载 满足成桥阶段初始平衡状态的 索初拉力 挂篮荷载 节点荷载 80 tonf 支座强制位移 强制位移 10 cm使用MIDAS/Civil 软件内含的优化法则计算出索初拉力。
midas斜拉桥荷载试验建模流程
midas斜拉桥荷载试验建模流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!MIDAS斜拉桥荷载试验建模流程详解在桥梁工程领域,精确的荷载试验建模对于评估桥梁结构的安全性和耐久性至关重要。
1使用MIDASCivil做斜拉桥分析时的一些注意事项
1使⽤MIDASCivil做斜拉桥分析时的⼀些注意事项使⽤MIDAS/Civil做斜拉桥分析时的⼀些注意事项斜拉桥的设计过程与⼀般梁式桥的设计过程有所不同。
对于梁式桥梁结构,如果结构尺⼨、材料、⼆期恒载都确定之后,结构的恒载内⼒也随之基本确定,⽆法进⾏较⼤的调整。
对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的⽐例是⼗分重要的。
因此斜拉桥的设计⾸先是确定其合理的成桥状态,即合理的线形和内⼒状态,其中起主要调整作⽤的就是斜拉索的张拉⼒。
确定斜拉索张拉⼒的⽅法主要有刚性⽀承连续梁法、零位移法、倒拆和正装法、⽆应⼒状态控制法、内⼒平衡法和影响矩阵法等,各种⽅法的原理和适⽤对象请参考刘⼠林等编著的公路桥梁设计丛书-《斜拉桥》。
MIDAS/Civil程序针对斜拉桥的张拉⼒确定、施⼯阶段分析、⾮线性分析等提供了多种解决⽅案,下⾯就⼀些功能的⽬的、适⽤对象和注意事项做⼀些说明。
1.未闭合⼒功能通常,在进⾏斜拉桥分析时,第⼀步是进⾏成桥状态分析,即建⽴成桥模型,考虑结构⾃重、⼆期恒载、斜拉索的初拉⼒(单位⼒),进⾏静⼒线性分析后,利⽤“未知荷载系数”的功能,根据影响矩阵求出满⾜所设定的约束条件(线形和内⼒状态)的初拉⼒系数。
此时斜拉索需采⽤桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的⾮线性效应可以看作不是很⼤,⽽且影响矩阵法的适⽤前提是荷载效应的线性叠加(荷载组合)成⽴。
第⼆步是利⽤算得的成桥状态的初拉⼒(不再是单位⼒),建⽴成桥模型并定义倒拆施⼯阶段,以求出在各施⼯阶段需要张拉的索⼒。
此时斜拉索采⽤只受拉索单元来模拟,在施⼯阶段分析控制对话框中选择“体内⼒”。
第三步是根据倒拆分析得到的各施⼯阶段拉索的内⼒,将其按初拉⼒输⼊建⽴正装施⼯阶段的模型并进⾏分析。
此时斜拉索仍需采⽤只受拉索单元来模拟,但在施⼯阶段分析控制对话框中选择“体外⼒”。
但是设计⼈员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。
midas斜拉桥建模
建立好成桥阶段模型后计算自重与二期荷载引起的索初拉力。然后利用拉索初拉 力进行成桥阶段初始平衡状态分析。
首先建立斜拉桥的成桥阶段二维模型,利用包含索力优化功能的未知荷载系数功能 计算拉索初拉力。
斜拉桥成桥阶段模型参见图6。
图 6、 斜拉桥成桥阶段模型
midas斜拉桥建模
建立模型
首先建立成桥阶段分析模型,待成桥阶段分析结束后另存为其它名称做施工阶段分 析。
面积
Ixx
Iyy
Izz
号
项目
截面形状
(m2)
(m4)
(m4)
(m4)
1
加劲梁
实腹长方形
0、8
15、0
1、0
15、0
2
主塔下部 实腹长方形
50、0
1000、0
500、0
500、0
3
主塔上部 实腹长方形
0、3
5、0
5、0
5、0
4
拉索
实腹圆形
0、005
0、0
0、0
0、0
图 5、 定义截面特性值对话框
midas斜拉桥建模
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分 析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析 方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例题 中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1、 斜拉桥分析模型
midas斜拉桥建模
斜拉桥成桥阶段与正装施工阶段分析
midas斜拉桥建模
目录
概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料与截面特性值 4
midas斜拉桥建模之令狐采学创编欧阳引擎
欧阳引擎(2021.01.01)目录概要1桥梁基本数据2荷载2设定建模环境2定义材料和截面特性值2成桥阶段分析3建立模型3建立加劲梁模型4建立主塔4建立拉索5建立主塔支座5输入边界条件6索初拉力计算6定义荷载工况8输入荷载8运行结构分析10建立荷载组合10计算未知荷载系数10查看成桥阶段分析结果12查看变形形状12正装施工阶段分析12正装施工阶段分析15正装施工阶段分析15正装分析模型15定义施工阶段16定义结构组17定义边界组19定义荷载组21定义施工阶段23施工阶段分析控制数据25运行结构分析25查看施工阶段分析结果25查看变形形状25查看弯矩26查看轴力26查看计算未闭合配合力时使用的节点位移和内力值26成桥阶段分析和正装分析结果比较26概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。
在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。
本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1. 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计内容有所差异。
本例题桥梁的基本数据如下。
桥梁形式 三跨连续斜拉桥桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁高度主塔下部 : 20m ,主塔上部 : 40m图 2. 立面图 荷载分 类 荷载类型 荷载值自重 自重 程序内部自动计算索初拉力 初拉力荷载 满足成桥阶段初始平衡状态的索初拉力 挂篮荷载 节点荷载 80 tonf 支座强制位移强制位移10 cm设定建模环境为了做斜拉桥成桥阶段分析首先打开新项目“cable stayed”为名保存文件,开始建立模型。
midas_Civil_2010斜拉桥专题—斜拉桥设计专题
按桁架单元(或考虑成桥时的几何刚度)进行线性分析
12
midas Civil 2010
斜拉桥专题—斜拉桥分析专题
斜拉桥
成桥状态荷载工况 不勾选“在PostCS…” 移动荷载 按桁架单元考虑 (线性叠加) 支座沉降 动力分析 (特征值分析等) 同上 同上
勾选“PostCS…” 考虑成桥状态的索单元 和梁单元的几何刚度 同上 同上
影响非常小,如果取主梁上的位移或弯矩作为控制值,会导致病态方程。对于辅助墩附近
的斜拉索建议人为假定索力进行试算,以得到理想的结构内力和线形。
7
midas Civil 2010
斜拉桥专题—斜拉桥分析专题
斜拉桥
三、 midas Civil中的斜拉桥功能
斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、 材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。但对于
张拉斜拉索时,实际上已经将该斜拉索脱离出来单独工作,因为斜拉索的张力和结构的其
它部分无关,而只与千斤顶有关,因此在张拉斜拉索时,其初张力效应必须采用隔离体分析 (midas Civil中采用体外力来进行模拟)。
确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状 态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公 路桥梁设计丛书 -《斜拉桥》。
midas Civil 2010斜拉桥专题—斜拉桥设计专题
Integrated Solution System for Bridge and Civil Strucutres
目 一、斜拉桥概述
录
二、斜拉桥索力调整理论 三、midas Civil中的斜拉桥功能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜拉桥成桥阶段与正装施工阶段分析
桥梁基本数据
为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设 计内容有所差异。
本例题桥梁的基本数据如下。
桥梁形式 桥梁跨经 桥梁高度
三跨连续斜拉桥 40.0 m + 110.0 m + 40.0 m = 190.0 m 主塔下部 : 20m,主塔上部 : 40m
扩展类型>节点线单元 单元属性>单元类型>梁单元 材料>1 : 加劲梁 ; 截面>1 : 加劲梁 生成类型>复制和移动 复制和移动>任意间距 ; 方向>x 间距>9@10, 2@5, 9@10
7.85 2.5 7.85 7.85
图 4. 定义材料特性值
斜拉桥成桥阶段与正装施工阶段分析
输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。在材料和截面特性对话
框的截面表单选择
按钮。
模型 / 材料和截面特性 / 截面 数值表单 截面号 (1) ; 名称 (加劲梁) 截面形状>实腹长方形截面 截面特性值>面积 (0.8)
图 3. 设定建模环境及单位体系
斜拉桥成桥阶段与正装施工阶段分析
定义材料和截面特性值
输入加劲梁、主塔下部、主塔上部、拉索的材料特性值。 在材料和截面对话框中
选择材料表单点击
按钮。
定义多种材料时,
使用
按钮会更
方便一些。
模型 / 材料和截面特性 / 名称 (加劲梁) 设计类型 > 用户定义 弹性模量 (2.1e7) ; 容重 (7.85)
斜拉桥成桥阶段与正装施工阶段分析
建立加劲梁模型
首先用 建立节点 功能建立节点后使用 +9@10m的梁单元模型。
扩展单元 功能生成9@10+2@5
正面,
捕捉节点 (开),
捕捉点栅格 (开)
自动对齐 (开),
节点号 (开)
模型 / 节点 / 建立节点
坐标 ( -95, 0, 0 )
模型 / 单元 / 扩展单元 全选
斜拉桥成桥阶段和正装施工阶段分析
目录
概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料和截面特性值 4
成桥阶段分析 6 建立模型 7 建立加劲梁模型 8 建立主塔 9 建立拉索 11 建立主塔支座 12 输入边界条件 13 索初拉力计算 14 定义荷载工况 18 输入荷载 19 运行结构分析 24 建立荷载组合 24 计算未知荷载系数 25
Izz (m4) 15.0 500.0 5.0 0.0
图 5. 定义截面特性值对话框
斜拉桥成桥阶段与正装施工阶段分析
成桥阶段分析
建立好成桥阶段模型后计算自重和二期荷载引起的索初拉力。然后利用拉索初拉 力进行成桥阶段初始平衡状态分析。
首先建立斜拉桥的成桥阶段二维模型,利用包含索力优化功能的未知荷载系数功 能计算拉索初拉力。
查看成桥阶段分析结果 29 查看变形形状 29
正装施工阶段分析 30
正装施工阶段分析 34 正装施工阶段分析 34 正装分析模型 36 定义施工阶段 38 定义结构组 41 定义边界组 48 定义荷载组 53 定义施工阶段 59 施工阶段分析控制数据 64 运行结构分析 65
查看施工阶段分析结果 66 查看变形形状 66 查看弯矩 67 查看轴力 68 查看计算未闭合配合力时使用的节点位移和内力值 69 成桥阶段分析和正装分析结果比较 70
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段 分析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分 析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例 题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1. 斜拉桥分析模型
材料 泊松比 (0.3)
按上述方法参照表1输入主塔下部、主塔上部、拉索的材料特性值。
表 1. 材料特性值
号
项目
1
加劲梁
2
主塔下部
3
主塔上部
4
拉索
弹性模量 (tonf/m2) 2.1×107 2.5×106 2.1×107 1.57×107
泊松比
0.3 0.17 0.3 0.3
容重 (tonf/m3)
概要
斜拉桥成桥阶段与正装施工阶段分析
斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观, 且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环 境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平 衡状态,然后再按施工顺序进行施工阶段分析。
索
索
主塔
主塔
40m
使用MIDAS/Civil
软件内含的优化法则 计算出索初拉力。
荷载
分类 自重
索初拉力 挂篮荷载 支座强制位移
主梁 110m
图 2. 立面图
主梁 40m
荷载类型 自重
初拉力荷载
节点荷载 强制位移
荷载值 程序内部自动计算 满足成桥阶段初始平衡状态的
索初拉力 80 tonf 10 cm
斜拉桥成桥阶段与正装施工阶段分析
设定建模环境
为了做斜拉桥成桥阶段分析首先打开新项目 “ cable stayed ” 为名保存文件 , 开 始建立模型。
单位体系设置为“m”和“tonf”。该单位体系可以根据输入的数据类型随时随意 更换。
文件 / 文件 /
新项目 保存 (cable stayed)
工具 / 单位体系 长度 > m ;力 > tonf
斜拉桥成桥阶段模型参见图6。
图 6. 斜拉桥成桥阶段模型
斜拉桥成桥阶段与正装施工阶段分析
建ቤተ መጻሕፍቲ ባይዱ模型
首先建立成桥阶段分析模型,待成桥阶段分析结束后另存为其它名称做施工阶段 分析。
建立斜拉桥成桥阶段模型的详细步骤如下。
1. 建立加劲梁模型 2. 建立主塔模型 3. 建立拉索模型 4. 生成主塔上的支座 5. 输入边界条件 6. 拉索初拉力计算:利用未知荷载系数功能 7. 输入荷载工况以及荷载 8. 运行结构分析 9. 计算位置荷载系数
按上述方法参照表2输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。
表 2. 截面特性值
号
项目
1
加劲梁
2
主塔下部
3
主塔上部
4
拉索
截面形状
实腹长方形 实腹长方形 实腹长方形 实腹圆形
面积 (m2) 0.8 50.0 0.3 0.005
Ixx (m4) 15.0 1000.0 5.0 0.0
Iyy (m4) 1.0 500.0 5.0 0.0