五年级组合图形
小学数学五年级上册《组合图形的面积》7篇
小学数学五年级上册《组合图形的面积》7篇小学数学五年级上册《组合图形的面积》1组合图形面积是学生学习了长方形,正方形,平行四边形,三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。
在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。
在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。
接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的(分割成两个长方形);第二,长方形的面积公式是怎样的;第三,要计算第一个长方形的面积,长是多少,宽是多少要计算第二个长方形的面积,长是多少,宽是多少在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。
学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。
这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。
因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。
小学数学五年级上册《组合图形的面积》2一分耕耘一分收获。
这次百花奖,让我感受颇深,对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的`面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。
小学五年级数学《组合图形面积的计算》优秀教案一等奖三
小学五年级数学《组合图形面积的计算》优秀教案一等奖三1、小学五年级数学《组合图形面积的计算》优秀教案一等奖三教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”。
教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学准备:课件、图片等。
教学过程:一、创设情境,引导探索师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。
(指名回答)生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。
通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。
】二、探索活动,寻求新知师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
五年级《组合图形的面积》教学设计4篇
五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
《组合图形》教学设计(精选9篇)
《组合图形》教学设计《组合图形》教学设计(精选9篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
下面是小编整理的《组合图形》教学设计,欢迎大家分享。
《组合图形》教学设计篇1教学目标:1、通过拼图活动,让学生了解组合图形的特点。
2、在自主探索的活动中,理解计算组合图形面积的多种方法。
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题,同时通过各活动培养学生的空间观念。
重点、难点重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:选择有效的方法解决问题。
设计意图:本节课是在学生原有的求基本图形面积基础上,进一步探讨研究组合图形的面积,也是日常生活中经常需要解决的问题。
因此,我设计时主要是让学生自主探索,在实际生活情境中领会转化的数学思想,先把基本图形拼成组合图形,再独立找出计算时所需要的条件,进一步体会、掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法进行计算,从而解决实际问题。
教学过程:一、激发兴趣、复习铺垫学生落座后。
师:今天老师带来了几幅同学们自己创作的作品,想看吗?这是谁的作品,你来介绍一下,(学生回答)你的这幅作品,用到了哪些我们学过的基本图形?学生介绍:这个图案是由xxxxx拼成的。
师:这几幅作品有什么共同的特点呢?(kj出现拼出的图形)生1:都有三角形师:这是你的发现,还有呢?生2:都是拼成的师:还有吗?生3:都是以前学过的图形拼成的生:都是用以前学过的基本图形拼成的,师:说的真好,真是一个善于观察的孩子!师:像这样,由几个简单的基本图形拼成的图形,我们就叫它组合图形。
(显示只有线条的图形)出示课题:组合图形问学生:这是什么图形?(组合图形)为什么?(它是由几个简单的基本图形拼成的)真是个聪明的孩子!谁能说说,这个组合图形是由哪几个基本图形拼成的?(学生回答后,点击课件显示虚线)师:这个组合图形的面积有多大?你会求吗?说说你的想法?生:就是把那几个基本图形的面积加起来师:好,这节课我们就一起来学习(补充课题:)组合图形的面积二、新授出示房屋的图片,再出示侧面墙。
五年级数学上册期末常考应用解答题:组合图形面积
五上常考题:组合图形面积1.计算下边图形的面积。
(单位:厘米)解:10×3+(10+15)×(10-3)÷2=30+25×7÷2=30+87.5=117.5(平方厘米)答:这个图形的面积是117.5平方厘米。
2.求出下面方格中图形的面积。
(小方格的边长为1cm。
)解:如图所示:把这个图形分成了两个三角形和一个梯形,它的面积是:7×2÷2+5×1÷2+(5+7)×5÷2=7×2÷2+5×1÷2+12×5÷2=14÷2+5÷2+60÷2=7+2.5+30=9.5+30=39.5(cm²)3.一张长方形纸如图折叠,求阴影面积。
解:8-3=5(厘米)5×10÷2=50÷2=25(平方厘米)10×8-25×2=80-50=30(平方厘米)4.下图是两个正方形,求阴影部分的面积。
解:6×6+4×4=36+16=52(平方厘米)6×6÷2=36÷2=18(平方厘米)4+6=10(厘米)10×4÷2=40÷2=20(平方厘米)52-18-20=34-20=14(平方厘米)5.如图,将这个图形贴满彩纸,买这些彩纸一共用去25.92元钱,这种彩纸的价格是每平方米多少元?解:2.4×1.5+2.4×1.5÷2=3.6+3.6÷2=3.6+1.8=5.4(平方米)25.92÷5.4=4.8(元)答:这种彩纸的价格是每平方米4.8元。
6.选择合适条件计算下面每个图形的面积。
(1)(2)(3)(1)解:15×8=120(平方米)(2)解:(4+7)×8÷2=11×8÷2=88÷2=44(平方分米)(3)解:12×16+20×9÷2=192+180÷2=192+90=282(平方厘米)7.计算下面图形的面积。
小学数学五年级——组合图形的面积
可以把它看成一个正方 形和一个三角形的组合。
方法一:
5米
2
5
=
米2米
+
米
55米米
5 米
5×2÷2+5×5
=5+25
=30(平方米)
答:它的面积是30平方米。
我把它分成两个完 全一样的梯形。
方法二:
2
2
=
米
米
+
米5米2
5 米
5米
(5÷2)米
米米5(5 5÷2)米
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2 =30(平方米)
答:它的面积是30平方米。
你是怎样想的?
方法三:
2 米
5米
= 5
米
-
(5+2)×5 -(5÷ 2)×2÷2×2 =35-5 =30(平方米)
想:这块菜地的面积 = 平行四边形面积 + 三角形面积
50×33+35×12÷2 =1650+210 =60(平方米)
法计算组合图形面积.
正方形
长方形
平行四边形
梯形
三角形
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
下面这些物品里有哪些图形?
由两个完全 一样的梯形 组合成的
由一个长方形 和两个完全一 样的三角形组
合成的
由几个简单的图形 拼出来的图形,我们 把它们叫做组合图形。
北师大版五年级数学上册第六单元 组合图形的面积 知识点总结
1.组合图形的意义:几个简单的图形,通过不同的方式组合而成的图形。
2.求组合图形的面积的方法:分割法,添补法、割补法。
(1)分割法:将组合图形分割成已经学过的基本图形,分别计算出所分割的图形的面积,再相加。
(2)添补法:通过添补将组合图形化成所学过的基本图形,然后减去所添图形的面积,即得组合图形的面积。
(3)割补法:将组合图形的某一部分割下来,补在具有相同边长的部分重新组合成所学过的基本图形(面积不变),再计算。
二、估算与计算不规则图形的面积
1.数方格:数方格时,把大于半格的按1格来算,小于半格的不算。
2.把原图形近似看作某个基本图形,用方格纸量出计算基本图形面积的条件,算出面积。
三、公顷、平方千米
1.公顷是测量和计算土地面积常用的单位,边长是100米的正方形土地,它的面积是1公顷,即1公顷=10000平方米。
2.平方米和公顷之间的换算方法:平方米换算成公顷时,把小数点向左移动四位。公顷换算成平方米时,把小数点向右移动四位。
3.平方千米是比公顷还大的面积单位。边长是1000米的正方形,它的面积是1平方千米。
1km2=100公顷1km2=100000的已经学过的基本图形,再进行计算。
易错题:
求图中的空白处的面积。
18×18-2×18×2=252
错因分析:做题时容易忽略中间的重叠部分的面积。
案:18×18-2×18×2+2×2=256
易混点:
高级单位转化成低级单位,要乘进率;低级单位转化成高级单位,要除以进率。
人教版五年级上册数学课件-6.4组合图形的面积|(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
下图是小华家客厅的平面图,它的面积是多少平方米?(单位:米)
4 6
3 7
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
=5×(2+5)-(5÷2) ×2 ÷2×2 =30(m 2)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
8
6 8
6 8
6
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
9
(单位:cm )
S组=S长+S梯
10 =a b + (a + b) h÷2
(8)(6) (6) (10 ) (9)
图中每个小方格的边长为1dm,下面这个图形的面积是多少?
2 8
2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
图中每个小方格的边长为1dm,下面这个图形的面积是多少?
8 2 22 8 8
2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
9
S组=S长-S梯
10 = a b - ( a + b ) h÷2
( 8+9 )(10) (8)(8+9 )(10-6)
9
S组=S三+S梯
10 =a h÷2 + (a + b ) h÷2
五年级奥数组合图形的面积
组合图形的面积【2 】1.根本平面图形特点及面积公式特点面积公式正方形①四条边都相等.②四个角都是直角.③有四条对称轴.S=a2长方形①对边相等.②四个角都是直角.③有二条对称轴.S=ab平行四边形①两组对边平行且相等.②对角相等,相邻的两个角之和为180°③平行四边形轻易变形.S=ah三角形①双方之和大于第三条边.②双方之差小于第三条边.③三个角的内角和是180°.④有三条边和三个角,具有稳固性.S=ah÷2梯形①只有一组对边平行.②中位线等于高低底和的一半.S=(a+b)h÷22.根本解题办法:由两个或多个简略的根本几何图形组合成的组合图形,要盘算如许的组合图形面积,先依据图形的根本关系,再应用分化.组合.平移.割补.添帮助线等几种办法将图形变成根本图形分离盘算.1.已知右面的两个正方形边长分离为6分米和4分米,求图中暗影部分的面积.2.右图是两个雷同的直角三角形叠在一路,求暗影部分的面积.(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内暗影部分的面积.4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分离为6厘米.4厘米,DF的长是若干厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求暗影部分的面积.6.右图是一块长方形公园绿地,绿地长24米,宽16米,中央有一条宽为2米的道路,求草地(暗影部分)的面积.7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E.F分离是AF.BC的中点,那么暗影部分的面积是若干?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中央有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(暗影部分)的面积有多大?9.如图,一个三角形的底长5米,假如底延伸1米,那么面积就增长2平方米.问本来的三角形的面积是若干平方米?1米组合图形的面积功课1.在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD的边长为15厘米,DF的长是若干厘米?2.如图,ABCD是一个长12厘米,宽5厘米的长方形,求暗影部分三角形ACE的面积.3.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中暗影部分的面积是若干?4.如图,A.B两点是长方形长和宽的中点,那么暗影部分占长方形的面积是若干?5.如图,在平行四边形ABCD中,E.F分离是AC.BC的三等分点,且平行四边形的.面积为54平方厘米,求S△BEF6.盘算右边图形的面积.(至罕用3种办法)(单位:米)。
五年级-组合图形的面积
组合图形的面积知识集结知识元组合图形的面积知识讲解1.1、各图形面积公式:2、组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。
3、计算组合图形的面积:(1)分割法,即将这个图形分割成几个基本的图形。
分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。
(2)添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。
5.计算组合图形阴影部分的面积:等于组合图形的面积减去空白部分的面积。
例题精讲组合图形的面积例1.'求下图中涂色部分的面积。
(单位:cm)求阴影部分面积。
如图,小正方形ABCD的边长是5cm,大正方形CEFG的边长是10cm,求图中阴影部分面积。
'例3.'在一块梯形菜地里,有一条宽约1m的小路(如图),每平方米产菜4.5kg,这块菜地共产菜多少千克?'例4.'如图是某工艺品的展开图。
它的面积是多少?(单位:cm)'例5.'图4由3个边长是6的正方形组成,则图中阴影部分的面积是________。
计算如图阴影部分的面积.(单位:厘米)'例7.'如图,2个大正方形、2个中正方形和1个小正方形紧挨着排在一起,其中大中小正方形的边长分别为3、2、1,那么阴影部分的面积是多少?'例8.'如图,三角形ABC的面积为10,AD与BF交于点E,且AE=ED,BD=CB,求图中阴影部分的面积和.'例9.'求图形中阴影部分的面积.(单位:dm)例10.'如图中,ADEF是一个长8CM,宽5CM的长方形,ABCD为直角梯形,BEF为直角三角形,图中阴影部分的面积是多少?'探索活动:成长的脚印知识讲解计算不规则图形的面积:估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。
小学五年级数学教案 组合图形面积的计算9篇
小学五年级数学教案组合图形面积的计算9篇组合图形面积的计算 1教学内容:92和93页例4、练习十八第1、2题。
教学目标:1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积。
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积。
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
教学过程:一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab“第二个图形呢?”……学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.?可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形1、让学生指出有哪些图形?师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(92页的四幅图),认一认,它们是什么?这些图片分别是由哪几个平面图形组成的?这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
[板书课题]三、组合图形面积的计算。
1.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?2.如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?先在小组内讨论方法,再后打开书计算,同时指名板演。
5×5+5×2÷2[5+(2+5)]×(5÷2)÷2×2集体订正时问:你将组合图形分成了哪几个基本图形?算式的每一步求的是什么?比较一下,你喜欢哪种算法?为什么?师:我们在计算组合图形面积时,要根据已知条件对图形进行分解,分解图形要尽量选择最简便的方法进行计算,特别要有计算面积所必需的数据。
五年级上册数学《组合图形的面积》教案
五年级上册数学《组合图形的面积》教案五年级上册数学《组合图形的面积》教案(7篇)作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。
那么写教案需要注意哪些问题呢?以下是小编精心整理的五年级上册数学《组合图形的面积》教案,欢迎阅读,希望大家能够喜欢。
五年级上册数学《组合图形的面积》教案1教学目标:知识与能力1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。
2、能综合运用平面图性积计算的知识,培养分析。
综合的能力,发展学生的空间观念。
过程与方法1、通过拼一拼。
找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。
2、培养动手操作能力,合作交流能力和空间想象能力。
情感态度与价值观通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。
教学重难点:初步掌握组合图形面积的计算方法。
正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的条件,有效地选择计算方法。
教学准备:多媒体课件、练习题卡片。
教学过程:一、复习导入,巩固基础1、我们已经学习了哪些基本的平面图形?2、他们的面积计算公式分别是什么?(请学生说一说)3、计算下面各图形的面积。
(出示所学过的图形)师:这些单个的图形称之为简单的基本图形。
师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。
同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。
二、阅读质疑,自主探究师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。
1、同学们阅读课本。
2、同桌交流图案的组成。
3、小组和作,拼一拼,讲一讲所拼图形的组成。
4、用自己的话说一说什么是组和图形?三、合作探究1、出示例题4的图。
师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。
小学数学五年级上册《组合图形的面积》知识点
1、看:组合图形的组成。
2、画:用分割、添补的方法表示出基本图形。
3、想:基本图形的面积计算公式。
4、算:利用面积计算公式列式计算组合组合图形的面积。
5、查:检查计算过程的准备性。
1、用分割法把组合图形转化成基本图形计算面积。
2、用添补法把组合图形转化成基本图形计算面积。
创新
小学数学五年性知识
程序性知识
策略性知识
认知
1、知道组合图形有几个简单基本图形组成。
2、组合图形的面积是图形所占平面的大小。
1、看:图形中是否存在两个或者两个以上的基本图形。
2、指:指出具体的基本图形。
3、画:用虚线的形式表示出基本图形。
4、想:基本图形的面积计算公式。
组合图形由两个或者两个以上的基本图形所组成。
表达
说:组合图形由两个或者两个以上的基本图形所组成。
1、看:是否是组合图形。
2、说:它由什么基本图形组成。
3、画:用虚线的形式表示出基本图形。
4、忆:基本图形的面积计算公式。
5、算:计算组合图形的面积。
用语言、画图等形式把组合图形转化为学过的基本图形。
运用
五年级上册数学教案 组合图形 北京版 (6)
五年级上册数学教案组合图形北京版 (6)教学目标1.通过本节课的学习,学生能够运用将图形拆分的方法,组合出不同的图形。
2.理解并掌握组合图形的概念和方法。
3.培养学生观察、分析、归纳的能力,提高他们的数学思维能力。
教学重点1.组合图形的概念和方法。
2.运用将图形拆分的方法,组合出不同的图形。
教学难点1.培养学生抽象思维能力,理解和掌握组合图形的概念和方法。
2.通过练习,提高学生的组合图形的能力。
教学过程导入1.通过展示一些图形,让学生分析这些图形是如何组成的。
学习1.介绍组合图形的概念和方法,包括将不同形状的图形进行拆分和组合,形成新的图形。
2.举例介绍组合图形的方法,包括拆分、旋转、翻转等操作,让学生能够理解组合图形的本质和方式。
3.通过练习,让学生能够将拆分后的不同形状的图形进行组合,形成新的图形。
4.引导学生进行思考,探究不同组合方式的图形是否相同,如果不同,那么它们有什么不同之处,让学生能够进行归纳总结。
练习1.通过练习,让学生深入理解组合图形的概念和方法,同时提高他们的组合图形的能力。
2.让学生观察给定的图形,将其拆分为不同形状的图形,然后进行组合,形成新的图形。
3.通过练习,培养学生抽象思维能力,提高他们的观察、分析和归纳能力。
总结1.让学生对本节课的学习内容进行总结,并介绍组合图形在生活中的应用。
2.通过总结,让学生能够加深对组合图形的理解和掌握,同时提高他们的数学思维能力。
课后作业1.根据上课学习的内容,自主设计一些组合图形,进行组合练习。
2.思考组合图形在日常生活中的应用场景,写一篇短文或PPT展示。
参考资料1.北京版小学数学教材。
2.组合图形的概念和方法笔记。
【组合图形面积】组合图形面积 五年级上册数学
五年级上册数学专项拔高1.计算下面“箭头”的面积【分析】做一条辅助线将“箭头”分为一个长方形和一个三角形两部分,然后根据长方形面积=长×宽,三角形面积=底×高÷2分别计算出两部分的面积,再将这两部分面积相加即可求出“箭头”的面积。
长方形面积:18×9=162(平方厘米)三角形面积:20×15÷2=300÷2=150(平方厘米)162+150=312(平方厘米)答:“箭头”的面积是312平方厘米。
2.计算下面组合图形的面积。
【分析】组合图形的面积=长方形的长×宽+(梯形的上底+下底)×高÷2。
解:6×4+(4+6)×5÷2=24+50÷2=24+25=493.把面积是102c²的梯形分成一个平行四边形和一个三角形,计算三角形的面积。
【分析】三角形的高=梯形的高=梯形的面积×2÷上下底的和,三角形的底=梯形的下底-梯形的上底,所以三角形的面积=底×高÷2,据此代入数值作答即可。
解:102×2÷(7+10)=204÷17=12(cm)(10-7)×12÷2=3×12÷24.计算下图的面积。
①【分析】①组合图形的面积=左边梯形的面积+右边长方形的面积;其中,梯形的面积=(上底+下底)×高÷2,长方形的面积=长×宽;解:①16-10=6(厘米)(8+14)×6÷2+10×8=22×6÷2+10×8=66+80=146(平方厘米)②【分析】②平行四边形的面积=底×高;②12×8=96(平方厘米)③【分析】③梯形的面积=(上底+下底)×高÷2。
新人教版五年级上册数学(新插图)7 组合图形的面积 教学课件
方法三:拼成一个长方形
长方形面积 = 5×(5+2÷2) = 5×6 = 30(m2)
房子侧面面积 = 长方形面积
方法四:从长方形中挖走两个小三角形
长方形面积 =(5+2) ×5 = 7×5 = 35 (m2)
两个三角形面积 = 5×2÷2 = 5(m2) 房子侧面面积 = 35 - 5 = 30(m2)
如图:已知长方形的长是8 cm,宽是4 cm,A、B 两点分别为长方形长、宽上的中点,求阴影部分的 面积是多少平方厘米?
B
A
用什么方法解决这道题,看谁的方法最巧妙?
方法一:挖的方法 8×4 = 32(cm2) (8÷2) ×4÷2 = 8(cm2) (8÷2) ×(4÷2) = 4×2= 8(cm2) (4÷2) ×8÷2 = 8(cm2) 32-8-8-8 = 8(cm2)
6 多边形的面积
组合图形的面积
在实际生活中,有些图形是由几个简单的图形组合而 成的。下面的组合图形里有哪些学过的图形?
说一说:生活中哪些地方有组合图形。
组合图形: 由几个简单的图形组合而成的图形叫 做组合图形。
例题4 右图表示的是一间房子侧面墙的 形状。它的面积是多少平方米?
小组合作: 在图上画出你们的思路,再求出
房子侧面墙的面积 = 长方形面积
[教材P97 例4]
右图表示的是一间房子侧面墙的形状,
它的面积是多少平方米? 方法四:从长方形中挖走两个小三角形
长方形面积 =(5+2)×5 = 7×5 = 35(m2)
两个三角形面积 = 2×(5÷2)÷2×2 = 5(m2) 房子侧面墙的面积 = 35-5 = 30(m2)
说一说:求组合图形面积的方法。
人教版五年级上小学数学教案:《组合图形的面积》(精选12篇)
人教版五年级上小学数学教案:《组合图形的面积》(精选12篇)人教版五年级上小学:《组合图形的面积》篇1教学目标1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点能根据条件求组合图形的面积。
教学难点理解分解图形时简单图形的差较难分解。
教具、学具教师指导与教学过程学生学习活动过程设计意图一、试一试教师引导学生读题,理解题意。
二、练一练第1题1、请学生任意分割,后说说分割的是什么已经学过的图形2、老师要求再分割3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程学生学习活动过程设计意图三、练一练第3题学生看书上的图。
教师读题,要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?四、作业完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
学生能正确进行组合图形的实际运用。
再进行组合图形的面积。
书设计:图形的面积人教版五年级上小学数学教案:《组合图形的面积》篇2学习目标:1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成长的脚印 教学内容 新世纪小学数学教材(北师大版)五年级上册第五单元第二课时。 教学目标 1、能正确估计不规则的图形面积的大小,能用数方格的方法计算一些不规则图形的面积,掌握数方 格的顺序和方法。 2、学生运用数学知识解决实际问题的能力,让学生体会数学源于生活,用于生活。 3、让学生欣赏大自然的美,使学生受到美的教育。 教学重点 估计不规则图形面积的大小,计算不规则图形的面积 教学难点 估计不规则图形面积的大小. 教材分析 在现实生活中,学将接触到大量的不规则图形的面积问题,原来根据标准的要求,让学生掌握会计, 计算不规则图形的面积,是培养学生空间观念的一个方面,同时也是提高学生解决实际问题能力的 一个方面。本课时专题安排了估计、计算不规则图形的面积。本探索活动分为三个部分,前两个部 分主要是呈现了小华出生时与 2 岁时两个不同年龄段脚印面积的大小,第三个部分是让学生运用自 己探究出的方法,估计自己的脚印。 教学思想 根据《标准》的要求,让学生掌握会计,计算不规则图形的面积,是培养学生空间观念的一个方面, 同时也是提高学生解决实际问题能力的一个方面,让学生掌握解决数学问题的方法。 教具准备 图形,树叶若干片,方格纸两张。 一、创设情境,学习新知 (1)教师出示课件与问题:小华出生时脚印的大小是多少? 学生自己先独立进行估计,然后小组内进行交流。小组推荐人员进行全班交流。 小组 1:我们是用数格子的方法来进行计算的,我先数了数
整个格子的大约是 11 个,其他不够一个格子的我进行了拼补,这样大约是 17cm2。 小组 2:我们的方法也是这样的,我们把不满一格的按照一 格进行计算,这样大约是 18 cm2。 师:总结以上同学们的做法,基本上都是利用数格子的方法 进行估计的。同学们还有没有别的其他的做法? 生 1:我把这个脚印看成了近似的长方形,长 6 厘米,宽 3 厘米,所以面积是 3×6=18 cm2。(学生在实物投影前画出他看到的近似图形,学生们表示认可。) 生 2:我有个不同的方法,我是看成了挖土的梯形,上底上 2 厘米,下底上 7 厘米,高是 7 厘米,根据梯形的面积公式,即(2+3)×7÷2=17.5( cm2)。 师: 回顾下刚才大家都用了一个什么方法。 生 1:我们用了数一数的方法。 生 2:我们把这个脚印看成一个近似的图形进行计算。 (2)小华 2 岁时,脚印的面积约是多少? 学生自己先独立进行自学,然后小组内进行交流。 二、应用方法,解决问题 1、计算树叶的面积 师:每人拿出准备好的树叶,先同桌互相估算一下它的面积。 能不能也用数格子的方法来求出它的面积呢? 学生分小组讨论交流,指名回答: 生汇报:(1)放在格子上数数。 (2)可以把外轮廓在网格纸上画出来,再数。 (3)同桌互相交流一下结果,看看谁估算的最准确。 2、计算手掌的面积
力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
二、教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式
学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计
同学们愿意帮老师装修房子吗?那我们就从铺地板开始吧。 二、探索新知,合作交流 (一)探索求组合图形面积的方法 (多媒体出示课本客厅平面图) 师:这是老师家客厅的平面图,现在如果要在上面铺上地板,你们知道应该买多少平方米的地板吗? 这也一个组合图形,那么你知道怎样求这个组合图形的面积?请看活动要求。 1、你能把它转化成你学过的基本图形吗?请用虚线表示。 2、四人小组合作求面积,并写在课堂练习本上。 师:看清楚要求了吗?好,开始!(学生自主探索) 师:看来同学们已经找到了很多的好方法了,谁愿意介绍一下你们小组的方法? (展示学生方法,并让学生自己说明介绍) (二)小结,方法优化。 师:黑板上已经展示了很多好方法了,你可以把他们分一分类吗? 生:分为两类,分割法和添补法。 师:无论是分割法还是添补法都是为了把组合图形转化成几个基本图形。在转化的过程中,你觉得 应该注意些什么?我任意的无限制的分成很多很多小的基本图形吗? 生:不是,应该分的越少越好,这样比较方便计算。 师:讲的真好,无论分割还是添补,都是为了求面积,所以要尽量分成简单的少的基本图形,才方 便计算。 生:还要根据条件分割。 师:地板铺好了,下面我们来刷刷墙吧。 (三)巩固练习,自主学习 三、小结、反思 师:房子装修完了,你有什么收获?
[1] [2] [3] [4] [5] 下一页
北师大版五年级数学上册第五单元教案和反思 来自费尔教育。 点这里回到顶部
组合图形的面积(2)
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面
积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能
算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题
多解。
三、教学设计
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)
[板书:基本图形]
师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有
师:现在四人学习小组分工合作,计算一下一人手掌的面积,看哪组合作最快最准。 学生合作计算,交流汇报。 (1)我们先描手掌的轮廓,然后大家一起计算,×××的手掌面积大约是 86 平方厘米。
(2)我们一人描手掌的轮廓,1 人数整格,1 人数半格,一人计算,×××的手掌面积大约是 93 平方厘米。……
评选最佳合作小组。 师:我们在认识1平方分米的时候,说手掌的面积大约是1平方
北师大版五年级数学上册第五单元教案和反思 更多相关文章 相关课件 组合图形的面积 一.教学目标: 1、知识目标: 在自主探索的活动中。理解计算多种组合图形的多种方法。 能正确地分析图形,并能正确地求组合图形的面积。 2、能力目标: 能根据各种组合图形的条件,有效地选择计算方法并进行正确的计算 能运用所学的知识,解决生活中组合图形的实际问题。 3、德育目标: 体会数学与自然及人类社会的密切联系。 二 教学重难点 能正确地分析图形,求组合图形的面积就是求几个简单图形面积的和或差的计算。 三教材分析 在三年级时,学生已经学习了长方形与正方形的面积计算,在本册的第二单元,学生又学习了平行 四边形、三角形与提醒的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日 常生活中经常需要解决的问题。 四 教学过程 一、复习引入: 师:最近老师买了新房子,愿意参观老师的新房子吗?顺便帮老师装修装修,在这里你能找到哪些 学过的基本图形吗? 生:长方形,正方形,平行四边形,梯形,三角形。 师:我们把由这些基本图形组成的图形叫做组合图形(板书),我们一起来回忆一下这些基本图形 的面积公式。 师:不错,看来同学们对基本图形的面积掌握得很好,今天我们就一起来探究组合图形的面积。
师:请先在练习纸上画出解题的思路,然后进行计算。 (学生画图分析,并计算。具体计算过程略) (五)小结:这节课你有什么收获? 教学反思:
在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合 图形,在发展了学生空间观念的同时,找出隐含的条件,是学生能够利用已有的知识解决问题。 1、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,十分注重分析、解题 方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体 验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟 出学习方法,学的主动积极、生动灵活。通过一题多解的训练,培养发散思维,启发学生多角度、 多方向、多层次挖掘新奇思路、各自提出有价值的分割方法。 2、运用现代化的教学手段,向学生提供直观、多彩,、生动的形象,使学生多种感官同时受到刺激, 激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象 概括,主动参与知识的形成过程。 3、问题来源于学生,回归于学生。学生在拼图的过程中,放手让他们拼图,测量各个要素,解决提 出的问题。让学生在活动中,亲自体验自己的成功,在初步形成对组合图形概念的基础上,对“组 合”的意义有了更深一层的理解,获得更多的成功的愉悦。 4、出现未预想到的“移补”的方法解题。在预先备课时,只考虑到“割”和“补”,没想到学生在 解决第(四)部分的图形时,应用了“移补”的方法,如图所示: 想法很奇特,是预料之外的。虽然是因为数据的偶然性,但这种方法用起来比较简便,予以鼓励。 新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方 法必须由学生在现实的数学实践活动中理解和发展。学生在自身的自主探索中或者在与同伴的合作 交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从 而真正意义上的成为了学习的主人。 上一页 [1] [2] [3] [4] [5] 下一页
3、归纳提高 师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的? 生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。 师:为什么要补上一块呢? 生:补一块就成基本图形了。 师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去 补充的部分的面积。 (四)巩固训练,一题多解 师:这是学校教学楼占地的面积,你能用几种方法解决这个问题?(出示下图)