四年级奥数-巧数图形

合集下载

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形.试一试1:数一数下面各图中各有多少个三角形.()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m -2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

巧 数 图 形

巧 数 图 形

巧数图形(二等奖)临安市石镜小学周小萍教学内容:自编活动课教学内容,适合四年级下册学生。

教学目标:1、通过数图形的实践活动,使学生能按一定规律去数,做到不重复不遗漏;2、通过动手数、猜测验证、交流讨论等方法,自主地发现并掌握有序地数图形的基本规律及基本方法,灵活运用规律解决问题;3、让学生体验有序的数法的优越性,养成有序思考的习惯。

4、在教学中渗透由简单到复杂,从特殊到一般的思想方法,使学生感受学习数学的乐趣,提高学习积极性。

教学重点:发展学生的有序思维。

教学难点:让学生掌握数图形的方法,做到不重复,不遗漏。

设计理念:本课从学生熟悉的基本图形——“线段”入手,通过数线段的活动,让学生初步体会有序思考的必要性。

利用线段这一基本图形为素材组织教学,使学生感到不陌生而显得亲切、乐于学习。

教学时可先让学生自主地数,由于图形中的线比较多,学生在初次数线段的条数时容易多数或少数,从而出现不同的答案引发学生的认知冲突,使学生产生探究的欲望,有一定的挑战性。

素材中隐藏着一种数学方法与策略,在数图形的过程中按一定的规律去数就会不重不漏,数数尤其是数大数更要讲究方法。

本课通过讨论从“一个端点出发有序地数线段”与“根据间隔不同有序地数线段”两种数法,体会有条理有顺序数法的多样性,并归纳出有序地数的基本规律及基本方法。

并且能发散学生的思维,把发现的规律巧妙地“转嫁”到数角、数三角形、数长方形等其他领域的问题中去,渗透事物是相互联系的辨证思想,提高学生的数学思维能力。

预设教学过程:一、课前游戏,激发兴趣1、出示一个谜语“图形王国里某一个家族有三兄弟,说他们不像,他们一眼看去几乎长得一样,说他们像,各自性格却完全不同。

老大做事有始有终,老二做事有始无终,老三做事更没有规律,可以说是无始无终。

”让学生猜一猜这三兄弟是几何家族里的哪三个成员。

2、简要说说线段的特征,并介绍一般描述线段的方式是读出两个端点的字母,说成“线段AB”这样的形式。

小学奥数标准版巧数图形详解

小学奥数标准版巧数图形详解

段3线总段条条段共数4 ×3 ÷=12=条6条线
练一练
AB
C
D
E
AB C D E F
① 5+4+3+2+1=15(条)
FG ① 6+5+4+3+2+1=21(条) ② 7 ×6 ÷2=21(条)
② 6 ×5 ÷2=15(条)
线段条数=(端点数-1)+(端点数-2)+(端点
数-3)+……+1
或者
线段条数=端点数×(端点数-1) ÷2
分类数图形
认识基本的几何图形
AB
左端点 右端点
直线
线 段
AB
A
端点
线 段 射线
三角形
长方形

先自己独立数一数,再与同桌交流数的方法!
A
B
C
D
一共有多少条线段?
请跟我一起来数一数吧!
A
B
C
D
下图中有几条 线段呢?
以A为左端点的线 段条数 3以条B为左端点的线 段2以段条条条C为数数左1条端点的线
思路导航:数图形中有多少个长方形和数 三角形的方法一样,长方形是由长宽两对线 段围成,线段 CD上有4+3+2+1=10条线段, 其中每一条与 AC中一条线段对应,分别作 为长方形的长和宽,这里共有 6×1=6个长方 形 ; 而 AC 上 共 2 + 1=6 条 线 段 也 就 有 10×6=18个长方形。
二图叠加后总共有2+8=10个正方形,16+28=44个三角形。
或直接数三角形16+16+8+4=44
8组合 4组合 单个 2组合

巧数图形 知识点总结

巧数图形 知识点总结

巧数图形知识点总结一、巧数图形的定义巧数图形是用数的巧妙组合构成的图形,它们的特点是构造简单、形状美观、规律性强。

巧数图形可以用来培养学生的数学想象力和创造力,同时也可以帮助学生建立几何直观概念,加深对数学知识的理解和应用。

巧数图形的构造方法主要有以下几种:1. 数列构造法:通过数列的递推关系构造图形,例如斐波那契数列、等差数列、等比数列等;2. 几何构造法:通过几何图形的组合构造出新的巧数图形,例如通过三角形、矩形、正多边形等的组合;3. 代数构造法:通过代数式的变换构造出巧数图形,例如平方差公式、配方法、因式分解等。

二、巧数图形的常见类型1. 斐波那契数列构成的图形:斐波那契数列是一个非常有趣的数列,它的每一项都是前两项之和,即f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1。

将斐波那契数列的相邻两项相连,可以构成一些特殊的图形,如斐波那契螺旋、斐波那契凤凰等。

2. 等差数列构成的图形:等差数列是一个常见的数学概念,它的每一项与前一项的差都相等。

将等差数列的项以一定的规律布局在平面上,就可以构造出一些规律性强、形状美观的图形,如等差数列的排列图形、螺旋图形等。

3. 等比数列构成的图形:等比数列是另一个常见的数学概念,它的每一项与前一项的比都相等。

将等比数列的项以一定的规律布局在平面上,就可以构造出一些具有规律性的图形,如等比数列的排列图形、螺旋图形等。

4. 几何图形的组合:通过组合几何图形,可以构造出一些特殊的图形,如通过三角形的组合构造出五角星、六边形的组合构造出六芒星等。

5. 代数式的变换:通过一些代数式的变换,也可以构造出一些具有规律性和美观性的图形,如通过平方差公式构造出差平方图形、通过因式分解构造出差方形图形等。

三、巧数图形的特性巧数图形具有一些特殊的性质和规律,以下是一些常见的特性:1. 对称性:许多巧数图形都具有对称性,即可以通过某种轴对称变换得到自身。

对称性是一个非常重要的性质,它可以帮助我们更好地理解和分析图形的结构和特点。

小学四年级奥数课件:数数图形

小学四年级奥数课件:数数图形
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
由2个小三角形组合的三角形共有4×4=16个
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
由8个小三角形组合的三角形共有4个
11/20/2019
下图中共有多少个正方形?多少个三角形?
图中共有小三角形4×4=16个
由2个小三角形组合的三角形共有4×4=16个 由4个小三角形组合的三角形共有4×2=8个 由8个小三角形组合的三角形共有4个
图中共有16+16+8+4=44个
11/20/2019
下图中共有多少个正方形?多少个三角形?
由4个小三角形组合的三角形共有4×2=8个
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中
下图中共有多少个正方形?多少个三角形?
下图中一共有多少个三角形?
11/20/2019
下图中一共有多少个三角形?
11/20/2019
下图中一共有多少个三角形?
11/20/2019
11/20/2019
图中共有小三角形5个。
2个图形组合的三角形有6个。
3个图形组合的三角形有2个。 4个图形组合的三角形有1个。 图中共有5+6+2+1=14个三角形。
11/20/2019
11/20/2019
11/20/2019

四年级奥数-巧数图形个数

四年级奥数-巧数图形个数

姓名:巧数图形个数“数图形的个数”是趣味图形问题的一种,由于几何图形千变万化,错综复杂,要想准确地数出图形中所包含的某一个几何图形的个数,关键是要掌握有条理有次序地数图形的方法。

数图形的个数时,既不能同一图形数两次,又不能把有的图形漏掉不数,常用的计算方法有按顺序和分类数两种。

下面举例介绍两种方法的运用规律:例:数一数下面图中有多少条线段。

第一:按含基本线段的顺序去数。

上图一共有5条小线段,这每条小线段就是基本线段,有5条基本线段,包含有两条基本线段的有4条……第二:按端点进行分类去数。

以线段最左边的点为第一个端点,第二个点为第二个端点……为了方便同学们计数,向大家介绍数线段、三角形、角数量的公式:1+2+…+(n-2)+(n-1)=2)1(nn一、试一试,看谁数得又对又快。

一共有()个三角形。

一共有()个角。

二、填空。

1. 算式中有乘法和加、减法,应先算();算式中有除法和加、减法,应先算();算式中有括号的,应先算()。

2. 在计算25+13×2时,先算( )法,再算( )法。

3. 在计算78÷16×3时,先算()法,再算()法。

4. 在算式50-20÷5里,如果要先算减法,那么算式应该是:()。

里填上“<”“>”或“=”。

20×5+×(5+3)48÷6÷÷(6×8)280-37-280-(37+163)60-24÷60-24)÷12小故事明明和沉沉都十分喜欢数学。

一天明明问沉沉:“你最喜欢几?”“我最喜欢9。

”“那你说说从1数到100,要说几次‘9’?”“啊!……这”沉沉被难住了,“这要数一数才能知道,一分钟时间。

”同学们,请你在一分钟内说出从1到100有多少个9?。

巧数图形(1)

巧数图形(1)

《巧数图形》微课教学设计教学目标:1、体会有条理数法的多样性,并能运用有序的数法数出给定图形的个数。

2、经历数图形的过程,渗透有序、转化、化繁为简等数学思想,进一步开展空间观念。

3、提高对数学学科的兴趣,增强学习自信心。

教学重点:有规律地数,不重复不遗漏。

教学难点:引导学生在按一定规律数的根底上发现数图形的规律。

一、问题导入,引发兴趣。

在教学四年级下册三角形一知识点时,书上出现了一道找规律数三角形的题目。

如何教学呢?如何引导学生探讨其中的规律呢?我想就结合数线段、数角,由简到繁,由浅入深,引导学习一起来自主学习。

二、数线段,构建数学模型。

我们先从简单的开始。

1、巧数线段〔1〕出示图一共有几条线段?线段上一共有5个点,如何数出线段呢?我们可以按一下思路来理解。

(2)这样一共就有:4+3+2+1=10(条〕2、那么我增加两个点,线段上一共有7个点呢?生自主数,展示方法。

用同样的方法,我们可以列出算式:6+5+4+3+2+1=21(条〕3、师小结:通过以上两道题,大家掌握了规律和诀窍吗?引出:有序、不重复、不遗漏。

三、应用规律:数角我们通过数线段了解了规律,那么可以用这个规律来数角吗?引导学生列式:4+3+2+1=10四、知识迁移:数三角形数线段和角我们都会了,那数三角形是否也可以这样分类来数呢?以上三幅图,能否用刚刚的方法列式数出三角形的个数?你知道怎样列式吗?列式: 3+2+1=6〔个〕 5+4+3+2+1=15〔个〕 6+5+4+3+2+1=21〔个〕五、深化提高:数三角形学会了规律,大家有信心来挑战一下自己吗?运用规律尝试用数三角形的方法数复杂一些的图形中的三角形个数。

师:数完后,你发现了什么?运用分层计数法,就是把刚刚的规律多用几次,用乘法原理就可以很快的数出三角形的个数了。

你学会了吗?它们数的方法与数线段的方法是一样的。

六、归纳总结,拓展提升,开展思维1、归纳总结:数图形时,我们要按照一定的顺序,有条理有方案有方法地去解答,由单个根本图形数起,再数两个图形合成的图形,依次规律一个一个往下数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档