四年级数学-巧数图形汇编

合集下载

小学数学数图形个数的巧妙方法

小学数学数图形个数的巧妙方法

数图形个数的巧妙方法[要点解析]1.怎样数一条直线上线段的条数?一条线上有n条独立线段,我们将它们编号为1,2,3,…,n,则这条直线上所有线段的条数是:1+2+3+…+n2.用数线段条数的方法,也可以数数角、三角形、长方形和立方体的个数。

[范例解析1]例1数出图5-1中各条线上线段的总条数。

⑴ └──┴──┴──┘⑵ └─┴─┴─┴─┴─┴─┘分析⑴图中线上有三条独立线段,我们将这三条独立线段编上号,如图5-2:1 2 3└──┴──┴──┘图5-2现在,我们这样来数,其中单独的线段有:⑴、⑵、⑶这三条;由两条独立线段合并成一条线段的有:(1,2)、(2,3)这两条;由三条独立线段合并成一条线段的有:(1,2,3)这一条。

由3+2+1 =6(条),我们数得图中有6条线段,他趣的是,这个得数6正是我们所编号码1、2、3这三个连续数的和。

这是不是巧合呢?我们再来看⑵和⑶的结果。

⑵我们仿照⑴的作法将⑵图中的独立线段编上号码,如图5-3:1 2 3 4 5 6└─┴─┴─┴─┴─┴─┘图5-3单独的线段有:⑴、⑵、⑶、⑷、⑸、⑹一共6条;两条合并成一条有:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)一共5条;三条并成一条的有:(1,2,3)、(2,3,4)、(3,4,5)、(4,5,6)一共有4条;四条并成一条的有:(1,2,3,4)、(2,3,4,5)、(3,4,5,6)一共有3条;五条并成一条的有:(1,2,3,4,5)、(2,3,4,5,6)一共有2条;六条并成一条的有:(1,2,3,4,5、6)只1条。

总条数也正好是编号的六和连续数的和,即1+2+3+4+5+6 21(条)。

说明:从上例的分析解答过程,我们可得数线段的方法,通过这种方法,我们得到一个重要的规律,这就是:单条线上线段的总条数,都等于从1开始的几个连续数的和(有几条独立线段就有几个连续数)。

这样,我们就将问题由数数转化成计算,它的优点是:不重复,不漏算。

小学四年级数学拔高-巧数图形

小学四年级数学拔高-巧数图形

第一讲巧数图形【知识要点】:我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

【例题精讲】例1:数出下面图中有多少条线段。

试一试:数出下列图中有多少条线段。

(2)(3)例2:数一数下图中有多少个锐角。

试一试:下列各图中各有多少个锐角?例3:数一数下图中共有多少个三角形。

试一试:数一数下面图中各有多少个三角形。

例4:右图中有多少个三角形?例5:数一数下图中有多少个长方形?试一试:数一数,下面各图中分别有几个长方形?例6:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)试一试:数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)例7:从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?试一试:从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?这些船票中有多少种不同的票价?【巩固练习】1、数出下列图中有多少条线段。

(3)2、数一数下图中共有多少个三角形。

3、数一数下图中有多少个长方形。

4、下列图形中,不含“*”号的三角形或长方形各有几个?5、数一数下列各图中分别有多少个正方形。

6、从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?7、从成都到南京的快车,中途要停靠9个站,有几种不同的票价?。

巧数图形详解-小学奥数

巧数图形详解-小学奥数
还可以这样数:
4
24
12
24+16+12+4=56个
可看成由这个图形的3 个组合,单独一个有16 个三角形。
组合后增加8个三角形。
总共16×3+8=56
拓展9:下面图形中有多少个三角形?
拆走2条线后有3个三角形。 返回第1条线后增5个三角形。 返回第2条线后增8个三角形。
总共3+5+8=16个三角形。

设想大 长方形消失 则有15+10-1=24个
还原大长方形则增4

总共24+4总= 共282个8个
谢谢使用
6+5+4+3+2+1= 21个
练习2.数一数,下图中有多少个三角形?
12 3 4
1 234 5
(4+3+2+1)×2=20 个
(5+4+3+2+1)×3=45 个
例4.数一数,下图中有多少个角?
1
11
2
3
4
2
4+3+2+1=10 个
拓展1. 数一数,下图中有几个三角形?
拆除2条红线和蓝绿线后有三角 形 14个 2条红线返回后增加6个三角形
中横线移去后有18个三角形 中横线返回后增10个三角形 总共18+10=28(个)三角形
或12+6+8+2=28(个)三角形
5个组合
单个
3个组合 2个组合
拓展14. 数一数,图中有多少个长方形?
10
10
10
总共(4+3+2+1)×3=30 个

四年级奥数-巧数图形个数

四年级奥数-巧数图形个数

姓名:巧数图形个数“数图形的个数”是趣味图形问题的一种,由于几何图形千变万化,错综复杂,要想准确地数出图形中所包含的某一个几何图形的个数,关键是要掌握有条理有次序地数图形的方法。

数图形的个数时,既不能同一图形数两次,又不能把有的图形漏掉不数,常用的计算方法有按顺序和分类数两种。

下面举例介绍两种方法的运用规律:例:数一数下面图中有多少条线段。

第一:按含基本线段的顺序去数。

上图一共有5条小线段,这每条小线段就是基本线段,有5条基本线段,包含有两条基本线段的有4条……第二:按端点进行分类去数。

以线段最左边的点为第一个端点,第二个点为第二个端点……为了方便同学们计数,向大家介绍数线段、三角形、角数量的公式:1+2+…+(n-2)+(n-1)=2)1(nn一、试一试,看谁数得又对又快。

一共有()个三角形。

一共有()个角。

二、填空。

1. 算式中有乘法和加、减法,应先算();算式中有除法和加、减法,应先算();算式中有括号的,应先算()。

2. 在计算25+13×2时,先算( )法,再算( )法。

3. 在计算78÷16×3时,先算()法,再算()法。

4. 在算式50-20÷5里,如果要先算减法,那么算式应该是:()。

里填上“<”“>”或“=”。

20×5+×(5+3)48÷6÷÷(6×8)280-37-280-(37+163)60-24÷60-24)÷12小故事明明和沉沉都十分喜欢数学。

一天明明问沉沉:“你最喜欢几?”“我最喜欢9。

”“那你说说从1数到100,要说几次‘9’?”“啊!……这”沉沉被难住了,“这要数一数才能知道,一分钟时间。

”同学们,请你在一分钟内说出从1到100有多少个9?。

10巧数图形

10巧数图形

10
巧数图形
例题
⒈数一数,右图中有几条线段。

2 数一数,右图中有多少个三角形。

3 数一数,右图中有多少个长方形。

4 数一数,右图中有多少个三角形。

5 数一数,右图中有多少个正方形。

6 数一数,右图中有多少个三角形。

做一做
1 右图中有多少个锐角?
2 右图中有多少个三角形?
练习十
⒈右图中有几条线段呢?
⒉右图中有几个三角形?
⒊右图中有多少个三角形。

⒋右图中有多少个三角形?
⒌右图中有多少个三角形。

⒍右图中有几个梯形,几个三角形?
⒎数一数,右图中有多少个正方形。

⒏数一数,右图中有多少个长方形。

小学四年级奥数讲义专题一 巧数图形

小学四年级奥数讲义专题一 巧数图形

专题一 数图形
【例题1】数出下图中有多少条线段?
练习1:
(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?
【例题2】数出图中有几个角?
练习2:数出图中有几个角?
(1) (2)
【例题3】
数出右图中共有多少个三角形?
E
A B C D D
A
B
C
O
D
C B A O
C
B
A E
D O
C B
A P
D
C
B
A
练习3:数出图中共有多少个三角形?
(1) (2)
【例题4】数出下图中有多少个长方形?
练习4:
(1)数出下图中有多少个长方形? (2)数出下图中有多少个正方形?
【例题5】有5个同学,每两个人握手一次,一共要握手多少次? 练习5:
(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?
(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数?
D
C B A
K
G
I H G
A
D
C
B
A
D
C
B
A
课后习题一
1.下列图形中各有多少条线段?
2.下列图形中各有多少个三角形?
3.数三角形
( )个三角形 ( )个三角形
4.数长方形
( )个长方形 ( )个长方形
( )个长方形 ( )个长方形
5.数正方形
()个正方形()个正方形()个正方形*6. 下图中,包含“*”号的正方形有多少个?长方形呢?。

24巧数图形

24巧数图形

巧数图形月 日 姓 名知识要点:1.巧数图形问题包括:数线段、数三角形、数正方形、数长方形等。

2.数图形的个数,不但要有一双好眼睛,还要善于开动脑筋,仔细观察,按顺序分类去做,做到不重复,不遗漏,这样才能数得又快又准。

通过数线段、数三角形、数角等总结出共用的方法:(n -1)+(n -2)+(n -3)+…+2+1经典例题:例1.(1)图4-1中有多少条线段?(2)图4-2中共有多少个角?(3)数一数图4-3中共有多少个三角形?例2.图4-4中一共有多少条线段?图4-1图4-2图4-3图4-4例3.数一数图4-5有多少个正方形?例4.图4-6中一共有多少个长方形?就地练兵1.如图4-7所示图中共有条线段。

2.数一数图4-8中有多少个三角形?3.如图4-9所示,图中共有多少条线段?4.数一数图4-10中有多少条线段?图4-5图4-6图4-7图4-8123C图4-10图4-95.图4-11中共有多少锐角?6.如图4-12所示,图中共有 线段,共有 个三角形。

7.图4-13中共有 个三角形。

8.(1)数一数图4-14中有多少个正方形。

(2)数一数图4-15中共有多少个正方形?9.数一数图4-16中有多少个长方形?A OC 1 C 2 C 20B图4-11· · · 图4-12C图4-13 图4-14图4-15图4-16课后大考验姓 名 成 绩1.如图4-17中共有 条线段。

2.数一数,图4-18中有多少条线段?3.图4-19中共有多少个角?4.数一数图4-20有多少个正方形?5.图4-21中共有多少个长方形?AB C D EF G图4-172 3 4 56图4-19图4-20图4-21图4-18。

苏教版四年级上册数学课件 思维训练巧数图形7张PPT

苏教版四年级上册数学课件   思维训练巧数图形7张PPT
例1. 一条线段上共有15个点(含两个端点),数数一共有 多少条线段?
两个点有一条线段,有15个点,依次去数是麻烦的。所以 考虑用简单情况去找出规律,再利用规律找出一共有多少 条线段。 2个点时,有1条线段; 3个点时,有2+1条线段; 4个点时,有3+2+1条线段; …… 15个点时,有14+13+12+11+10+9+8+7+6+5+4+3+2+1条线段 。 解:14+13+12+1l+10+9+8+7+6+5+4+3+2+1=105(条)
【同步练习】 1. 下图中有多少条线段??
34条
例2. 数一数下图中有 多少个三角形?
图中三角形底边上每一条线段都与顶点O构成1个三角形,也就 是底边上有多少条线段,就有多少个三角形。底边上有5个端点, 就有4+3+2+1=10(条)线段。解:4+3+2+1=10(个)
【同步练习】 2. 下图中有多少个三角形?
6+6+3=15(个 )
例3. 你能数出下面正方形的个数吗?
可以分类数:由一个小正方 形组成的有12个;由四个小 正方形组成的正方形有6个; 由九个小正方形组成的正方 形有2个,所以共有 12+6+2=20(个)。解: 12+6+2=2形?
13+4+1=18(个 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲巧数图形
数出某种图形的个数是一类有趣的图形问题。

由于图形千变万化,
错综复杂,所以准确地数出其中包含的某种图形的个数,可以培养我们
认真,仔细,做事耐心有条理的好习惯。

要想有条理、不重复、不遗漏地
数出所要图形的个数,最常用的方法就是分类数。

例1数出下图中共有多少条线段。

分析与解:1.我们可以按照线段的左端点的位置分为A,B,C三类。

如下图所示,以A为左端点的线段有______条,以B为左端点的线段有________
条,以C为左端点的线段有_______条。

所以共有_________=6(条)。

2. 我们也可以按照一条线段是由几条小线段构成的来分类。

如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有_______条,由两条
小线段构成的线段有_______条,由三条小线段构成的线段有________条。

所以,共有_____________=6(条)。

由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型
要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。

例2 下列各图形中,三角形的个数各是多少?
分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段
更多精品文档
的两个端点为顶点的三角形),
所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。

由前面数线段的方法知,
图(1)中有三角形1+2=3(个)。

图(2)中有三角形________(个)。

图(3)中有三角形_________(个)。

图(4)中有三角形_______________=15(个)。

图(5)中有三角形______________=21(个)。

例3下列图形中各有多少个三角形?
分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。

以AB为底边的三角形ABC中,有三角1+2+3=6(个)。

以ED为底边的
三角形CDE中,有三角形___________(个)。

所以共有三角形___________________(个)。

这是以底边为标准来分类计算的方法。

它的好处是可以借助“求底边线段数”而
得出三角形的个数。

我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。

由1个小块组成的三角形有3个;由2个小块组成的三角形有5个;
由3个小块组成的三角形有1个;由4个小块组成的三角形有________个;
由6个小块组成的三角形有_________个。

所以,共有三角形3+5+1+2+1=12(个)。

(2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为
分类标准来计算:
由1个小块组成的三角形有4个;由2个小块组成的三角形有______个;
更多精品文档
由3个小块组成的三角形有________个;
由4个小块组成的三角形有_______个;
由6个小块组成的三角形有________个。

所以,共有三角形___________________=15(个)。

例4右图中有多少个三角形?
解:假设每一个最小三角形的边长为1。

按边的长度来分类计算三角形的个数。

边长为1的三角形,从上到下一层一层地数,有1+3+5+7=16(个);
边长为2的三角形(由________个小三角形组成)(注意,有一个尖朝下的三角形) 有______________7(个);边长为3的三角形有___________(个);边长为
4的三角形有__________ 个。

所以,共有三角形16+7+3+1=27(个)。

例5数出下页左上图中锐角的个数。

分析与解:在图中加一条虚线,如下页右上图。

容易发现,所要数的每个角
都对应一个三角形(这个角与它所截的虚线段构成的三角形),这就回到例2,
从而回到例1的问题,即所求锐角的个数,就等于从O点引出的6条射线将
虚线截得的线段的条数。

虚线上线段的条数有________________________
例6在下图中,包含“*”号的长方形和正方形共有多少个?
更多精品文档
解:按包含的小块分类计数(
如何数一定数量的长方形小块有多少?有规则吗?) 包含1小块的有1个;包含2小块的有___个;
包含3小块的有4个;包含4小块的有____个;包含5小块的有2个;
包含6小块的有___个;包含8小块的有4个;包含9小块的有____个;
包含10小块的有____个;包含12小块的有4个;包含15小块的有___个。

所以共有1+4+4+7+2+6+4+3+2+4+2=______(个)。

练习
1.下列图形中各有多少条线段?
2.下列图形中各有多少个三角形?
3.下列图形中,各有多少个小于180°的角?
更多精品文档
4.下列图形中各有多少个三角形?
5.下列图形中各有多少个长方形?
6.下列图形中,包含“*”号的三角形或长方形各有多少?
7.下列图形中,不含“*”号的三角形或长方形各有几个?
更多精品文档。

相关文档
最新文档