07薄膜科学与技术-薄膜的生长与形成

合集下载

薄膜物理与技术-5 薄膜的形成与生长

薄膜物理与技术-5  薄膜的形成与生长

吸附原子做表面迁移→碰撞→结合(为主)
• 临界核长成稳定核的速率决定于:
1)单位面积上的临界核数—临界核密度
2)每个临界核的捕获范围 3)所有吸附原子向临界核运动的总速度
5.2 成核理论-热力学界面能理论
* 成核速率 I 与临界核面密度 ni、临界核捕获范围 A和 吸附原子向临界核扩散的总速率 V 有关。
最小稳定核:即原子团的尺寸或所含原子的数目比它再小时, 原子团就不稳定。 对不同的薄膜材料与基片组合,都有各自的最小稳定核。如 在玻璃上沉积金属时,最小稳定核为3-10个原子 临界核:比最小稳定核再小点,或者说再小一个原子,原子 团就变成不稳定的。这种原子团为临界核。
5.2 成核理论
成核理论主要有两种理论模型: • 毛细理论(热力学界面能理论):建立在热力学基础上,利
1 ED fD exp D o kT 1
5.1 凝结过程
平均表面扩散距离
吸附原子在表面停留时间经过扩散运动所移动的距离(从起始
点到终点的间隔)称为平均表面扩散距离, 若用 ao表示相邻吸附位臵间距,则:
x
Ed ED x a0 exp 2kT
αT 1 αT 1
TR =TS 入射原子与基片能量交换充分,达到热平衡 完全适应,
不完全适应,TS < TR < TI
完全不适应, TI TR
入射原子与基片完全没有热交换
αT 0
5.2 成核理论
薄膜的形成是由成核 开始的。
凝结
5.2 成核理论
稳定核:要在基片上形成稳定的薄膜,在沉积过程中必须不 断产生这样的小原子团,即一旦形成就不分解。
5.1 凝结过程
1. 吸附

薄膜科学与技术教学大纲

薄膜科学与技术教学大纲

《薄膜科学与技术》教学大纲一、课程简介课程名称:薄膜科学与技术 Science and Technology of Thin Films课程类型:专业课(选修)学时:48学分:3开课学期:7开课对象:材料物理专业先修课程:固体物理导论;材料分析测试技术参考教材:1.郑伟涛《薄膜材料与薄膜技术》化学工业出版社2.田民波《薄膜技术与薄膜材料》清华大学出版社3.杨邦朝《薄膜物理与技术》电子科技大学出版社4.唐伟忠《薄膜材料制备原理,技术及应用》冶金工业出版社二、课程性质、目的与任务《薄膜科学与技术》是“材料物理”专业本科生拓展知识面的选修课程,它也适合材料类其它专业学生选修。

学生在已具备一定的固体物理导论、材料分析测试技术等知识的基础上,通过本课程了解薄膜的基本概念、特殊性和重要性;掌握薄膜材料的制备方法、形成过程、表征方法、性质及应用。

薄膜是材料的一种特殊形态。

薄膜科学是现代材料科学中极其重要和发展最为迅速的一个分支,已成为微电子学、光电子学、磁电子学等新兴交义学科的材料基础,成为了构筑高新技术产业的基本要素。

通过对薄膜科学与技术课程的学习,并通过相关资料查询、阅读、专题报告及综合分析与讨论,逐渐使学生掌握薄膜基本概念、特殊性、制备方法、生长理论和研究方法,为今后从事薄膜材料及相关材料领域的研究和工作打下良好的基础。

三、教学基本要求1. 了解和掌握薄膜的定义、分类、特殊性和重要性。

2. 掌握与薄膜制备和研究相关的真空基础知识。

3. 掌握薄膜材料的制备方法及原理。

4. 掌握薄膜的成核和生长理论;5. 掌握薄膜的厚度、结构、成份、原子化学键合、应力、附着力的表征分析方法。

6. 了解薄膜材料的性质及应用。

本课程介绍薄膜的基础知识和研究进展。

重点要求掌握薄膜材料的制备方法及表征技术。

课程较全面地介绍了薄膜材料的各种制备方法、生长过程和表征方法,具有较好的广度和深度。

使学生基本具备相关资料综合分析和整理能力。

《薄膜物理与技术》课程教学大纲

《薄膜物理与技术》课程教学大纲

《薄膜物理与技术》课程教学大纲课程代码:ABCL0527课程中文名称: 薄膜物理与技术课程英文名称:Thin film physics and technology课程性质:选修课程学分数:1.5课程学时数:24授课对象:新能源材料与器件专业本课程的前导课程:《材料表面与界面》、《近代物理概论》、《材料科学基础》、《固体物理》、《材料物理性能》一、课程简介本课程主要论述薄膜的制造技术与薄膜物理的基础内容。

其中系统介绍了各种成膜技术的基本原理与方法,包括蒸发镀膜、溅射镀膜、离子镀、化学气相沉积、溶液制膜技术以及膜厚的测量与监控等。

同时介绍了薄膜的形成,薄膜的结构与缺陷,薄膜的电学性质、力学性质、半导体特性、磁学性质以及超导性质等。

通过本课程的讲授,使学生在薄膜物理基础部分,懂得薄膜形成物理过程及其特征,薄膜的电磁学、光学、力学、化学等性质。

在薄膜技术部分初步掌握各种成膜技术的基本内容以及薄膜性能的检测。

二、教学基本内容和要求掌握物理、化学气相沉积法制膜技术,了解其它一些成膜技术。

学会对不同需求的薄膜,应选用不同的制膜技术。

了解各种薄膜形成的过程及其物理特性。

理解并能运用热力学界面能理论及原子聚集理论解释薄膜形成过程中的一些现象,了解薄膜结构及分析方法,理解薄膜材料的一些基本特性,为薄膜的应用打下良好的基础。

以下分章节介绍:第一章真空技术基础课程教学内容:真空的基础知识及真空的获得和测量。

课程重点、难点:真空获得的一些手段及常用的测量方法。

课程教学要求:掌握真空、平均自由程的概念,真空各种单位的换算,平均自由程、碰撞频率、碰撞频率的长度分布率的公式,高真空镀膜机的系统结构及抽气的基本过程。

理解蒸汽、理想气体的概念,余弦散射率,真空中气体的来源,机械泵、扩散泵、分子泵以及热偶真空计和电离真空计的工作原理。

了解真空的划分,气体的流动状态的划分,气体分子的速度分布,超高真空泵的工作原理。

第二章真空蒸发镀膜法课程教学内容:真空蒸发原理,蒸发源的蒸发特性及膜厚分布,蒸发源的类型,合金及化合物的蒸发,膜厚和淀积速率的测量与监控。

《薄膜科学与技术》课程讲稿-绪论

《薄膜科学与技术》课程讲稿-绪论

六、薄膜科技的新进展
1. 纳米薄膜 2. 单分子膜、单原子膜 3. 特殊要求的新薄膜 如高损伤阈值多色光学膜 宽波段红外薄膜
三、薄膜材料与薄膜技术的发展
2. 薄膜材料进展 * 可以制取在平衡状态下不存在的物质 (如SiXO2-X,AlXGa1-Xas) * 可在更低温度下进行物质的合成 (如溅射镀膜、离子镀膜) * 可制备各种各样的薄膜 (金属膜、合金膜、非金属膜、半导体膜、 陶瓷膜、非晶态化合物膜和塑料膜等) * 基体材料不受限制
1.物理气相沉积: 热激活,溅射 --物质的原子或分子逸出 --沉积在基片上形成薄膜, 防止污染,沉积过程在真空中进行。 真空蒸镀(电阻加热、电子束、激光、 分子外延), 溅射沉积(直流、射频、中频) 离子束 技术 (离子注入、双束技术、离 子束辅助 沉积、离子镀等)。
2. 化学气相沉积: 构成薄膜元素的单质或化合气体 --化学反应 --生成固态物质 --沉积在基片上形成薄膜。 3.溶液镀膜法: 溶液中 --化学反应或电化学反应 --在基 片上沉积薄膜
三、薄膜材料与薄膜技术的发展
3. 应用上的进展
* 产生新物性、新功能 (表面效应、量子效应等) * 电子器件和大规模集成电路 * 磁性膜、磁记录介质 * 绝缘膜、电介质膜 * 压电、铁电、热释电及超导膜、传感器膜等功能薄膜 * 多色光学器件膜、光记录膜、光导膜等光学膜 * 耐磨、抗蚀和自润滑膜 * 装饰膜 应用领域:电子、计算机、磁光记录、信息、传感器、能源、机 械、光学、航空航天和核工业等
四、薄膜的性质
2. 结构与缺陷 2.2 异常结构和化学计量比特性
* 异常结构定义:和相图不符合的结构。 ( 如非晶硅结构,300~400℃以下可制得 稳态结构,表现独特的力, 热, 光, 电磁等 物性,薄膜技术是有力制备手段之一。)

光学实验技术中的薄膜制备与表征指南

光学实验技术中的薄膜制备与表征指南

光学实验技术中的薄膜制备与表征指南在现代光学实验中,薄膜是一种广泛应用的材料,它具有许多独特的光学性质。

为了实现特定的光学设计要求,科学家们需要制备和表征各种薄膜。

本文将为您介绍光学实验技术中的薄膜制备与表征指南,帮助您更好地理解和应用薄膜技术。

一、薄膜制备技术1. 真空蒸发法真空蒸发法是一种常见的薄膜制备技术,它通常用于金属或有机材料的蒸发。

蒸发源材料通过加热,使其蒸发并沉积在基底表面上,形成薄膜。

真空蒸发法具有简单、灵活的优点,但由于材料的有机蒸发率不同,容易导致薄膜的成分非均匀性。

2. 磁控溅射法磁控溅射法是一种通过离子碰撞使靶材溅射,并沉积在基底上的技术。

这种方法可以获得高质量和均匀性的薄膜。

磁控溅射法通常用于金属、氧化物和氮化物等无机薄膜的制备。

3. 原子层沉积法原子层沉积法(ALD)是一种逐层生长薄膜的方法,通过交替地注入不同的前驱体分子,使其在基底表面上化学反应并沉积。

这种方法可以实现非常精确的厚度控制和成分均一性。

4. 溶胶凝胶法溶胶凝胶法是一种基于溶胶和凝胶的化学反应制备薄膜的方法。

通过溶胶中的物质分子在凝胶中发生凝胶化反应,形成薄膜。

这种方法适用于复杂的薄膜材料。

二、薄膜表征技术1. 厚度测量薄膜的精确厚度对于光学性能至关重要。

常用的测量方法包括激光干涉法、原位椭圆偏振法和扫描电子显微镜等。

激光干涉法通过测量反射光的相位差来确定薄膜厚度,原位椭圆偏振法则通过测量反射光的椭圆偏振状态来推断厚度。

2. 光学性能表征光学性能包括反射率、透过率、吸收率等。

常用的表征方法有紫外可见近红外分光光度计和激光光谱仪。

通过测量样品在不同波长下的吸收或透过光强度,可以得到其光学性能。

3. 表面形貌观察表面形貌对薄膜的光学性能和功能具有重要影响。

扫描电子显微镜和原子力显微镜是常用的表面形貌观察工具。

扫描电子显微镜可以获得样品表面的高分辨率图像,原子力显微镜则可以实现纳米级表面形貌的观察。

4. 结构分析薄膜的结构分析是了解其晶体结构和晶格形貌的重要手段。

第二章薄膜的制备ppt课件

第二章薄膜的制备ppt课件

在信息显示技术中的应用
在信息存贮技术中的应用
• 第二是在集成电路等电子工业中的应用, 其中,从外延薄膜的生长这一结晶学角 度看也具有显著的成果。
在计算机技术中的应用
在计算机技术中的应用
• 第三是对材料科学的贡献。薄漠制 备是在非平衡状态下进行,和通常的热 力学平衡条件制备材料相比具有:所得 材料的非平衡特征非常明显;可以制取普 通相图中不存在的物质;在低温下可以制 取热力学平衡状态下必须高温才能生成 的物质等优点。
薄膜的主要特性
• 材料薄膜化后,呈现出的一部分主要特性:

几何形状效应
• 块状合成材料一般使用粉末的最小尺寸为 纳米至微米,而薄膜是由尺寸为1埃左右的原子
或分子逐渐生长形成的。采用薄膜工艺可以研
制出块材工艺不能获得的物质(如超晶格材料),
在开发新材料方面,薄膜工艺已成为重要的手
段之一。
非热力学平衡过程
无机薄膜制备工艺
• 单晶薄膜、多晶薄膜和非晶态薄膜在现代微 电子工艺、半导体光电技术、太阳能电池、光纤 通讯、超导技术和保护涂层等方面发挥越来越大 的作用。特别是在电子工业领域里占有极其重要 的地位,例如半导体集成电路、电阻器、电容器、 激光器、磁带、磁头都应用薄膜。
• 薄膜制备工艺包括:薄膜制备方法的选择; 基体材料的选择及表面处理;薄膜制备条件的选 择;结构、性能与工艺参数的关系等。
(2)双蒸发源蒸镀——三温度法
三温度-分子束外延法主要是用 于制备单晶半导体化合物薄膜。从 原理上讲,就是双蒸发源蒸镀法。 但也有区别,在制备薄膜时,必须 同时控制基片和两个蒸发源的温度, 所以也称三温度法。
三温度法 是制备化合物 半导体的一种 基本方法,它 实际上是在V族 元素气氛中蒸 镀Ⅲ族元素, 从这个意义上 讲非常类似于 反应蒸镀。图 示就是典型的 三温度法制备 GaAs单晶薄膜 原理。

薄膜生长的原理范文

薄膜生长的原理范文

薄膜生长的原理范文薄膜生长是一种通过在基底上逐层沉积材料来制备薄膜的过程。

薄膜生长技术在许多领域中被广泛应用,如半导体器件、薄膜太阳能电池、涂层技术、生物传感器等。

薄膜生长的原理涉及材料的原子或分子沉积、表面扩散、自组装等过程。

本文将详细介绍薄膜生长的原理。

首先,薄膜生长涉及材料的原子或分子在基底表面的沉积过程。

在薄膜生长中,一般采用物理气相沉积(PVD)或化学气相沉积(CVD)等方法。

在PVD中,材料通常以固体的形式存在,通过激光蒸汽、电子束蒸发等方式将材料蒸发到真空腔体中,然后沉积到基底表面。

在CVD中,材料以气体的形式存在,反应气体通过化学反应生成沉积材料,并在基底表面上沉积。

这些方法中,材料的原子或分子需要穿过气体或真空中的传递路径,然后与基底表面发生相互作用,并最终沉积到基底表面上。

其次,薄膜生长还涉及沉积材料的表面扩散。

由于沉积材料和基底的晶体结构不匹配,沉积过程中会产生应变能,而表面扩散可以减小材料的应变能。

表面扩散是指原子或分子在表面上的迁移过程,使得材料可以在基底表面上扩散形成更大晶体的过程。

表面扩散是通过原子或分子的跳跃运动来实现的,这种跳跃过程受到热能的影响。

在薄膜生长过程中,通常会提供适当的热能,以促进表面扩散,使得材料更好地填充基底表面。

此外,薄膜生长还涉及材料的自组装。

自组装是指原子、分子或纳米颗粒自发地在基底表面上组装成有序结构的过程。

材料的自组装通常受到表面能、体能和介面能的影响。

表面能是指材料表面的自由能,体能是指材料的体积自由能,介面能是指材料与基底之间的能量。

当材料在基底表面上形成一定的有序结构时,可以通过降低介面能来减小自由能,从而提高生长速率和质量。

自组装还可以通过改变材料的结构和形貌来调控其性能,如提高材料的导电性、光学性能等。

总之,薄膜生长的原理涉及材料的原子或分子沉积、表面扩散和自组装等过程。

通过控制这些过程的条件和参数,可以实现对薄膜的生长速率、厚度、晶体结构和形貌的调控。

[课件](讲义1)薄膜物理与技术PPT

[课件](讲义1)薄膜物理与技术PPT
2018/12/4
主要参考书
薄膜物理与器件. 肖定全、朱建国、朱基亮等,国防工业 出版社 (2011-05) 半导体薄膜技术与物理. 叶志镇、吕建国、吕斌,浙江大 学出版社 (2008-09) 薄膜物理与技术. 杨邦朝、王文生,电子科技大学出版社 (2006-09) 薄膜材料制备原理、技术及应用. 唐伟忠,冶金工业出版 社(2003-01) 薄膜科学与技术手册. 田民波、刘德令,机械工业出版社, (1991) Internet
2018/12/4
20
按薄膜厚度和晶体结构
• 超薄膜 • 二维纳米薄膜 • 薄膜 • 厚膜 • 单晶薄膜 • 多晶薄膜 • 非晶薄膜/微晶 • 纳米晶薄膜
2018/12/4
~ 10 nm < 100 nm < 10 µ m 10 ~ 100 µ m
21
四、薄膜的历史
1000多年前,阿拉伯人发明了电镀 7世纪,溶液镀银工艺 19世纪中,电解法、化学反应法、真空蒸镀法等 20世纪以来,学术和实际应用中取得丰硕成果,溅射法 近年来,Sol-Gel法、激光闪蒸法……
1. 2. 2. 3. 4. 5.
2018/12/4
19
按照材料特性(按σ,ε,u)
按电导率( σ )分有: 金属薄膜 半导体薄膜 绝缘体薄膜 超导体薄膜 光电薄膜 … 按( ε )分有: 介质薄膜


铁电薄膜
压电薄膜 热电薄膜
按导磁率( u )分有: 磁性薄膜 非磁性薄膜
2018/12/4
8
薄膜科学包括:
(1) 薄膜制造技术—— 气相沉积生长法(PVD、CVD…) 氧化生长法 Sol-gel法 电镀(电解)法 … (2)薄膜的形成(生长)—— 从气相原子凝结→形成晶核→核长 大 →网状结构(不连续性)→成膜(连续性)

薄膜科学与技术

薄膜科学与技术

1、薄膜的定义。

气相沉积制备薄膜主要有哪三种方法? 答:薄膜是指存在于衬底上的一层厚度一般为零点几个纳米岛数十微米的薄层材料。

气相方法主要有:1化学气相淀积(CVD ),如热、光或等离子体CVD 和物理气相淀积(PVD ),和外延;有时也分为CVD 、热蒸发镀、和溅射镀三种。

2、真空度的定义。

其国际单位和英制单位是什么,他们之间的换算。

测量真空度通常用什么仪器,各自适用于什么真空范围?答:真空度,指真空状态下(低于大气压)的气体稀薄程度.国际单位:帕斯卡 (Pa)。

英制单位为英寸水柱 。

换算1个大气压=101325Pa=英制406.7英寸水柱=旧制760毫米汞柱。

仪器有:指针式真空计、U 形真空计、压缩式真空计、热真空计,磁控放电真空计,电离真空计等,适用范围真空计名称测量范围(Pa) 真空计名称测量范围(Pa) 水银U 型管 105~10 高真空电离真空计 10-1~10-5 油U 型管 104~1 高压力电离真空计 102~10-4 光干涉油微压计 1~10-2 B-A 计10-1~10-8 压缩式真空计(一般型) 10-1~10-3 宽量程电离真空计 10~10-8 压缩式真空计(特殊型) 10-1~10-5 放射性电离真空计 105~10-1 弹性变形真空计 105~102 冷阴极磁放电真空计 1~10-5 薄膜真空计 105~10-2 磁控管型电离真空计 10-2~10-11 振膜真空计105~10-2 热辐射真空计 10-1~10-5 热传导真空计(一般型) 102~10-1 分压力真空计 10-1~10-14热传导真空计(对流型)105~10-13、解释磁控溅射沉积薄膜的原理,并画出示意图。

答:利用等离子体中的离子,对被溅射物体电极进行轰击,使气相等离子体内具有被溅射物体的粒子,粒子沉积到晶片上形成薄膜。

是在二级直流溅射系统基础上,利用增加磁场,使电子或离子运动轨迹变成类螺旋运动,增加放电区的电子密度和电离效率,增加电子与原子的碰撞几率,提高等离子体浓度,提高溅射效率。

(完整版)薄膜应用与技术试题A卷试题

(完整版)薄膜应用与技术试题A卷试题

试题A卷试题答案一、填空题在离子镀膜成膜过程中,同时存在沉积和溅射作用,只有当前者超过后者时,才能发生薄膜的沉积薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程薄膜形成与生长的三种模式:层状生长,岛状生长,层状—岛状生长在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P 和电极距离的乘积有关。

二、解释下列概念1、气体分子的平均自由程每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值:称为平均自由程,2、饱和蒸气压:在一定温度下,真空室内蒸发物质与固体或液体平衡过程中所表现出的压力。

3、凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。

4、物理气相沉积法:物理气相沉积法(Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程5、溅射:溅射是指荷能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象三、回答下列问题1、真空的概念?怎样表示真空程度,为什么说真空是薄膜制备的基础?在给定的空间内,气体的压强低于一个大气压的状态,称为真空真空度、压强、气体分子密度:单位体积中气体分子数;气体分子的平均自由程;形成一个分子层所需的时间等物理气相沉积法中的真空蒸发、溅射镀膜和离子镀等是基本的薄膜制备技术。

它们均要求沉积薄膜的空间有一定的真空度。

2、讨论工作气体压力对溅射镀膜过程的影响?在相对较低的压力下,电子的平均自由程较长,电子在阳极上消耗的几率增大,通过碰撞过程引起气体分子电离的几率较低。

同时,离子在阴极上溅射的同时发射出二次电子的几率又由于气压较低而相对较小。

这些均导致低压条件下溅射的速率很低。

在相对较低的压力下,入射到衬底表面的原子没有经过很多次碰撞,因而其能量较高,这有利于提供沉积时原子的扩散能力,提供沉积组织的致密性在相对较高的压力下,溅射出来的靶材原子甚至会被散射回靶材表面沉降下来,因而沉积到衬底的几率反而下降在相对较高的压力下,使得入射原子的能量降低,这不利于薄膜组织的致密化溅射法镀膜的沉积速率将会随着气压的变化出现一个极大值3、物理气相沉积法的共同特点?(1)需要使用固态的或者熔融态的物质作为沉积过程的源物质(2) 源物质经过物理过程而进入气相(3)需要相对较低的气体压力环境(4) 在气相中及在衬底表面并不发生化学反应5、辉光放电过程中为什么P·d太小或太大,都不容易起辉放电?如果气体压强太低或极间距离太小,二次电子在到达阳极前不能使足够的气体分子被碰撞电离,形成一定数量的离子和二次电子,会使辉光放电熄灭气体压强太高或极间距离太大,二次电子因多次碰撞而得不到加速,也不能产生辉光6、真空蒸发系统应包括那些组成部分?(1) 真空室,为蒸发过程提供必要的真空环境(2)蒸发源或蒸发加热器,放置蒸发材料并对其加热(3)基板,用于接受蒸发物质并在其表面形成固态薄膜(4)基板加热器及测温器等7、什么是等离子体?以及等离子体的分类(按电离程度)?带正电的粒子与带负电的粒子具有几乎相同的密度,整体呈电中性状态的粒子集合体按电离程度等离子体可分为部分电离及弱电离等离子体和完全电离等离子体两大类部分电离及弱电离等离子体中大部分为中性粒子,只有部分或极少量中性粒子被电离完全电离等离子体中所有中性粒子都被电离,而呈离子态、电子态8、简述化学吸附的特点?1。

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用1. 引言1.1 概述薄膜材料是一类具有微米级、甚至纳米级厚度的材料,其独特的性质和广泛的应用领域使其成为现代科学和工程中不可或缺的一部分。

薄膜材料制备原理、技术及应用是一个重要且广泛研究的领域,对于探索新材料、开发新技术以及满足社会需求具有重要意义。

本文将着重介绍薄膜材料制备的原理、常见的制备技术以及不同领域中的应用。

首先,将详细讨论涂布法、旋涂法和离子束溅射法等不同的制备原理,分析各自适用的场景和优缺点。

然后,将介绍物理气相沉积技术、化学气相沉积技术以及溶液法制备技术等常见的薄膜制备技术,并比较它们在不同实际应用中的优劣之处。

最后,将探讨光电子器件、传感器和生物医药领域等各个领域中对于薄膜材料的需求和应用,阐述薄膜材料在这些领域中的重要作用。

1.2 文章结构本文将按照以下顺序进行介绍:首先,在第二部分将详细介绍薄膜材料制备的原理,包括涂布法、旋涂法以及离子束溅射法等。

接着,在第三部分将探讨物理气相沉积技术、化学气相沉积技术以及溶液法制备技术等常见的制备技术。

然后,在第四部分将介绍薄膜材料在光电子器件、传感器和生物医药领域中的应用,包括各个领域需求和现有应用案例。

最后,在结论部分对整篇文章进行总结,并提出未来研究方向和展望。

1.3 目的本文旨在全面系统地介绍薄膜材料制备原理、技术及应用,为读者了解该领域提供一个基本知识框架。

通过本文的阐述,读者可以充分了解不同的制备原理和方法,并了解到不同领域中对于特定功能或性质的薄膜材料的需求与应用。

同时,本文还将重点突出薄膜材料在光电子器件、传感器和生物医药领域中的重要作用,以期为相关研究提供参考和启发。

以上为“1. 引言”部分内容的详细清晰撰写,请根据需要进行修改补充完善。

2. 薄膜材料制备原理:2.1 涂布法制备薄膜:涂布法是一种常见的制备薄膜的方法,它适用于各种材料的制备。

首先,将所需材料以溶解或悬浮态形式制成液体,然后利用刷子、喷雾或浸渍等方式将液体均匀地涂敷在基板上。

薄膜技术的发展与应用

薄膜技术的发展与应用

薄膜技术的发展与应用随着科学技术的不断发展和进步,薄膜技术在日常生活中越来越普遍。

薄膜技术是指在一定的基材上,采用化学气相沉积、物理气相沉积、溶液法等方法,将薄膜材料制成薄而均匀的薄膜层,并应用于各个领域中。

薄膜技术的应用范围很广,涉及电子、机械、化学、材料、生物、医学等领域。

一、薄膜技术的发展历程薄膜技术的发展可以追溯到20世纪初期,当时主要是针对电子器件的生产,例如:电子管、晶体管等。

到20世纪50年代,随着半导体技术的发展,薄膜技术也得到了极大的发展。

到了20世纪60年代和70年代,尤其是化学蒸汽沉积技术的问世,薄膜技术进一步发展,涂层的质量和稳定性均得以显著提高。

21世纪初,由于全球环保意识的增强,绿色薄膜技术被提上了议程,有害气体和有害物质的使用量大大降低,同时也倡导传统的好处,例如:在半导体工业中,和光学涂层中广泛使用的有机基体和无机互换等来自自然材料,都再次得到了广泛应用。

二、薄膜技术的应用领域1.光电子器件:光电显示、光伏电池、液晶显示器、太阳能光伏电站等;2.半导体器件:集成电路、半导体发光器、半导体激光、半导体红外探测器等;3.机械加工:金刚石薄膜的应用,可将热加工和磨料加工相结合,从而大大提高了机械加工的效率、准确度和质量;4.生物医药:薄膜技术以热喷涂、等离子沉积等为主要方法,主要用于修复骨骼组织、人体器官重建等;5.日用品:涂料、加工用膜、压敏胶带、包装膜等。

三、薄膜技术的发展前景薄膜技术是一种高新技术,有着广阔的应用前景。

在未来,薄膜技术的发展方向主要有以下几个方面:1.提高薄膜沉积速率和效率;2.制备大面积、高质量和高性能的薄膜材料;3.绿色化薄膜制造过程,减少石化原料和环保问题,同时也使成本更低;4.开发新的薄膜材料,探索新的应用领域;5.开展研究工作,深入了解薄膜沉积机理和薄膜材料性质。

总之,薄膜技术已经得到了广泛的应用和发展,而且在未来几年里,它的应用范围和技术水平还将得到进一步的提升。

简述薄膜生长的三种基本模式

简述薄膜生长的三种基本模式

简述薄膜生长的三种基本模式引言薄膜生长是材料科学中的重要研究领域,它涉及到材料的制备、性质和应用等方面。

薄膜生长的基本模式可以分为三种:化学气相沉积(CVD)、物理气相沉积(PVD)和溶液法。

本文将对这三种基本模式进行全面、详细、完整且深入地探讨。

化学气相沉积(CVD)化学气相沉积是一种通过在气相中使气体分子发生化学反应,从而在基底上形成固态材料的方法。

它主要包括以下几个步骤:1.基底预处理:在进行CVD之前,需要对基底进行预处理,以提高薄膜的质量和附着力。

常见的预处理方法包括清洗、表面活化和表面修饰等。

2.基底放置:经过预处理的基底被放置在反应室中,通常是在高温和低压的条件下进行。

3.气体进料:适当的气体被进料到反应室中,其中包括反应物和载气。

反应物通过化学反应生成薄膜的组分。

4.反应发生:在适当的温度和压力下,反应物发生化学反应,生成固态薄膜。

5.薄膜生长:生成的固态薄膜在基底上生长,形成所需的薄膜结构。

CVD方法具有高度的可控性和均匀性,能够制备出高质量的薄膜。

它在半导体、光电子器件等领域具有重要的应用。

物理气相沉积(PVD)物理气相沉积是一种通过物理手段将固态材料转化为气态,然后在基底上重新形成固态材料的方法。

它主要包括以下几个步骤:1.基底预处理:与CVD相似,基底需要进行预处理以提高薄膜的质量和附着力。

2.基底放置:经过预处理的基底被放置在真空室中,通常是在高真空条件下进行。

3.材料蒸发:固态材料被加热至蒸发温度,转化为气态。

4.气体沉积:气态材料在基底上重新形成固态材料,形成薄膜。

PVD方法具有高速度和高温度的优势,适用于一些高熔点材料的制备。

它在涂层、磁性薄膜等领域具有广泛的应用。

溶液法溶液法是一种将溶液中的溶质转化为固态材料的方法。

它主要包括以下几个步骤:1.溶液制备:将溶质溶解在适当的溶剂中,形成溶液。

2.基底准备:基底需要进行预处理,以提高薄膜的附着力。

3.溶液沉积:将溶液倒在基底上,通过溶剂的挥发或化学反应,溶质转化为固态材料。

材料科学中的薄膜技术与工程

材料科学中的薄膜技术与工程

材料科学中的薄膜技术与工程随着科技的不断进步,薄膜技术在材料科学中的应用日益广泛。

薄膜是一种具有特定功能和性能的材料,其在电子、能源、生物医学等领域都发挥着重要的作用。

本文将从薄膜技术的基本原理、发展历程以及应用前景三个方面进行探讨。

首先,我们先来了解一下薄膜技术的基本原理。

薄膜是指材料在一个方向上尺寸远小于其他两个方向的材料。

在制备过程中,通常会选择一种基片作为薄膜的支撑物。

通过不同的方法,将原材料在基片上进行沉积或涂覆,形成所需的薄膜结构。

薄膜的厚度通常在纳米到微米级别,因此具有较高的比表面积,对外界环境和物质具有较强的响应能力。

随着薄膜技术的不断发展,其应用范围也越来越广泛。

在电子领域,薄膜技术被广泛应用于集成电路和柔性显示器等方面。

制备高性能的金属薄膜和半导体薄膜,可以提高电子器件的性能和稳定性。

同时,薄膜技术还可以制备出高效的光学薄膜,提升光学器件的传输和控制能力。

在能源领域,薄膜技术可以用于制备光伏薄膜、燃料电池薄膜等,进一步提高能源利用效率。

此外,在生物医学领域,薄膜技术可以应用于药物控释、生物传感器等方面,为医学诊疗提供更多的选择。

薄膜技术的发展历程也是一部材料科学的不断探索与创新的历史。

早在20世纪50年代,科学家就开始研究薄膜沉积的方法和技术。

最早的薄膜制备方法之一是物理气相沉积(PVD),即将原材料加热到一定温度,使其蒸发、扩散并在基片上沉积。

这种方法主要适用于金属薄膜的制备。

而随着科学技术的进步,化学气相沉积(CVD)等新的薄膜制备技术也逐渐被发展出来,可以制备出更加复杂和多样化的薄膜结构。

未来,薄膜技术在材料科学中的应用前景将更加广阔。

随着纳米材料的研究和应用推进,将会有更多的新型薄膜材料被开发出来。

例如,二维材料石墨烯具有优异的导电性和光学特性,可用于制备高性能的电子器件和柔性显示器。

此外,有机无机杂化薄膜也是当前研究的热点之一。

这种薄膜结构既具备了有机材料的柔性和可塑性,又具备了无机材料的稳定性和导电性,有望应用于柔性电子、可穿戴设备等领域。

薄膜物理与技术-7 薄膜的物理性质--(1) 薄膜的力学性质

薄膜物理与技术-7  薄膜的物理性质--(1) 薄膜的力学性质
2.1.3 增加附着力的方法 ①清洗基片 污染物导致薄膜与基片不能直接接触→范德华力大 大减弱→扩散更不可能→吸附性极差
解决方法:基片清洗→去掉污染层(吸附层使基片 表面的化学键饱和,从而薄膜的附着力差)→提高 附着性能。
第七章 薄膜的物理性质
7.1 薄膜的力学性质
7.1.1 薄膜的附着力
②提高基片温度 提高温度,有利于薄膜和基片之间原子的相互扩散 →扩散附着有利于加速化学反应形成中间层 →中间层附着 须注意:T↑→薄膜晶粒大→热应力↑→其它性能变
薄膜物理与技术
第七章 薄膜的物理性质
宋春元 材料科学与工程学院
第七章 薄膜的物理性质
概述
由于薄膜材料的不同,各种薄膜(如金属膜、 介质膜、半导体膜等)都有各自不同的性质。了解 薄膜的力学、电学、光学、热学及磁学性质, 对薄膜的应用有着十分重要的意义。
第七章 薄膜的物理性质
7.1 7.2 7.3 7.4 7.5
第七章 薄膜的物理性质
7.1 薄膜的力学性质
7.1.1 薄膜的附着力 薄膜附着的类型
薄膜的附着可分为四种类型: (a)简单附着 (b)扩散附着 (c)通过中间层附着 (d)宏观效应附着等。
第七章 薄膜的物理性质
7.1 薄膜的力学性质--7.1.1 薄膜的附着力
附着的四种类型示意图(图7-1)
简单附着
第七章 薄膜的物理性质-之薄膜的力学性质
7.1.2 薄膜的内应力--内应力的成因
(相转移效应
在薄膜形成过程中发生的相转移是从气相到固相 的转移。在相转移时一般都发生体积的变化。这是形 成内应力的一个原因。 Ga膜在从液相到固相转移时体积发生膨胀,形成 的内应力是压缩应力。 Sb(锑)膜在常温下形成时为非晶态薄膜。当厚 度超过某一个临界值时便发生晶化。这时体积发生收 缩,形成的内应力为张应力。

薄膜生长机理及控制

薄膜生长机理及控制

薄膜生长机理及控制近年来,人类科技的迅猛发展让我们对所处的世界有了越来越深的认知。

其中,材料科学在技术发展中扮演着十分重要的角色,而材料的基石则是其微观结构和组成成分。

对材料性质的探究和改良因此被放在了高度重视的位置。

而这其中,薄膜领域的发展则成为了材料学领域中的一个热点。

薄膜是指厚度在0.1-1000纳米之间的材料,也就是在三维空间中只有其中一个维度远小于另外两个的物质。

因为其独特的微观结构和电学、光学、磁学等性能,使得薄膜在新型器件、微电子、显示技术等领域有着广泛的应用前景。

在制备薄膜的过程中,生长是其中最为核心的环节。

薄膜生长是指在基底表面上逐层沉积指定组分的物质以形成薄膜的过程。

由于薄膜的尺寸微小、结构复杂,生长时的物理化学过程也异常复杂。

了解薄膜生长的机理便是控制薄膜生长并优化其性质的重要前提。

对于薄膜生长的研究,在人们的探究之路中犹如一个难以穿越的荒漠的障碍,需要科学家们不断摸索和破解。

目前人们认为薄膜生长过程中主要有物理气相沉积(PVD)和化学气相沉积(CVD)两种生长方法,它们的工作机理各不相同,下面我们将分别进行介绍。

物理气相沉积物理气相沉积是指物质在高真空中升华或挥发,由于薄膜和物质相互接触曝露,因此会在薄膜表面形成一个致密的膜。

物理气相沉积依赖于在高真空下从晶体表面蒸发或升华材料,将材料带入一个真空的室内,并使其沉积在衬底上。

这种方法与溅射、电子束蒸发类似。

但物理气相沉积的方法主要是依赖蒸发或升华材料来实现,而不是通过惯性簇合体的形成来实现(溅射的方法)。

基本工作机理:物理气相沉积是依靠真空环境和热能,从固体原材料蒸发或升华,在空气中快速扩散后的这些原子、分子或离子成为气态的,这些物质会飞向衬底表面,薄膜的生长基于原材料的等离子体反应或控制几何构成。

化学气相沉积化学气相沉积是将具有金属元素或非金属元素的有机/无机材料加在热的衬底上,产生一定的化学反应来形成单层或多层的材料覆盖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 ED 6
1 Ed 2
薄膜的形成——凝结过程
平均表面扩散时间 D 吸附原子在吸附位置上的停留时间称为平均表面扩散 时间,用 D 表示。
o 是表面原子沿表面水平方向振动周期, o 式中, o
平均表面扩散距离 x (设ao 为相邻吸附位置间距)
2
几何形状因子:
2 3cos cos3 0 f ( ) 4 1
0
薄膜的形成——核形成与生长
体积自由能变化: GV Gv 4 r 3 f ( )
3
总的自由能变化:
1 3 G GS GV 4 f ( ) (r 0 r Gv ) 3
Ed n1 J a J o exp kT
吸附能
表面扩散能
吸附原子扩散迁移频率
1 ED fD exp D o kT 1
吸附位置 滞留时间
吸附原子在滞留时间内迁移(距离)次数
a o Ed ED N f D a exp D o kT
0 G 最大
*
0
b.体积自由能与过饱和度的关系
kT P Gv ln P0
c.临界核半径与 角的关系 临界核半径与 无关。 d.临界核半径与过饱和度的关系
r* 2 0 2 0 Gv kT ln( P / P0 )
*
薄膜的形成——核形成与生长
原子聚集理论(统计理论) 问题提出
热力学界面能理论的两个假设:一是认为核尺寸变化 时,其形状不变;二是认为核的表面自由能和体积自由能 与块体材料相同。 显然,此假设只适用于比较大的核(大于100个以上 的原子)。
理论计算:
r * 0.5 nm
实际情况:基片温度低、过饱和度高时,临界核只有 几个原子。 宏观表面能计算、表面能概念、结构
气相
薄膜的形成——核形成与生长
临界核热力学描述 在液体中形成固相核,总自由能变化为:
G GV GS Gv V S
体积自由能 表面自由能 单位体积自由能 固相体积 表面积 单位表面自由能
上式就是相变热力学的 基本公式。 假设在基片表面上 形成的核是球帽形
薄膜的形成——核形成与生长
捕获区内的吸附原子凝结,非捕获区吸附原子可以蒸发, 也可以成核。
薄膜的形成——凝结过程
讨论: 当 S 1 时,每个吸附原子的捕获面积内只有一个原 子,故不能形成原子对,也不能产生凝结。 当 1 S 2 时,发生部分凝结。平均每个吸附原子 的捕获面积内有一个或两个吸附原子,可形成原子对或三 原子团。在滞留时间内,一部分吸附原子有可能重新蒸发 掉。 当 S 2 时,每个吸附原子的捕获面积内至少有两个 吸附原子。可形成原子对或更大的原子团,从而达到完全 凝结。
2 D ao / 4 D
ED exp D o kT
x 4D a
a x 4 D a ao ao exp Ed ED 2kT D
薄膜的形成——凝结过程
凝聚过程 凝结过程是指吸附原子在基体表面形成原子对及其后 续过程。 吸附原子面密度 表面滞留时间
第七章
薄膜的形成
不同制备方法,其薄膜的形成机制不同,但存在共性 问题。
本章主要以真空蒸发制备薄膜为例,讨论薄膜形成问 题。
★ 凝结过程 ★ 核形成与生长
★ 薄膜形成过程与生长模式
★ 溅射薄膜的形成过程 ★ 薄膜的外延生长
薄膜的形成——凝结过程
★ 凝结过程
薄膜形成分为:凝结过程、核形成与生长过程、岛形 成与结合生长过程。 凝结过程:原子从气相到吸附相再到凝结相的相变过程。 吸附过程 入射原子与基片作用 与基片原子进行能量交换被吸附; 能量较大的吸附原子解吸附(二次蒸发); 不与基片原子进行能量交换,被基片表面反射。
面结构和四面体结构:
1 Ed E3 2 T2 k ln( 0 J / n0 )
片表面上吸附的气相原子凝结之后,首先形成晶核,核不断 吸附气相原子形成小岛,岛吸附气相原子形成薄膜。
薄膜的形成是由成核开始的。
薄膜的形成——核形成与生长
薄膜的形成——核形成与生长
薄膜的形成——核形成与生长
核形成与生长的物理过程描述
薄膜的形成——核形成与生长
核形成理论 解决问题:核的形成条件和生长速率
薄膜的形成——凝结过程
基本概念 表面悬挂键:不饱和的化学键,具有吸附外来原子 或分子的能力。
吸附:入射到基片表面的气相范德华力(分子力)引起的吸附。
化学吸附:由化学键结合力引起的吸附。
吸附过程的能量关系
薄膜的形成——凝结过程
表面、界面自由能变化:
GS 2 r 2 (1 cos ) 0 r 2 sin2 (1 2 )
热平衡状态下: 0 cos 1 2 0
GS 2 r 2 (1 cos ) 0 r 2 sin 2 cos 0 1 1 1 2 4 r 0 ( cos sin cos ) 2 2 4 2 3cos cos3 2 4 r 0 ( ) 4 r 2 0 f ( ) 4
1
完全适应
1
不完全适应 完全不适应
0
薄膜的形成——凝结过程
薄膜的形成——核形成与生长
★ 核形成与生长
薄膜形成与生长的三种模式 岛状生长模式(Volmer-Weber模式) 层状生长模式(Frank-Vander Merwe模式) 层岛混合模式(Stranski-Krastanov模式) 大多数薄膜形成与生长过程都属于第一种模式,即在基
表面相的概念 成核:新相生成的初期阶段,包括核的形成与成核速 率问题。 临界核:从相变热力学观点看,新相核(原子团)存
在一个临界尺寸,称为临界核。比临界核尺寸大的核原子 团是稳定的;比临界核尺寸小的原子是不稳定的。
薄膜形成过程: 小于临界核尺 寸的原子团 (表面相) 类液相 大于临界核尺 寸的原子团 (固相)
I Z ni* A V

式中, Z是Zeldovich修正系数。
薄膜的形成——核形成与生长
临界核面密度:
ni* n1 exp(G* / kT )
吸附的单原子密度
Ed n1 J a J o exp kT
临界核捕获范围: A 2 r * sin 原子向临界核运动的总速率: V n1 v
2
临界核半径:
G 0 r
2 0 r* Gv
(Gv 0)
3 16 0 f ( ) * G 3(Gv )2
2 3cos cos3 0 f ( ) 4 1
0
薄膜的形成——核形成与生长
临界核问题讨论: a.自由能变化与 角的关系
薄膜的形成——凝结过程
吸附原子的捕获面积 S D 每个吸附原子的捕获面积: SD N no 式中, no是吸附位置密度,N 是吸附原子在滞留时间内的迁 移次数。
总捕获面积:
n1 N n1 S n1 S D n1 N f D a no no no n1 Ed ED exp no kT
薄膜的形成——核形成与生长
由于临界核中原子数目较少,可以分析它含有一定原子 数目时所有可能的形状,然后用试差法断定哪种原子团是临
界核。
薄膜的形成——核形成与生长
温度 T 、 T 和 T 称为转变温度或临界温度,有如下计 1 2 3 算公式:
Ed E2 T1 k ln( 0 J / n0 )
J c 1 nc c J J
J c 1 dnc s J J dt
薄膜的形成——凝结过程
热适应系数 表征入射气相(或分子)与基体表面碰撞时相互交换 能量的程度的物理量称为热适应系数。
Ti TT Ti Ts
式中 Ti 、 TT 和 Ts 分别表示入射气相原子、再蒸发原子 和基体温度。
薄膜的形成——凝结过程
薄膜制备时,要 达到完全凝结的 工艺选择:
• 提高淀积速率 • 降低基片温度 • 选用吸附能大 的基片
薄膜的形成——凝结过程
凝结过程的表征 凝结系数 c 单位时间内,完全凝结的气相原子数与入射到基 片表面上的总原子数之比。 粘附系数 s 单位时间内,再凝结的气相原子数与入射到基片 表面上的总原子数之比。
Qp物理吸附热 Qc化学吸附热 Ea激活能 Ed吸附能(解吸能)
薄膜的形成——凝结过程
薄膜的形成——凝结过程
入射原子的滞留时间 a
式中, o 是单层原子的振动周期 o
Ed a o exp kT
1


薄膜的形成——凝结过程
表面扩散过程 吸附原子的表面扩散是凝结的必要条件 原子扩散——形成原子对——凝聚 表面扩散势垒 表面扩散能 吸附能
I Z n A V
* i
v
D
a0

E exp D 0 kT a0
G* Ed ED * Z n1 exp 2 r sin Ja0 exp kT kT Ed ED G* Z n1 2 r sin Ja0 exp kT
薄膜的形成——核形成与生长
为了克服理论上的困难, 1924 年 Frenkel 提出了成核理 论原子模型,并不断发展。 原子聚集理论的基本内容 原子聚集理论将核(原子团)看作一个大分子,用其内 部原子之间的结合能或与基片表面原子之间的结合能代替热 力学理论中的自由能。 临界核 当临界核尺寸减小时,结合能出现不连续性、以及几何 形状不能保持不变。 无法给出临界核大小的解析式。
相关文档
最新文档