(完整版)高中物理牛顿第二定律经典例题
牛顿第二定律典型题习题与答案
2.光滑斜面上,放有质量为M的木板,木板上表面粗糙,为使木板能在斜面上静止不动,今有一质量为m的猫在上面奔跑,求猫的运动方向和加速度大小。
解:木板不动,其受力平衡。
设斜面夹角为α则木板受到猫给的沿着斜面向上的力大小为Mgsinα。
则猫受到沿着斜面向下的力总共是(m+M)gsinα其加速度为 a = (m+M)gsinα/m3.在倾斜角α=30°的光滑斜面上,通过定滑轮连接着质量mA=mB=1kg的两个物体,开始使用手拖住A,其离地高h=5m,B位于斜面底端撤去手后,求(1)A即将着地时A的动能(2)物体B离低端的最远距离(斜面足够长)解:1,将AB看作整体,用动能地理,设A的动能为E,则B的动能也为E。
有2E = mgh - mgh/2,带入数据求的E =2,机械能守恒,B的动能完全转化为重力势能,设上升高度为H,则mgH = E ,对应的斜面长度L = 2H =所以,物体B离低端的最远距离为 5+L =4.质量为一千克的木板静止在粗糙的水平地面上,木板与地面间的摩擦因素为,在木板左端放置一块质量为一千克,大小不算的铁块,铁块与动摩擦因素为,取g等于10。
求,当木板长为1m,在铁块上加一个水平向右的恒力8N,多少时间铁块运动到木板右端?解:已知μ=,μ′= 对铁块分析,设铁块的加速度为a ma=F拉-μ′mg 解得a=4m/s²对木板分析,设木板加速度为a′ ma′=μ′mg-μ(m+m)g 解得a′=2m/s² 根据S= 1/2 (a-a′)t² 已知S=1m 将a ,a′ 解得t=1s铁块对地的加速度a1 = (8 - *1*g)/1 = 4木板对地的加速度a2 = (*1*g - *2*g)/1 = 2则铁块对木板的相对加速度a = a1 - a2 = 2 ,铁块对木板的初速度为0有 *at^2 = 1 ,得t = 1s5.如图所示。
已知斜面倾角30°,物体A质量mA=㎏,物体B质量mB=㎏,H=。
最新高中物理牛顿第二定律经典例题(精彩4篇)
最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
高中 牛顿第二定律 (1) 试题
牛顿第二定律 (1)类型一、对牛顿第二定律的理解例1、物体在外力作用下做变速直线运动时( )A .当合外力增大时,加速度增大B .当合外力减小时,物体的速度也减小C .当合外力减小时,物体的速度方向与外力方向相反D .当合外力不变时,物体的速度也一定不变 例2、质量为M 的物块位于粗糙的水平面上,若用大小为F 的水平恒力拉物块,其加速度为a ,当拉力的方向不变,大小变为2F 时,物块的加速度为a '则( )A .a '=aB . a '<2aC .a '>2aD .a '=2a【变式】如图所示,物体P 置于光滑的水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N 的重物,物体P 向右运动的加速度为a 1;若细线下端不挂重物,而用F=10N 的力竖直向下拉细线下端,这时物体P 的加速度为a 2,则:( )A. a 1<a 2B.a 1=a 2C. a 1>a 2D.条件不足,无法判断类型二、牛顿第二定律的应用例3、一个质量为20kg 的物体,只受到两个互成角度90°,大小分别为30N 和40N 的力的作用,两个力的合力多大?产生的加速度多大?【变式1】一个质量为2kg 的物体在三个力的作用下处于平衡,撤去一个大小为10N 向东的力,求撤去该力瞬间此时物体的加速度?【变式2】一个空心小球从距离地面16m 的高处由静止开始落下,经2s 小球落地,已知球的质量为0.4kg ,求它下落过程中所受空气阻力多大?(g=10m/s 2)【变式3】如图,质量m=2kg 25.0=μ的物体静止在水平面上,物体与水平面间的滑动摩擦因数,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求:(1)物体运动的加速度;(2)物体在拉力作用下5s 内通过的位移大小。
高中物理牛顿第二定律经典练习题专题训练(含答案)
高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
牛顿第二定律经典例题及答案
牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。
当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。
其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。
高一物理(必修一)《牛顿第二定律》练习题(附答案解析)
高一物理(必修一)《牛顿第二定律》练习题(附答案解析)班级:___________姓名:___________考号:___________一、单选题1.在升降机底部安装一个加速度传感器,其上放置了一个质量为m的小物块,如图甲所示。
升降机从t=0时刻开始竖直向上运动,加速度传感器显示加速度a随时间t变化的图像如图乙所示。
取竖直向上为正方()A.速度不断减小B.加速度先变小再变大C.先是加速度增大的加速运动,后是加速度减小的减速运动D.到最低点时,小孩和杆处于平衡状态5.蹦床运动深受人们喜爱,如图为小明同学在杭州某蹦床馆,利用传感器测得蹦床弹力随时间的变化图。
假设小明仅在竖直方向运动,忽略空气阻力,依据图像给出的物理信息,可得()A.7.5s至8.3s内,运动员先处于失重状态再处于超重状态B.小明的最大加速度为502m/sC.小明上升的最大高度为20mD.小明在整个蹦床过程中机械能守恒θ=︒的光滑斜面上,物块A、B质量分别为m和2m。
物块A静止在轻弹簧上面,6.如图所示,在倾角为30物块B用细线与斜面顶端相连,A、B紧挨在一起但A、B之间无弹力。
已知重力加速度为g,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是()g g3g二、多选题10.甲、乙两个物体在同一直线上沿正方向运动,a甲=4 m/s2,a乙=4-m/s2,那么对甲、乙两物体判断正确Mg5参考答案与解析1.C【详解】AB.当a>0时,物块具有向上的加速度,处于超重状态,故AB错误;C.t=t0时刻,a=0,F N=mg,故C正确;D.t=3t0时刻,a=2g,由牛顿第二定律有F N-mg=ma得F N=3mg故D错误。
故选C。
2.D【详解】A.梦天舱和天和舱因之间因冲击对梦天舱和天和舱产生的力大小相等方向相反,可知梦天舱和天可知梦天舱和天和舱的加速度大小不相和舱的加速度方向不同,梦天舱和天和舱的质量不等,根据F ma等,故A错误;B.空间站内的宇航员受到地球的万有引力,由于万有引力全部提供做圆周运动的向心力,所以宇航员处于完全失重状态,故B错误;C.第一宇宙速度为环绕地球做圆周运动的物体的最大速度,可知对接后空间站绕地运行速度小于第一宇宙速度,故C错误;D.对接后空间站的速度会发生变化,若不启动发动机调整轨道,对接后空间站的轨道将会是椭圆,故D正第11 页共11 页。
高中物理必修一牛顿第二定律典型例题
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(A)。
【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。
[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。
高中物理牛顿第二定律经典习题训练含答案
牛顿第二定律典型题型及练习一、巧用牛顿第二定律解决连接体问题所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系。
1、连接体与隔离体:两个或几个物体相连接组成的物体系统为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体。
2、连接体问题的处理方法(1)整体法:连接体的各物体如果有共同的加速度,求加速度可把连接体作为一个整体,运用牛顿第二定律列方程求解。
(2)隔离法:如果要求连接体间的相互作用力,必须隔离出其中一个物体,对该物体应用牛顿第二定律求解,此方法为隔离法。
隔离法目的是实现内力转外力的,解题要注意判明每一隔离体的运动方向和加速度方向。
(3)整体法解题或隔离法解题,一般都选取地面为参照系。
例题1 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图1所示. 已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为( )A.a=1.0m/s,F=260N B.a=1.0m/s,F=330NC.a=3.0m/s,F=110N D.a=3.0m/s,F=50N二、巧用牛顿第二定律解决瞬时性问题当一个物体(或系统)的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统)对和它有联系的物体(或系统)的受力发生变化。
例题2如图4所示,木块A与B用一轻弹簧相连,竖直放在木块C上。
三者静置于地面,它们的质量之比是1∶2∶3。
设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度a A、a B分别是多少?题型一 对牛顿第二定律的理解1、关于牛顿第二定律,下列说法正确的是( )A .公式F =ma 中,各量的单位可以任意选取B .某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C .公式F =ma 中,a 实际上是作用于该物体上每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合外力方向一致【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( )A .牛顿的第二定律不适用于静止物体B .桌子的加速度很小,速度增量极小,眼睛不易觉察到C .推力小于静摩擦力,加速度是负的D .桌子所受的合力为零题型二 牛顿第二定律的瞬时性2、如图所示,质量均为m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少?【变式】.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a1=0,a2=gB. a1=g, a2=gC. a1=0, a2=(m+M)g/MD. a1=g, a2=(m+M)g/M题型三 牛顿第二定律的独立性3 如图所示,质量m =2 kg 的物体放在光滑水平面上,受到水平且相互垂直的两个力F 1、F 2的作用,且F 1=3 N ,F 2=4 N .试求物体的加速度大小.【变式】.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?题型四 运动和力的关系4 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( )A .物体从A 到B 速度越来越大B .物体从A 到B 速度先增加后减小C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加【变式】.(2010·福建理综高考)质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m题型五 牛顿第二定律的应用5、质量为2 kg 的物体与水平面的动摩擦因数为0.2,现对物体用一向右与水平方向成37°、大小为10 N 的斜向上拉力F ,使之向右做匀加速直线运动,如图甲所示,求物体运动的加速度的大小.(g 取10 m/s.)【变式】.一只装有工件的木箱,质量m =40 kg.木箱与水平地面的动摩擦因数μ=0.3,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,如下图所示.求木箱的加速度大小.(g 取9.8 m/s 2)强化练习一、选择题1.下列说法中正确的是( )A .物体所受合外力为零,物体的速度必为零B .物体所受合外力越大,物体的加速度越大,速度也越大C .物体的速度方向一定与物体受到的合外力的方向一致D .物体的加速度方向一定与物体所受到的合外力方向一致2.关于力的单位“牛顿”,下列说法正确的是( )A .使2 kg 的物体产生2 m/s 2加速度的力,叫做1 NB .使质量是0.5 kg 的物体产生1.5 m/s 2的加速度的力,叫做1 NC .使质量是1 kg 的物体产生1 m/s 2的加速度的力,叫做1 ND .使质量是2 kg 的物体产生1 m/s 2的加速度的力,叫做1 N3.关于牛顿第二定律,下列说法中正确的是( )A .加速度和力的关系是瞬时对应关系,即a 与F 是同时产生,同时变化,同时消失B .物体只有受到力作用时,才有加速度,但不一定有速度C .任何情况下,加速度的方向总与合外力方向相同,但与速度v 不一定同向D .当物体受到几个力作用时,可把物体的加速度看成是各个力单独作用所产生的分加速度的合成4.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度a =13g ,则F f 的大小是( ) A .F f =13mg B .F f =23mg C .F f =mg D .F f =43mg 5.如图1所示,底板光滑的小车上用两个量程为20 N 、完全相同的弹簧测力计甲和乙系住一个质量为1 kg 的物块,在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10 N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8 N ,这时小车运动的加速度大小是( ) A .2 m/s 2 B .4 m/s 2C .6 m/s 2D .8 m/s 26.搬运工人沿粗糙斜面把一物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( )A .a 1=a 2B .a 1<a 2<2a 1C .a 2=2a 1D .a 2>2a 1二、非选择题7.如图2所示,三物体A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把A 、B 之间的细绳剪断的瞬间,求三物体的加速度大小为a A 、a B 、a C .8.甲、乙、丙三物体质量之比为5∶3∶2,所受合外力之比为2∶3∶5,则甲、乙、丙三物体加速度大小之比为________.9.质量为2 kg 的物体,运动的加速度为1 m/s 2,则所受合外力大小为多大?若物体所受合外力大小为8N ,那么,物体的加速度大小为多大?10.质量为6×103kg 的车,在水平力F =3×104N 的牵引下,沿水平地面前进,如果阻力为车重的0.05倍,求车获得的加速度是多少?(g 取10 m/s 2)11.质量为2 kg 物体静止在光滑的水平面上,若有大小均为10 2 N 的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加速度.12.质量m 1=10 kg 的物体在竖直向上的恒定拉力F 作用下,以a 1=2m/s 2的加速度匀加速上升,拉力F 多大?若将拉力F 作用在另一物体上,物体能以a 2=2 m/s 2的加速度匀加速下降,该物体的质量m 2应为多大?(g 取10m/s 2,空气阻力不计)13.在无风的天气里,一质量为0.2 g的雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定的速度下落,这个恒定的速度通常叫收尾速度.(1)雨滴达到收尾速度时受到的空气阻力是多大?(g =10m/s 2)(2)若空气阻力与雨滴的速度成正比,试定性分析雨滴下落过程中加速度和速度如何变化.参考答案1【答案】 BC 答案:D2答案:B 球瞬间加速度aB =0. aA =2g ,方向向下.答案c3 2.5 m/s 2 答案4、【答案】 BD 答案:B5、【答案】 2.6 m/s 2强化练习1析:物体所受的合外力产生物体的加速度,两者是瞬时对应关系,方向总是一致的.力的作用产生的效果与速度没有直接关系.答案:D2、答案:C3、解析:有力的作用,才产生加速度;力与加速度的方向总相同;力和加速度都是矢量,都可合成.答案:ABCD4、解析:由牛顿第二定律a =F 合m =mg -F f m =13g 可得空气阻力大小F f =23mg ,B 选项正确. 答案:B5、解析:因弹簧的弹力与其形变量成正比,当弹簧测力计甲的示数由10 N 变为8 N 时,其形变量减少,则弹簧测力计乙的形变量必增大,且甲、乙两弹簧测力计形变量变化的大小相等,所以,弹簧测力计乙的示数应为12 N ,物体在水平方向受到的合外力F =F T 乙-F T 甲=12N -8 N =4 N .根据牛顿第二定律,得物块的加速度为4 m/s 2. 答案:B6、解析:根据牛顿第二定律F -mgsin θ-μmgcos θ=ma 1①2F -mgsin θ-μmgcos θ=ma 2②由①②两式可解得:a 2=2a 1+gsin θ+μgcos θ,所以a 2>2a 1. 答案:D7、解析:剪断A 、B 间的细绳时,两弹簧的弹力瞬时不变,故C 所受的合力为零,a C =0.A物体受重力和下方弹簧对它的拉力,大小都为mg ,合力为2mg ,故a A =2mg m=2g ,方向向下.对于B 物体来说,受到向上的弹力,大小为3mg ,重为mg ,合力为2mg ,所以a B =2mg m=2g ,方向向上. 答案:2g 2g 08、解析:由牛顿第二定律,得a 甲∶a 乙∶a 丙=25∶33∶52=4∶10∶25. 答案:4∶10∶259、解析:直接运用牛顿第二定律来处理求解.答案:2N 4 m/s210、解析:直接运用牛顿第二定律来处理求解.答案:4.5 m/s211、解析:求合力,用牛顿第二定律直接求解.答案:a=10 m/s2,方向东偏南45°12、解析:由牛顿第二定律F-m1g=m1a1,代入数据得F=120N.若作用在另一物体上m2g-F=m2a2,代入数据得m2=15 kg. 答案:120N 15kg13、(1)雨滴达到收尾速度时受到的空气阻力和重力是一对平衡力,所以F f=mg=2×10-3N.(2)雨滴刚开始下落的瞬间,速度为零,因而阻力也为零,加速度为重力加速度g;随着速度的增大,阻力也逐渐增大,合力减小,加速度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受合力也为零,速度将不再增大,雨滴匀速下落.答案:(1)2×10-3N (2)加速度由g逐渐减小直至为零,速度从零增大直至最后不变。
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
牛顿第二定律练习题(经典好题)
牛顿第二定律练习题(经典好题)1、当质量为m的物体受到水平拉力F作用时,其产生的加速度为a。
若水平拉力变为2F,则物体产生的加速度为2a,即选项C。
2、根据牛顿第二定律,单独作用于某一物体上的力和加速度之间成正比,因此F1/F2=3/1,即F1=3F2.两个力同时作用于该物体时,根据牛顿第二定律,加速度等于合力除以物体质量,因此可得加速度为4m/s2,即选项D。
3、根据牛顿第二定律,物体所受合力等于物体质量乘以加速度。
已知合力为F1+F2=14N,加速度为2.5m/s2,因此可得物体质量为5.6kg。
4、因为弹簧对两球的拉力大小相等,根据牛顿第二定律可得F/2=ma,其中a为两球的加速度。
因此A球的加速度为F/2m,B球的加速度为F/2m,即选项A和C。
5、由于两小球质量相等,因此在细绳烧断的瞬间,它们受到的合力相等,根据牛顿第二定律可得加速度大小相等,即aA=aB=g,即选项A。
6、(1)根据牛顿第一定律,匀速运动时物体所受合力为零,因此F=μG=0.3×200N=60N。
(2)根据牛顿第二定律,物体所受合力等于物体质量乘以加速度加上摩擦力,即F=ma+μmg。
代入已知数据可得F=ma+60N。
因为题目给定了加速度为10m/s2,因此可得F=ma+60N=200N。
7、根据牛顿第二定律,物体所受合力等于物体质量乘以加速度加上摩擦力,其中摩擦力的大小为物体与斜面间的滑动摩擦因数乘以物体所受垂直于斜面的支持力。
因为物体在斜面上匀速下滑,所以合力为零,即mgcosθ=μmgsinθ,解得滑动摩擦因数为μ=tanθ。
8、根据牛顿第一定律,球所受合力为零,因此挡板和斜面所受支持力大小相等,即F1=F2=G/2=10N。
9、物体受到的合力分解成水平方向和竖直方向的分力,其中竖直方向的分力等于物体重力,水平方向的分力等于恒力F的投影。
因为物体做匀速运动,所以水平方向的分力等于摩擦力,即Fcosθ=μmg,解得摩擦力大小为F=μmg/cosθ。
牛顿第二定律典型例题
牛顿运动定律典型问题一、共点力平衡及动态平衡【例1】如图(甲)质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小。
【例2】如图所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化.【例3】如图所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。
若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?【练习】1.如图所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?2.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。
3.如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?4.如图,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。
A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。
5.如图所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将()A.始终减少B.始终增大C.先增大后减少D.先减少后增大6.如图所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T及斜面对重球的支持力N的变化情况是:()A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。
牛顿第二定律专题(含经典例题)
牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。
(高中物理)牛顿第二定律典型题归纳
牛顿第二定律 典型题归纳【模拟试题】1. 钢球在盛有足够深油的油罐中由静止开始下落,假设油对球的阻力正比于其速率,那么球的运动情况是〔 〕A. 先加速后匀速B. 先加速后减速最后静止C. 先加速后减速最后匀速D. 加速度逐渐减小到零2. 如下列图,一木块在水平恒力的作用下,沿光滑水平面向右做加速运动,前方墙上固定有一劲度系数足够大的弹簧,当木块接触弹簧后,将〔 〕A. 立即做减速运动B. 立即做匀速运动C. 在一段时间内速度继续增大D. 当弹簧压缩量为最大时,物体速度为零,处于平衡状态3. 如下列图,一物体从曲面上的Q 点由静止开始下滑,通过一段粗糙的传送带,传送带静止,从A 运动到B 的时间为1t ;假设传送带的皮带在轮子转动的带动下,上外表向左匀速运动,再次把物体从曲面的Q 点由静止开始下滑,到达A 点时速度与第一次相同,从A 到B 运动的时间为2t ,那么〔 〕A. 21t t =B. 21t t >C. 21t t <D. 无法确定4. 质量为1m 的物体放在A 地,用竖直向上的力F 拉物体,物体的加速度a 与拉力F 的关系如图中的①所示;质量为2m 的物体在B 地做类似实验,测得F a -关系如图中的②所示,设两地重力加速度分别为1g 和2g 由图可判定〔 〕A. 2121g g ,m m =>B. 2121g g ,m m =<C. 2121g g ,m m >=D. 2121g g ,m m <=5. 匀速上升的升降机顶部悬有一轻质弹簧,弹簧下端挂一小球,假设升降机突然停止,在地面观察者看来,小球在继续上升的过程中〔 〕A. 速度逐渐减小B. 速度先增大后减小C. 加速度先减小后增大D. 加速度逐渐减小6. 从加速竖直上升的气球上落下一个物体,在物体刚离开气球的瞬间,以下说法正确的选项是〔 〕A. 物体立即向下做自由落体运动B. 物体具有竖直向上的加速度C. 物体的速度为零,但具有竖直向下的加速度D. 物体具有竖直向上的速度和竖直向下的加速度7. 如下列图,用细线拉着小球A 向上做加速运动,小球A 、B 间用弹簧相连,两球的质量分别为m 和2m ,加速度的大小为a ,假设拉力F 突然撤去,那么A 、B 两球的加速度大小分别为=A a _______________,B a =_____________。
第二讲牛顿第二定律(原卷版+解析)
第二讲牛顿第二定律➢知识梳理一、牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同。
2.表达式:F=kma,当F、m、a单位采用国际单位制时k=1,F=ma。
3.适用范围①牛顿第二定律只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
二、单位制、基本单位、导出单位1.单位制:基本单位和导出单位一起组成了单位制。
①基本量:只要选定几个物理量的单位,就能够利用物理公式推导出其他物理量的单位,这些被选定的物理量叫做基本量。
②基本单位:基本量的单位。
力学中的基本量有三个,它们是质量、时间、长度,它们的单位千克、秒、米就是基本单位。
③导出单位:由基本量根据物理关系推导出来的其他物理量的单位。
2.国际单位制的基本单位➢知识训练考点一、牛第二定律的理解1.牛顿第二定律的五个性质(1)矢量性:加速度方向与合力的方向相同,表达式是矢量式。
(2)独立性:作用在物体上的每一个力都可以产生一个加速度,物体的加速度是所有力产生的加速度的矢量和。
(3)因果性:F 是产生a 的原因。
(4)同体性:F 、a 、m 必须针对同一个物体或系统(5)瞬时性:加速度与合力F 是瞬时对应关系,同时产生,同时变化,同时消失。
2.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系。
(2)合力与速度夹角为锐角时,物体加速;合力与速度夹角为钝角时,物体减速。
(3)a =Δv Δt 是加速度的定义式,a 与v 、Δv 、Δt 无直接关系;a =Fm 是加速度的决定式。
例1、有关运动与相互作用的关系,下列说法正确的是( ) A .一个物体速度向东,则其受合力一定向东 B .一个物体速度越大,则其受合力一定越大 C .一个物体受合力为0,则其速度一定为0 D .一个物体受合力越大,则其速度变化一定越快例2、(2022·山东省实验模拟)物块在水平向右的恒定推力F 的作用下刚好沿倾角为30°的固定斜面向上做匀速运动,已知物块与斜面之间的动摩擦因数μ=33,重力加速度为g ,若推力F 改为沿斜面向上推物块,则物块的加速度为( ) A .2g B .33g C .(3-1)gD .(3+1)g例3、如图所示,弹簧左端固定,右端自然伸长到O 点并系住质量为 m 的物体。
牛顿第二定律经典例题
牛顿第二定律应用的问题1. 力和运动的关系力是改变物体运动状态的原因,而不是维持运动的原因。
由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。
速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。
在加速度为零时,速度有极值。
例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是()图1A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是()A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
故选CD。
解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。
故正确答案选C。
图22. 力和加速度的瞬时对应关系(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。
每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是:A、物体从A下降和到B的过程中,速率不断变小B、物体从B上升到A的过程中,速率不断变大C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小D、物体在B点时,所受合力为零的对应关系,弹簧这种特【解析】本题主要研究a与F合殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物=0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F合由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。
在C位置mg=kx c,a=0,物体速度达最大。
由C→B的过程中,由于mg<kx2,a=kx2/m-g,物体做a增加的减速直线运动。
同理,当物体从B→A时,可以分析B→C做加速度度越来越小的变加速直线运动;从C→A做加速度越来越大的减速直线运动。
C正确。
例2如图3-10所示,在原来静止的木箱内,放有A物体,A被一伸长的弹簧拉住且恰好静止,现突然发现A被弹簧拉动,则木箱的运动情况可能是A、加速下降B、减速上升肥C、匀速向右运动D、加速向左运动【解析】木箱未运动前,A物体处于受力平衡状态,受力情况为:重力mg,箱底的支持力N,弹簧拉力F和最大的静摩擦力f m(向左)由平衡条件知:N=mg F=f m。
由于发现A弹簧向右拉动(已知),可能有两种原因,一种是由A向右被拉动推知,F>f m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。
另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。
综合上述,正确答案应为A、B、D。
【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少?【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线中拉力T,滑块A的支持力N,如图3-12所示,小球在这三个力作用下产生向左的加速度,当滑块向左运动的加速度增大到一定值时,小球可能离开斜面,滑块的支持力变为零,小球仅受重力和拉力两个力作用离开斜面,滑块的支持力变为零,小球仅受重力和拉力两个力作用。
由于加速度a=2g 时,小球的受力情况未确定,因此可先找出使N=0时的临界加速度,然后将它与题设加速度a=2g 相比较,确定受力情况后即可根据牛顿第地定律列式求解。
根据小球贴着滑块运动时的受情况,可列出水平方向和竖直方向的运动方程分别为)1(45sin 45cos ma N T =-οο)2(45cos 45sin mgN T =-οο联立两式,得οο45sin 45cos ma mg N -=若小球对滑块的压力等于零,即就作N=0,滑块的加速度至少就为g g a ==οο45sin45cos可见,当滑块以a=2g 加速度向左运动时,小球已脱离斜面飘起,此时小球仅受两个力作用:重力mg 、线中拉力T ′。
设线与竖直方向间夹角为β,同理由牛顿第二定律得ma T ='βsin mg T ='βcos联立两式得mg a m g m mg ma T 5)()(222222=+=+='【例4】如图2-2-11甲所示,传送带与地面倾角θ=37°度,从A →B 长度为16m ,传送带以10m/s 的速率逆时针转动,在传送带上端A 无初速度地放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为0.5,求物体从A 运动到B 所需要时间是多少?(g 取10m/s 2,sin37°=0.6)【解析】物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力,物体受合力方向沿传送带向下,物体由静止加速。
物体加速至与传送带速度相等时,由于οο37cos 37sin mg mg μ>,物体在重力作用下继续加速运动,当物体速度大于传送带速度时,传送带给物体沿传送带向上的滑动摩擦力,但合力仍沿传送带向下,物体继续加速下滑,直至传送带的B 端。
开始阶段,物体受力情况如图2-2-11乙所示,由牛顿第二定律得mamg mg =+θμθcos sina 1=10×(0.6+0.5×0.8)=10m/s 2物体加速至与传送带速度相等需要时间 t 1=V/a 1=10/10=1S物体速度大于传送带速度后,物体受力情况如图2-2-11丙所图2-2-11甲图2-2-11乙示,由牛顿第二定律得2cos sin ma mg mg =-θμθa 2=2m/s 2设后一阶段物体滑至底端所用的时间为t 2,由222221tavt S L +=- 解得t 2=1s,(t 2=-11s 舍去)所以物体由A →B 的时间t=t 1-t 2=2s.【例5】如图3-28所示的三个物体质量分别为m 1、m 2和m 3,带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动,水平推力F 等于多少?【解析】由于三个物体无相对运动,困此可看作一个整体,列出整体的牛顿第二定律方程。
然后再隔离m 1、m 2分别列出它们的运动方程。
由整体在水平方面的受力列出牛顿第二定律为F=(m 1+m 2+m 3)a……(1) 分别以m 1、m 2为研究对象作受力分析(图3-29)设绳拉力为T 。
对m 1,在水平方向据牛顿第二定律得 T=m 1a……(2) 对m 2,在竖直方向由力平衡条件得 T-m 2g=0……(3) 联立式(1)(2)(3),得水平推力g m m m m m F )(32112++=【例6】某人在以a=2.5m/s 2的加速度匀加速下降的升降机中最多可举起m 1=80kg 的物体,则此人在地面上最多可举起多少千克的物体?若此人在匀加速上升的升降机中最多能举起m 2=40千克的物体,则此升降机上升的加速度为多大?(g 取10m/s 2)【分析】设此人的最大举力F ,在不同参照系中这个举力是恒定的,当升降机匀加速下降时,物体也以同一加速度下降,物体“失重”,当升降机竖直向上匀加速上升时,人举起的物体也与升降机一起匀加速上升,物体处于“超重”状态。
【解】:设此人最大举力为F ,当升降机匀加速下降时,选取物体为研究对象,受力分析如图3-33所示,由牛顿第二定律得m 1g-F=m 1a 所以F=m 1(g-a)=600N当他在地上举物体时,设最多可举起质量图2-2-11丙为m 0的物体,则有F-m 0g=0所m 0=60kg.当升降机竖直向上匀加速上升时,选物体为研究对象,受力分析如图3-34所示,由牛顿第二定律得 m 2g-F=m 2a ,所以222/5s m m gm F a =-=' 【例7】如图1---42所示,重为G 的均匀链条,两端用等长的轻绳连接挂在等高的地方,绳与水平方向成θ角,试求:(1).绳子的张力大小。
(2).链条最低点的张力大小.[析与解]: (1).绳子的张力等于整条链跟外部绳子的作用力,此处应以整条链为研究对象,作其受力图如右上图,由对称性知:F 1=F 2,因竖直方向合力为零,则有:2Fsin θ=G , F=G/2sin θ,即绳子的拉力为G/2sin θ。
(2).将链条从最底点隔离开,只研究右半条链条,作其受力图如上页右下图,由图得F ′=Gctg θ/2即链条最低点的张力为Gctg θ/2 。
【例8】如图1---39所示,斜面上放一物体A 恰能在斜面上保持静止,如果在物体A 的水平表面上再放一重物,下面说法中正确的是( ) A .物体A 将开始加速下滑 B .物体A 仍保持静止C .物体A 所受的摩擦力增大D .物体A 所受的合力增大6.(2006年·全国理综Ⅰ)一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.起始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.6.【答案】20002v a g a gμμ-()解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0.根据牛顿第二定律,可得 a =μg设经历时间t ,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有 v 0=a 0t ,v =at由于a <a 0,故v <v 0,煤块继续受到滑动摩擦力的作用.再经过时间t ',煤块的速度由vF 1 F 2 θ θGθ θ 图1--42Aθ 图1---39增加到v 0,有v 0=v +at '此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹. 设在煤块的速度从0增加到v 0的整个过程中,传送带和煤块移动的距离分别为s 0和s ,有200012s a t v t '=+,202v s a = 传送带上留下的黑色痕迹的长度l =s 0-s由以上各式得20002v a g l a gμμ-=() 9.(2003年·江苏理综)水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A 、B 始终保持v =1m/s 的恒定速率运行;一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l =2m ,g 取10m /s 2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率. 4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg ① 以题给数值代入,得F =4N ②由牛顿第二定律得 F =ma③ 代入数值,得a =lm/s 2④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at⑤ 代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at =⑦ 代入数值,得min 2s t = ⑧传送带对应的运行速率V min =at min ⑨ 代人数据解得V min =2m/s ⑩10.如图3-2-24所示,传送带两轮A 、B 的距离L =11 m ,皮带以恒定速度v =2 m/s 运动,现将一质量为m 的物块无初速度地放在A 端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m 从A 端运到B 端所需的时间是多少?(g 取10 m/s 2,cos37°=0.8)2.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动由牛顿第二定律得μmg cos37°-mg sin37°=ma 则a =μg cos37°-g sin37°=0.4 m/s 2 物体加速至2 m/s 所需位移 s 0=v 22a =222×0.4 m =5 m<L经分析可知物体先加速5 m 再匀速运动s =L -s 0=6 m. 匀加速运动时间t 1=v a =20.4 s =5 s.匀速运动的时间t 2=s v =62 s =3 s.则总时间t =t 1+t 2=(5+3) s =8 s. 答案:8 s11如图所示的传送皮带,其水平部分AB 长s AB =2m ,BC 与水平面夹角θ=37°,长度s BC =4m ,一小物体P 与传送带的动摩擦因数 =0.25,皮带沿A 至B 方向运行,速率为v =2m/s ,若把物体P 放在A 点处,它将被传送带送到C 点,且物体P 不脱离皮带,求物体从A 点被传送到C 点所用的时间.(sin37°=0.6,g =l0m/s 2)1.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v vt a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=,匀速运动时间120.6s AB s st v-==.P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .12】如图1---40所示,甲、乙两球带电量均为q ,质量均为m ,两球间用绝缘细线连接,甲球又用绝缘细线悬挂在天花板上,在两球所在的空间有方向水平向左的匀强电场,场强为E ,平衡时细线被拉紧,则表示平衡状态的图可能正确的是下列哪一个?( )平衡后的拉力正确的是( )A B C DA ′.T 1=2mgT2=22)()(mg qE + B ′.T1>2mg T2>1E +q2-q图1-4022)()(mg qE +C ′.T1<2mg T2<22)()(mg qE + D /.T1=2mg T2<22)()(mg qE +12、[]解析分析线1的张力方向与大小时,应以两球及中间线整体为对象,因整体在水平方向所受电场力的合力为零,故线1必须竖直,选A ;因整体竖直方向受力平衡,得:T 1=2mg ,为了得出T 2,必须使其成为外力,将乙球隔离出来作其受力图,由力的平衡有:T 2+F 引=22)()(mg qE +.即 T 2<22)()(mg qE +,选D 。