医学成像技术(第四章放射性核素成像系统PET)

合集下载

PET讲课PPT课件

PET讲课PPT课件
按照模拟体内代谢底物的不同,我们将代 谢显像分为葡萄糖代谢显像、脂肪酸代谢 显像及氨基酸代谢显像等
8
乳腺癌 18FFDG PET/CT 显像
9
乳腺癌术后胸骨转移、纵隔淋巴结转移、肝转移
10
MR 分子影像技术
(1)以超顺磁性纳米材料为基础的特异性分子探 针:超顺磁性氧化铁(SPIO)纳米颗粒;
17
CT动态增强扫描:可以观察靶区(肿瘤)的 生理及病理改变、了解血液动力学变化的一 项技术。











18
PET / CT
19
PET/CT断层影像的发展与优势
1、PET的临床应用是核医学发展的一个重要 里程碑,是当前分子影像学最成功的临床 应用。
2、以PET为基础配准CT成像系统的PET/CT一 体机,实现衰减校正和同机图像融合,不 仅能提供CT清晰的解剖图像,又能提供反 映组织器官功能的代谢图像,进一步提高 了疾病诊断的灵敏度和准确性。
20
3、PET/CT代表分子影像发展的前沿,在临 床肿瘤、心血管及神经系统和精神疾病领 域诊断和治疗指导中产生了不可替代的作 用。
4、PET/CT的临床应用 肿瘤的诊断与鉴别诊断;肿瘤的临床分期
与再分期;对肿瘤治疗疗效的判断以及监 测肿瘤复发;肿瘤的预后评价。
21
PET/CT的特点
CT与PET同机融合 解剖图像与功能图像融合 精细的解剖结构和代射功能信息 肿瘤鉴别诊断、分期及疗效观察 高灵敏度、高特异性、高准确性 PET/CT 优于单独的PET和CT
体外通过影像技术显示体内分子水平的形态 和功能变化
传统医学影像诊断显示的是生物组织细胞病 变的解剖变化,而分子影像学则着眼于生物 组织细胞或分子水平的生理和病理变化。

核医学成像课件

核医学成像课件

核磁共振成像(MRI)
总结词
一种无辐射的成像技术
详细描述
利用磁场和射频脉冲使人体内的氢原子发生共振,从而产生信号并形成图像,主要用于脑部、关节和软组织疾病 的诊断。
X射线计算机断层成像(CT)
总结词
一种结构成像技术
详细描述
通过X射线扫描人体并利用计算机重建断层图像,能够清晰显示人体内部结构,广泛应用于肿瘤、骨 折和肺部疾病的诊断。
成本高
核医学成像技术通常需要昂贵 的设备和专业的技术人员,导
致其成本相对较高。
时间延迟
由于放射性物质的半衰期较长 ,核医学成像可能需要等待一
段时间才能获取图像。
空间分辨率有限
相对于其他医学成像技术,如 MRI和CT,核医学成像的空间
分辨率可能较低。
05 核医学成像的未来发展
技术创新与进步
新型探测器技术
核医学成像的分类
单光子发射计算机断层成像(SPECT)
利用单光子发射的射线进行成像,常用于心血管和脑部显像。
正电子发射断层成像(PET)
利用正电子发射的射线进行成像,具有高灵敏度和特异性的优点,常用于肿瘤、神经系统 和心血管疾病的诊断。
核磁共振成像(MRI)
利用磁场和射频脉冲对组织进行检测,能够提供高分辨率和高对比度的图像,常用于脑部 、关节和肌肉等软组织的显像。
核医学成像技术利用放射性核素发出的射线与人体组织相互 作用,产生信号并被显像仪器接收,经过处理后形成图像。
核医学成像的原理
01
放射性核素发出的射线与人体组 织中的原子相互作用,产生散射 和吸收,这些相互作用导致能量 损失和方向改变。
02
显像仪器通过测量这些散射和吸 收的射线,并利用计算机技术重 建图像,显示出人体内部结构和 功能。

核医学技术中级职称考试:2022第四章 放射性药物真题模拟及答案(6)

核医学技术中级职称考试:2022第四章 放射性药物真题模拟及答案(6)

核医学技术中级职称考试:2022第四章放射性药物真题模拟及答案(6)1、放射性药物的制备步骤下列正确的是()。

(单选题)A. 添加某些物质进行制备以适应人体给药B. 从轰击的靶物质中提取放射性核素C. 放射性核素通过化学转化成生物特定形式D. 纯化去除化学和放射性核素杂质E. 以上都对试题答案:E2、下列关于确定性效应的说法正确的是()。

(单选题)A. 该效应可致细胞结构与功能改变或致大量细胞被杀死B. 通常存在剂量阈值C. 主要表现形式有白内障、再障、不育等D. 效应的严重程度随剂量的增加而增大E. 以上均正确。

试题答案:E3、进食后,心肌细胞的主要能源物质,是下列哪种物质?()(单选题)A. 脂肪酸B. 葡萄糖C. 多肽D. 氨基酸E. 以上均不对试题答案:B4、关于运动试验的注意事项,下列论述错误的是()。

(单选题)A. 严格掌握禁忌证,急性心肌梗死、不稳定型心绞痛、心力衰竭、严重高血压、大面积心肌梗死或左主干病变、严重心律失常等患者应列为禁忌证B. 做运动试验的医生要经过正规培训C. 运动量要达到标准,尤其是症状不典型的青年患者,否则会造成假阴性D. 试验室要配备心电除颤器,急救药品如硝酸甘油、毛花苷C、氧气等E. 预期心率为190次/分试题答案:E5、放射性药物贮存的修正系数为()。

(单选题)A.B.C.D.E.试题答案:E6、放射性核素毒性权重系数A类为()。

(单选题)A.B.C.D.E.试题答案:E7、99m Tc标记配套药盒时下列不正确的是()。

(单选题)A. 配制MAA时应避免用力摇B. 如果发现应为负压的配体药盒瓶盖漏气,则不能使用该药盒C. 加入的99m TcO4-洗脱液的放射性活度、体积应符合说明书要求D. 使用的99m TcO4-洗脱液放置时间不超过24小时E. 注射MAA时应尽量少回血试题答案:D8、123I-MIBG探头设置的能峰为()。

(单选题)A. 167keVB. 140keVC. 80keVD. 159keVE. f35keV试题答案:D9、小儿使用放射性药物的原则下列不正确的是()。

核医学知识点整理

核医学知识点整理

核医学整理核医学显像核医学的PET、SPECT显像侧重于显示功能、血流、代谢、受体、配体等的改变,能早期为临床、科研提供有用的信息。

1.通过放射性核素显像仪(如SPECT)对选择性聚集在或流经特定脏器或病变的放射性核素或其标记物发射出的具一定穿透力的射线进行探测后以一定的方式在体外成像,借以判断脏器或组织的形态、位置、大小、代谢及其功能变化,从而对疾病实现定位、定性、定量诊断的目的。

2.基本条件:用于示踪的放射性核素能够在靶组织或器官中与邻近组织之间形成放射性分布的差异。

3.用于显像的放射性核素或其标记物通称为显像剂(imaging agent),显像剂在机体内的生物学特性决定了显像的主要机制4.诊断和治疗用(含正电子)体内放射性药品浓集原理1)合成代谢2)细胞吞噬3)循环通路:血管、蛛网膜下腔或消化道,暂时性嵌顿。

4)选择性浓聚5)选择性排泄6)通透弥散7)离子交换和化学吸附8)被动扩散9)生物转化10)特异性结合11)竞争性结合12)途径和容积指示5.核医学仪器的基本结构:探头、前置放大器、主放大器、甄别器、定标电路、数字显示器常用显像仪器:γ照相机、SPECT、PET等。

二、分为诊断用放射性药物(显像剂和示踪剂)和治疗用放射性药物。

放射性药品指含有放射性核素供医学诊断和治疗用的一类特殊药品。

γ射线能量为:141KeV三、SPECT显像方法:1.每例检查均需使用显像剂2.给药方式:iv,po,吸入,灌肠,皮下注射等3.仪器:SPECT4.给药后等待检查时间:即刻,20--30min, 1h, 2--3h5.每次机器检查时间:1—20min6.检查次数:1—10次(一)显像的方式和种类1、静态显像:当显像剂在脏器内和病变处的浓度处于稳定状态时进行的显像,可采集足够的放射性计数用以成像,影像清晰可靠,可详细观察脏器和病变的位置、形态、大小和放射性分布;脏器的整体功能和局部功能;计算出一些定量参数, 如局部脑血流量、局部葡萄糖代谢率(参数影像或称功能影像).2、动态显像:显像剂引入体内后,迅速以设定的显像速度动态采集脏器多帧连续影像或系列影像,即电影显示;利用感兴趣区技术提取每帧影像中同一个感兴趣区域内的放射性计数,生成时间--放射性曲线。

医学成像技术(第四章 放射性核素成像系统SPECT)

医学成像技术(第四章 放射性核素成像系统SPECT)

SPECT的原理 SPECT的原理
SPECT检测通过放射性原子( SPECT检测通过放射性原子(称为放射性 检测通过放射性原子 TC-99m TI-201)发射的单γ射线。 核,如TC-99m 、TI-201)发射的单γ射线。 放射性核附上的放射性药物可能是一种蛋 白质或是有机分子, 白质或是有机分子,选择的标准是它们的 用途或在人体中的吸收特性。比如, 用途或在人体中的吸收特性。比如,能聚 集在心肌的放射性药物就用于心脏SPECT 集在心肌的放射性药物就用于心脏SPECT 成像。 成像。这些能吸收一定量放射性药物的器 官会在图像中呈现亮块。 官会在图像中呈现亮块。如果有异常的吸 收状况就会导致异常的偏亮或偏暗, 收状况就会导致异常的偏亮或偏暗,表明 可能处于有病的状态。 可能处于有病的状态。
衰减校正
目前的SPECT理论把投影数据近似为病人 目前的SPECT理论把投影数据近似为病人 体内的放射性药物分布沿投影线的积分, 体内的放射性药物分布沿投影线的积分, 忽略了人体组织对γ射线的散射与吸收效应。 忽略了人体组织对γ射线的散射与吸收效应。 然而,对于核医学所使用的能量在60~ 然而,对于核医学所使用的能量在60~ 511keV的 射线来说, 511keV的γ射线来说,人体组织的衰减对 投影数据有相当大的影响, 投影数据有相当大的影响,因此需要进行 衰减校正。 衰减校正。 一方面取决于人体衰减系数图( map)的获 一方面取决于人体衰减系数图(µ map)的获 另一方面取决于衰减校正的算法。 取,另一方面取决于衰减校正的算法。
平面成像
相机固定在病人上方,获取单一角度数据 相机固定在病人上方,
平面动态成像
固定角度,长时间观察放射性示踪剂运动 固定角度,
SPECT成像 SPECT成像

PET 临床应用及意义

PET 临床应用及意义

PET 临床应用及意义PET 临床应用及意义1. 简介1.1 PET技术的定义1.2 PET在临床应用中的重要性和意义2. PET扫描的原理2.1 放射性核素的选择2.2 辐射成像的原理2.3 PET扫描设备的介绍3. PET在肿瘤诊断中的应用3.1 PET扫描在肿瘤定位中的作用3.2 PET-CT在肿瘤早期诊断中的优势3.3 PET显像技术在评估肿瘤治疗效果方面的应用4. PET在心脑血管疾病诊断中的应用4.1 PET扫描在冠心病诊断中的作用4.2 PET扫描在脑血管疾病中的应用4.3 PET显像技术在心脑血管疾病治疗监测方面的应用5. PET在神经精神性疾病诊断中的应用5.1 PET扫描在阿尔茨海默病中的应用5.2 PET扫描在帕金森病中的应用5.3 PET显像技术在精神疾病诊断和治疗评估方面的应用6. PET在内分泌疾病诊断中的应用6.1 PET扫描在甲状腺疾病中的应用6.2 PET扫描在肾上腺疾病中的应用6.3 PET显像技术在内分泌疾病的治疗策略制定中的应用附件:1. PET扫描图像示例2. 临床案例研究报告法律名词及注释:1. PET:正电子发射断层扫描(Positron Emission Tomography)- PET是一种核医学检查方法,通过测量和记录放射性核素在体内的分布和代谢来评估组织的功能状态及病理情况。

2. PET-CT:联合正电子发射断层扫描/计算机断层扫描(Positron Emission Tomography-Computed Tomography) - PET-CT是一种结合了PET扫描和CT扫描的影像技术,可以获得核医学和解剖学信息的相结合。

3. 放射性核素:具有放射性衰变特性的元素或同位素。

4. 冠心病:冠状动脉病变引起的心肌供血不足的疾病。

5. 阿尔茨海默病:一种进行性神经退行性疾病,引起记忆力丧失和认知能力下降。

6. 甲状腺:位于颈部前方的内分泌器官,控制新陈代谢和体内激素的分泌。

核医学成像技术的最新进展

核医学成像技术的最新进展

核医学成像技术的最新进展核医学成像技术作为现代医学领域的重要组成部分,为疾病的诊断和治疗提供了关键的信息。

近年来,随着科技的不断进步,核医学成像技术取得了一系列令人瞩目的新进展,为医疗实践带来了更强大的工具和更精准的诊断能力。

一、正电子发射断层扫描(PET)技术的改进PET 是核医学成像中最常用的技术之一。

近年来,PET 技术在探测器材料、图像重建算法和临床应用方面都有了显著的改进。

在探测器材料方面,新型的闪烁晶体材料如硅酸镥(LSO)和硅酸钇镥(LYSO)的应用,大大提高了探测器的灵敏度和时间分辨率。

这使得 PET 能够更快速地采集图像,减少患者的扫描时间,并提高图像质量。

图像重建算法的不断优化也是 PET 技术发展的重要方向。

先进的迭代重建算法能够更好地处理噪声和散射,提高图像的对比度和分辨率,从而更清晰地显示病变组织的细节。

在临床应用方面,PET 与计算机断层扫描(CT)或磁共振成像(MRI)的融合技术(PET/CT 和 PET/MRI)已经成为常规。

这些融合技术将功能代谢信息与解剖结构信息完美结合,为肿瘤、心血管疾病和神经系统疾病的诊断和分期提供了更全面、更准确的依据。

二、单光子发射计算机断层扫描(SPECT)技术的创新SPECT 技术虽然不如 PET 那么热门,但也在不断创新和发展。

探测器技术的改进使得 SPECT 的空间分辨率得到了提高。

新型的半导体探测器和多针孔准直器的应用,能够更精确地定位放射性核素的分布,从而提高图像的质量。

同时,SPECT 与 CT 的融合技术(SPECT/CT)也在逐渐普及。

CT提供的解剖结构信息有助于更准确地解释SPECT 图像,特别是在骨骼、心脏和肾脏等部位的成像中具有重要意义。

此外,新的放射性药物的研发也为 SPECT 技术的应用拓展了新的领域。

例如,针对特定肿瘤标志物的放射性药物能够提高 SPECT 对肿瘤的诊断特异性。

三、新型放射性药物的研发放射性药物是核医学成像的关键组成部分。

医学影像学课件放射性核素显像

医学影像学课件放射性核素显像

医学影像学课件放射性核素显像一、引言医学影像学是一门研究医学成像技术的学科,其发展对疾病的诊断和治疗具有重要意义。

放射性核素显像作为医学影像学的一个重要分支,通过放射性核素在体内的分布和代谢,为疾病的诊断和治疗提供了重要的信息。

本文将对放射性核素显像的基本原理、应用及其在医学影像学中的重要地位进行详细阐述。

二、放射性核素显像的基本原理放射性核素显像是一种基于放射性核素发射的射线进行成像的技术。

放射性核素是指具有不稳定原子核的元素,它们通过放射性衰变释放射线,包括α粒子、β粒子和γ射线。

在医学影像学中,常用的放射性核素主要有γ射线发射型核素,如99mTc、131I等。

放射性核素显像的基本原理是将放射性核素标记在特定的分子或药物上,通过静脉注射或口服等方式引入体内。

这些放射性核素标记的分子或药物在体内的分布和代谢过程中,会发射γ射线。

通过在体外使用γ相机等探测器对这些γ射线进行探测和成像,可以得到放射性核素在体内的分布图像,从而了解器官和组织的功能和代谢情况。

三、放射性核素显像的应用1.心血管系统:放射性核素显像可以用于评估心脏功能和心肌缺血情况,如心肌灌注显像和心脏功能显像。

2.呼吸系统:放射性核素显像可以用于评估肺部功能和肺血管疾病,如肺通气显像和肺灌注显像。

3.消化系统:放射性核素显像可以用于评估肝脏、胆囊、胃肠道等器官的功能和疾病,如肝功能显像和胃肠道出血显像。

4.骨骼系统:放射性核素显像可以用于评估骨骼代谢和疾病,如骨显像和骨转移瘤显像。

5.内分泌系统:放射性核素显像可以用于评估甲状腺、肾上腺等内分泌器官的功能和疾病,如甲状腺显像和肾上腺显像。

6.肿瘤学:放射性核素显像可以用于肿瘤的诊断、分期和疗效评估,如肿瘤显像和放射性核素治疗。

四、放射性核素显像在医学影像学中的重要地位1.早期诊断:放射性核素显像可以早期发现和诊断疾病,如肿瘤的早期诊断和心血管疾病的早期检测。

2.定量分析:放射性核素显像可以提供定量的功能参数,如心脏功能参数、肺部通气功能参数等,为疾病的评估和治疗提供重要依据。

PET成像原理ppt课件

PET成像原理ppt课件

PET成像原理ppt课件•PET成像技术概述•PET成像原理•PET成像系统组成•PET图像质量评价与优化目录•PET成像技术在医学应用•PET成像技术发展趋势与挑战01 PET成像技术概述PET成像定义与发展定义PET(Positron Emission Tomography)即正电子发射断层扫描,是一种核医学成像技术,通过检测正电子发射放射性核素在生物体内的分布,重建出生物体的断层图像。

发展历程自20世纪70年代问世以来,PET成像技术经历了从单光子发射计算机断层扫描(SPECT)到PET的演变,随着技术的进步和设备的更新,PET成像的分辨率和灵敏度不断提高。

高灵敏度高分辨率无创性定量性PET成像技术特点PET成像技术能够检测到极低浓度的放射性核素,实现对生物体内微量物质的定量检测。

PET成像技术是一种无创性的检查方法,不会对生物体造成损伤或痛苦。

PET成像技术具有较高的空间分辨率,能够清晰地显示生物体的结构和功能信息。

PET成像技术能够实现对生物体内放射性核素的定量测量,为疾病的诊断和治疗提供准确的数据支持。

PET成像技术应用领域临床医学PET成像技术在临床医学领域具有广泛的应用,如肿瘤的早期诊断、心血管疾病的评估、神经退行性疾病的研究等。

药学研究PET成像技术可用于药物研发过程中的药代动力学研究、药物作用机制研究等,为新药的开发提供重要的技术支持。

生物医学研究PET成像技术可用于生物医学研究领域,如基因表达研究、蛋白质相互作用研究等,有助于揭示生命活动的本质和规律。

02 PET成像原理正电子发射与湮灭正电子发射放射性核素衰变时,释放出正电子,正电子带有与电子相同的质量但电荷相反的电荷。

正电子湮灭正电子在物质中与电子相遇,发生湮灭反应,产生两个方向相反、能量均为511keV的伽马光子。

511keV伽马光子产生与探测伽马光子产生正电子湮灭产生的两个511keV伽马光子以相反方向飞出。

伽马光子探测PET扫描仪中的探测器环接收伽马光子,记录其到达时间和位置信息。

fdg-pet原理

fdg-pet原理

fdg-pet原理
FDG-PET是一种医学成像技术,用于检测身体内部的代谢活动。

它是基于放射性核素荧光葡萄糖(FDG)的原理工作的。

FDG是一种放射性标记的葡萄糖分子,可以被注射到人体内,然后通过PET扫描来检测它的分布和代谢情况。

FDG-PET的工作原理是基于葡萄糖在人体内的代谢过程。

葡萄糖是人体内最重要的能量来源之一,它被细胞摄取后,会被分解成能量和代谢产物。

在癌细胞中,代谢过程会发生改变,导致它们摄取更多的葡萄糖并产生更多的代谢产物。

因此,FDG-PET可以检测出癌细胞的存在和位置。

FDG-PET扫描的过程是:首先,患者会被注射FDG,然后需要等待一段时间,让FDG在身体内分布和代谢。

接下来,患者需要躺在PET扫描仪上,仪器会发出放射性信号来检测FDG的分布情况。

最后,计算机会将信号转换成图像,显示出身体内FDG的分布情况。

FDG-PET在临床上被广泛应用于癌症的诊断和治疗监测。

它可以检测出癌细胞的存在和位置,以及评估治疗效果。

此外,FDG-PET还可以用于其他疾病的诊断,如心脏病、脑部疾病等。

总之,FDG-PET是一种基于放射性核素荧光葡萄糖的医学成像技术,可以检测身体内的代谢活动,特别是癌细胞的存在和位置。

它在临床上有着广泛的应用价
值。

pet-ct 原理

pet-ct 原理

pet-ct 原理PET/CT全身正电子断层扫描联合成像技术是目前医学影像产业中较为先进的成像技术。

它可以结合正电子发射断层扫描(PET)和计算机断层扫描(CT)的优点,同时获得它们之间的信息互补,可以直观地显示出疾病的位置、大小、形态以及代谢活性水平等信息。

PET/CT技术在肿瘤、心血管系统和神经系统等多个领域有着广泛的应用。

本文从PET和CT 两方面进行原理介绍。

PET扫描原理PET扫描是一种分子水平上的成像技术,它基于自然放射性同位素碳-11(C-11)、氮-13(N-13)、氧-15(O-15)和氟-18(F-18)等的发射。

在临床PET扫描中,最常用的放射性同位素是F-18,涉及到的放射性核素原子数仅有数十个,因此PET扫描具有非常高的分辨率和灵敏度。

PET扫描利用放射性示踪剂, 通常是F-18-脱氧葡萄糖 (FDG), 对人体组织进行标记。

FDG是一种类似于葡萄糖的物质,可以在正常细胞和肿瘤细胞中被取代。

然而,肿瘤细胞与正常细胞相比,其代谢活动更高,因此PET扫描可以通过检测FDG的代谢水平区分正常细胞和肿瘤细胞,并获得有关肿瘤活性的信息。

PET扫描的实现,首先是向患者体内注射含放射性示踪剂的药物。

随后,通过PET扫描仪器,可以检测到示踪剂发出的正电子,从而得出组织的代谢活动情况。

但是,代谢水平低于一定水平时,正电子会立即与周围的电子发生反应,导致信号的损失,这限制了PET扫描的解析度。

因此,医生通常建议病人在进入PET室前几个小时严格控制饮食和体力活动,以增加示踪剂的代谢水平,提高PET扫描的正确性和准确性。

CT扫描是一种X射线成像技术,它利用大量的X射线穿过人体,然后通过探测器捕捉到产生的影像,进而获得人体组织的截面图像。

X射线的穿透能力与物体的密度有关,浓密的部位会阻碍X射线的传播,从而使这些部位出现阴影,而密度较小的部位则不会对X射线的传播产生明显影响。

与传统的X射线技术相比,CT扫描技术更加先进和灵敏。

PET核医学成像原理分析

PET核医学成像原理分析

科技慵报开发与经济SCI-TECHINFORMATIONDEVELOPMENT&ECONOMY2007年第17卷第18期文章编号:1005--6033(2007)18一0162一02PET核医学成像原理分析王亚丽(山西长城微光器材股份有限公司,山西太原,030012)摘要:分析了PET(正电子计算机断层扫描)的成像原理、结构和性能指标,阐述了PI汀在核医学成像领域中的应用。

关键词:PET;医学成像;空间分辨率;时间分辨率中图分类号:R445文献标识码:APET(PositronEmissionTomography)OIIte6发射断层扫描仪,是当今世界最高层次的核医学技术,也是当前医学界公认的最先进的大型医疗诊断成像设备之一,已成为肿瘤、心、脑疾病诊断的不可缺少的重要方法。

它是一种有较高特异性的功能显像和分子显像仪,除显示形态结构外,它主要是在分子水平上提供有关脏器及其病变的功能信息,适合于快速动态研究,具有多种动态显像方式。

许多疾病在解剖结构发生改变之前早已出现功能变化。

此时在以解剖结构改变为基础的XCT,MRI上尚不能发现任何病变,而PET采用了一些有特殊物理和生化特性的同位素,如:“C,13N,t50,1|F等,其特点是能够释放正电子,与体内代谢产物结合,与生命过程密切相关,半衰期短、代谢快、对人体无损伤。

将这些发射正电子的放射性同位索标记在示踪化合物上,再注射到研究对象体内,这些示踪化合物就可以对活体进行生理和生化过程的示踪,显示生物物质相应生物活动的分布、数量及时间变化,以达到研究人体病理和生化过程的目的。

PET技术被称为“活体生化成像”,它可以从分子水平洞察人体内代谢物的活动及生理、生化变化,可以更早期、灵敏、准确地诊断和指导治疗多种疾病。

PET是在分子水平上利用影像技术研究人体心脏和受体功能的最先进的手段,它在新药开发、研究等领域中已显示出卓越的性能。

1PET成像原理正电子断层扫描仪将人体代谢所必需的物质如:葡萄糖、蛋白质、核酸、脂肪酸等标记上具有正电子放射性的短寿命核素,制成显像剂(如氟代脱氧葡萄糖)注人人体后进行扫描成像。

核医学作业习题

核医学作业习题

绪论一、单项选择题1. 核医学的定义是( )。

A.研究放射性药物在机体的代谢B.研究核素在脏器或组织中的分布C.研究核技术在疾病诊断中的应用D.研究核技术在医学的应用及理论2. 1896年法国物理学家贝可勒尔发现了( )。

A.同位素B.放射性衰变C.人工放射性核素D.放射现象二、多项选择题1.临床核医学包括( )。

A.显像诊断B.体外分析C.核素功能测定D.核素治疗2. 临床核医学应用范围( )。

A. 应用于临床各器官系统B.仅显像诊断C.仅在内分泌系统应用D.临床诊断、治疗和研究三、名词解释1. 核医学(Nuclear Medicine)四、问答题1. 核医学包括的主要内容有哪些?第一章核医学物理基础一、单项选择题1.同位素具有( )。

A.相同质子数B. 相同质量数C. 相同中子数D. 相同核能态2. 5mCi等于( )。

A. 185kBqB.1.85MBqC. 185MBqD.18.5MBq3. 放射性活度的国际单位是( )。

A.居里(Ci)B.希沃特(Sv)C.戈瑞(Gy)D.贝可(Bq)4. 18F的中子数为是( )。

A.10B.9C.18D.365. 在射线能量数值相同的情况下内照射危害最大的是( )。

A.α射线照射B. β射线照射C.γ射线照射D.γ和β射线混合照射6. 原子核是由以下哪些粒子组成的( )。

A.中子和电子B.质子和核外正电子C.质子和中子D.质子和核外负电子7. 具有特定的质子数、中子数及核能态的一类原子,其名称为( )。

A.同位素B.原子核C.同质异能素D.核素8. 核衰变后质量数减少4,原子序数减少2,是哪类衰变( )。

A.β-衰变B.α衰变C.γ衰变D.β+衰变9. 剂量单位贝可勒尔是( )。

A.照射量的单位B.剂量当量的单位C.放射性活度的单位D.半衰期的单位10. 设某核素的物理半衰期为6h,生物半衰期为4h,该核素的有效半衰期是( )。

A.2.4hB.6/4 hC.4/6 hD.2 h E、9 h二、多项选择题1. 下列哪些是影响放射性核素有效半衰期的因素( )。

医学成像-第四章:放射性核素成像精讲

医学成像-第四章:放射性核素成像精讲

t
T1/ 2
ln 2

核衰变的规律
生物半衰期(Tb) 指生物体内的放射性核素由于生物代于放射性衰变和生物代谢过程 共同作用,减少到原来的一半所需要的时间。 满足关系:λeff =λ+λb
1 1 1 Teff T Tb 1/ 2
γ相机结构
相机准直器(Collimator) 闪烁探测器(NaI晶体) 光电倍增管(PMT) 位置电路 数据分析计算机
准直器固 定结构
准直器孔
探头周围铅屏蔽 NaI 晶体 光电倍增管
预放器阵列
位置变换电路
X+ XY+ YE
A/D 行地址 列地址 计数式 图像帧存
A/D
能 量 窗 口
2:放射性同位素成像系统的分析
主要指标: 1:系统的灵敏度: 系统对每单位放射性所能探测到并用于 成像的光子数,即:灵敏度=每秒计数/微 居里 (1):准直器的影响 (2):闪烁晶体厚度的影响 (3):脉冲高度分析器中能量阈值的设定
放射性同位素成像系统的分析
2:系统的模糊度或分辨力 单位:LP/cm 影响因数: (1):患者的移动或脏器的运动 (2):准直器的影响 a:准直器小孔的大小 b:准直器小孔的长度 c:照相机与成像物体间的距离 (3):闪烁晶体的影响
核医学的方法
在进行脏器显像和/或功能测定时,医生根 据检查目的,给病人口服或静脉注射某种放 射性示踪剂,使之进入人体后参与体内特定 器官组织的循环和代谢,并不断地放出射线。 这样我们就可在体外用各种专用探测仪器追 踪探查,以数字、图像、曲线或照片的形式 显示出病人体内脏器的形态和功能。
核医学的特点
1.放射性核素成像的物理基础
1:同位素 指具有相同质子数(原子序数)但具有不同 中子数的核数。一般分为两种,一是同位素 性质比较稳定(没有放射性),一是具有放 射性。 2:衰变 指核素自发的发生结构和能量状态的改变, 放射出α、β、γ射线并转变成另一种核素的 过程。

公共基础知识PETCT基础知识概述

公共基础知识PETCT基础知识概述

《PET-CT 基础知识的综合性概述》一、引言在现代医学领域,影像诊断技术的不断发展为疾病的早期发现、准确诊断和有效治疗提供了强有力的支持。

其中,PET-CT(Positron Emission Tomography - Computed Tomography)作为一种高端的医学影像设备,融合了正电子发射断层扫描(PET)和计算机断层扫描(CT)的优势,在肿瘤、神经系统疾病和心血管疾病等的诊断和治疗中发挥着越来越重要的作用。

本文将对 PET-CT 的基础知识进行全面的阐述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。

二、基本概念1. PET正电子发射断层扫描(PET)是一种核医学成像技术,它通过探测注入人体的正电子放射性核素在体内的分布情况,来反映人体组织的代谢、功能和生化信息。

正电子放射性核素通常是由回旋加速器产生的,如氟-18(18F)、碳-11(11C)等。

这些核素在人体内会发生衰变,释放出正电子。

正电子与周围的电子相遇后会发生湮灭,产生一对方向相反、能量相等的γ光子。

PET 探测器通过探测这对γ光子的位置和时间信息,可以重建出人体内部放射性核素的分布图像。

2. CT计算机断层扫描(CT)是一种利用 X 射线对人体进行断层扫描的成像技术。

CT 可以提供人体组织的解剖结构信息,具有较高的空间分辨率。

CT 扫描通过围绕人体旋转的 X 射线源和探测器,采集不同角度的 X 射线投影数据,然后通过计算机重建算法,生成人体的断层图像。

3. PET-CTPET-CT 是将 PET 和 CT 两种成像技术融合在一起的设备。

它在一次扫描中同时获得人体的 PET 图像和 CT 图像,并通过图像融合软件将两种图像进行融合,从而提供人体组织的代谢功能信息和解剖结构信息。

PET-CT 可以实现优势互补,提高疾病的诊断准确性和特异性。

三、核心理论1. 正电子放射性核素的代谢原理正电子放射性核素在人体内的分布取决于其参与的代谢过程。

PET成像技术

PET成像技术

2D 采集方式
8-10mCi 3-4min/bed

<5~8mCi 1-3min/bed
明显高于2D
由于散射和随机计 图像质量佳 数率高,图像较模 糊 NECR值 低于2D 差 高 高
体重<80kg病人成像 <5mm病灶检出率
2D、3D采集方式灵活应用
4D PET-CT
呼吸运动…
CTAC
Ge-68 PET
Images courtesy of Johns Hopkins Medical Center
> 40 % 的病例由于呼吸运动的影响导致错位诊断
4D CT
Courtesy of GTY Chen, E. Rietzel, KP Doppke, NC Choi, CG Willett - MGH
2、PET数据采集方式
PET数据采集方式:
2D方式与3D方式 2D方式是在有电子准直状态下采集 3D方式是在撤除准直的状态下采集 3D 方式信息量较 2D 方式高 90% , 信息量大,分辨率高,噪声多.
2D和3D采集方式原理
消除来自 视野内、外的散射 以获得高质量图像
总计数高,但由于 散射和随机计数也 明显增加,影响图 像质量
2、正电子发射
原子核中的一个质子释放正电子和
中微子并衰变为中子。 P ——〉n+β++ ν 18F原子结构: 9个质子、9个中子、 9 个核外电子; 注:氟稳定结构是10个中子
Carl Anderson
3、湮没辐射(annihilation)
湮没辐射:是指β+ 粒子与物质作用能量耗
尽时,和物质中的自由电子(e-)结合, 正负电荷抵消,两个电子的静止质量转化 为2个能量相等 (511keV)、方 向相反的γ光 子而自身消失。

医学成像技术

医学成像技术
• 70年代迅速兴起了介入放射学(interventional radiology),介入超声和超声组织定位,MRI和 CT的立体组织定位等,以及PET在分子水平上利 用影像技术研究人体心、脑代谢和受体功能,大 大扩展了本专业的应用领域。
• 近年来,我国医学影像学发展非常迅速,医学影像设备不 断更新,检查技术不断完善,介入治疗的效果已提高到一 个新的水平,并有力地促进了临床医学的发展。
• 问题:医学成像的目的是什么?
通过各种方式探测人体,获得人体内部结构的形态、 功能等信息,将其转变为各种图像显示出来,进 行医学研究和诊断。
医学影像学的组成
医学影像学的主要内容
专业现状及发展前景
• 伦琴(wilhelm konrad Roentgen) 1895 年发现X线以后不久, X线就被用于对人体 进行检测,从而形成了放射诊断学 (diagnostic radiology)的新学科,并奠 定了医学影像学 (medical imaging)的基 础。
电图记录,比人工取片、查寻等更省时省力。 ※ 从临床使用的角度来看,其操作的实时性和获
得图像信息的可靠性,尤其可贵。
• 医学成像系统的发展趋势
医学成像系统将向着从模拟图像到数字图像、 从平面图像到立体图像、从局部图像到整体图像、 从宏观图像到微观图像、从静态图像到动态图像、 从形态图像到功能图像、从单一图像到综合图像 等方向发展。即是要获得多时相(动态)图像、 多维图像、多参数图像、多模式图像,以供临床 多种诊断指标(包括病灶检测、定性、脏器功能 评估、血流估计等)、治疗(包括三维定位、体 积计算、外科手术规划等)的多种参考以及多地 域显示观察。
第三节 医学成像技术展望
• 现代医学影像学未来发展趋向: 在保证人身安全的前提下,努力改进信息

核医学成像原理课件

核医学成像原理课件
核医学成像原理课件
从放射性核素的基础概念,到PET、CT和γ相机的成像原理,了解核医学成像 的应用和未来发展趋势。
什么是核医学成像原理
核医学成像是什么
核医学成像是一种利用放射 性核素进行诊断和治疗的医 学技术。
放射性同位素是什么
放射性同位素是指具有不稳 定原子核的同位素,可以发 射α、β、γ粒子的高能辐射。
PET
1
P E T 是什么
正电子发射断层成像(PET)是一种通过探测体内被贴上放射性标记的药物之后, 测量这些药物的分布和代谢情况建立图像的方法。
2
P E T 的成像原理
用同位素制备的放射性药物称为放射性示踪剂(radiotracer)。放射性示踪剂被 注射到受试者的体内后,开始脱去正电子,进而发出β-射线从而与电子相遇,产 生正电子-电子对,而形成电离损失信号,探测器可以探测到这些信号,从而通 过计算机重建出三维图像。
CT
C T的介绍
CT,即计算机断层扫描,是通过计算机处理机器发 射在患者身上的X射线,以产生包括头部、肺、肝、 腹部等器官的显像方式,用于人体的无创性检查。
C T成像原理
将X光进行投射拍摄,同时在不同的位置上进行拍摄, 可以从各个方向获取患者胸腹部的交叉切片图像, 生成与器官形状一致的医学影像。
S PEC T
成像的原理
核医学成像原理是通过放射 性核素的衰变放射出的γ射线 进行成像的技术。
感应放射性பைடு நூலகம்变原理
γ射线
具有高能量、能深入物体并产生 成像效果的射线。
辐射衰变
放射性核素随时间衰变放射出的 α、β、γ射线。
放射性核素
有放射性的核素,在核药学中被 用于医学成像和放射性治疗中。
吸收放射性衰变原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档