河海大学材料力学习题册答案解析(完整资料).doc
河海大学材料力学2007-2014年考研真题及答案解析
《河海大学材料力学历年考研真题及答案解析》
1 / 79
Ⅰ 历年考研真题试卷 河海大学 2007 年招收攻读硕士学位研究生入学考试试卷
考试科目代码:813 考试科目名称:材料力学
考生注意: 1.认真阅读答题纸上的注意事项; 2.所以答案必须写在答题纸上,写在本试题纸或草稿纸上均无效; 3.本试题纸须随答题纸一起装入试题袋中交回!
目录
Ⅰ 历年考研真题试卷................................................................................................................. 2
河海大学 2007 年招收攻读硕士学位研究生入学考试试卷.................................................. 2 河海大学 2008 年招收攻读硕士学位研究生入学考试试卷.................................................. 5 河海大学 2009 年招收攻读硕士学位研究生入学考试试卷.................................................. 7 河海大学 2010 年招收攻读硕士学位研究生入学考试试卷................................................ 10 河海大学 2011 年招收攻读硕士学位研究生入学考试试卷................................................ 13 河海大学 2012 年招收攻读硕士学位研究生入学考试试卷................................................ 17 河海大学 2013 年招收攻读硕士学位研究生入学考试试卷................................................ 20 河海大学 2014 年招收攻读硕士学位研究生入学考试试卷................................................ 24
材料力学习题册答案学习资料
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是):(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
,(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据小变形条件,可以认为构件的变形远小于其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
(完整版)河海大学材料力学期末考试
河海大学《材料力学》期末考试卷〈考试时间:120分钟)一、填空(每题2分,共20分)3.为了求解静不定问题,必须研究构件的娈形 ,从而寻找出补充方程。
4.______________________________________ 材料力学中求内力的基本方法是截面法____________________________________________ o5 •矩形截面梁的弯曲軻力为Fs,横截面积为人则梁上的最大切应力为______ 3匚/2A_________________________________________________________________ 。
7.________________________ 第四强度理论认为_____ 畸变能密Jt 是引起屈服的主要因素'S .挠曲线的近似徹分方程是_____________ N:w/必:三M [E1 ___________________ °9.求解组合变形的基本步屋是,(1)对外力进行分析或简化,使之对应基本变形,C2)求解每一种基本变形的内力、应力及应支等,(3)将所得结果进行叠加。
10.压杆稳走问题中,欧拉公式成立的条件是: ________ z _______________ o11・II轴扭转时的强度条件为_ — = 兀<[i]—刚度条件为心M TJGI, S0]。
13.莫尔强度理论的强度条件为 _____ 6 - {0J/9』巳____________ o14 •进行应力分析时,单元体上切应力等于零的面称为主平面'其上应力称/ 主应力。
二、单项迭择题(每題2分,共20分)1-所有脆性材科,它与塑性材料相比,其拉伸力学性能的最大特点是(C )。
A强度低,对应力集中不敢感$B.相同拉力作用T7变形小3C.断裂前几乎没有塑性变形jD.应力•应变关系严格遵循胡克走律。
2.在美国事件中,恐怖分子的飞机撞击国贸大J1后,该大原起火燃烧,然后坍埸。
河海大学材料力学习题册答案解析
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载河海大学材料力学习题册答案解析地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容学号姓名2-1 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A1=A2=1150mm2。
AECDB2-2 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB的横截面积为40mm2,下段BC的横截面积为30mm2,杆材料的ρg=78kN/m3。
2-4 一直径为15mm,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm,直径缩小了0.022mm,确定材料的弹性模量E、泊松比ν。
2-6图示短柱,上段为钢制,长200mm,截面尺寸为100×100mm2;下段为铝制,长300mm,截面尺寸为200×200mm2。
当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值。
已知E钢=200GPa,E铝=70GPa。
2-7 图示等直杆AC,材料的容重为ρg,弹性模量为E,横截面积为A。
求直杆B截面的位移ΔB。
学号姓名2-8 图示结构中,AB可视为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A3=3000mm2,弹性模量E3=10GPa。
当G点处作用有F=60kN时,求该点的竖直位移ΔG。
2-11 图示一挡水墙示意图,其中AB杆支承着挡水墙,各部分尺寸均已示于图中。
若AB杆为圆截面,材料为松木,其容许应力[σ]=11MPa,试求AB 杆所需的直径。
2-12 图示结构中的CD杆为刚性杆,AB杆为钢杆,直径d=30mm,容许应力[σ]=160MPa,弹性模量E=2.0×105MPa。
河海大学2011材料力学试题解析 高清版
【考察重点】 :本题主要考察第四章弯曲应力,考察的知识点都是基本知识,考生应该都能熟练 掌握的,属于基本题。请考生务必引起重视。几乎年年都考。 解: M max =ql , FQ max =4ql 3、梁 AB、BC 在 B 处用铰链连接,A、C 两端为固定端、尺寸及荷载如图所示,两梁的弯曲刚度均 为 EI。 (1)求 B 处的约束力 (2)求截面的挠度(用 EI 表示) 。 (20 分)
分)
【考察重点】 :本题主要考察第九章压杆稳定,关键在于考察考生对求压杆稳定的几个关键步骤 是否掌握牢靠,比如首先要判断属于哪种类型的杆等等,属于基本题。请考生务必引起重视。几乎 年年都考。 解: 1 由题意得: M max =
2 1 F , FA = F 3 3
2 F M max AC 杆: max =n =2 3 -4 200MPa WAC z 5.4 10
解: x =
F 4F 2 , 45 = x , -45 = x A d 2 2 1 4 5 ( 4 5 - 4) ,代入上述数据得 = 5 E F 45 = (1 ) E d 2
二、 综合题(共 100 分) 1、图示槽形截面梁,已知:L=2m,若材料的许用拉应力 t =30MPa ,许用压应力 c =90MPa , 对中性轴的惯性矩 Iz =5.49 10 mm , (1) 画出弯矩图, (2) 是根据正应力强度求梁的容许荷载[q]。
1 3Leabharlann 【考察重点】 :本题主要考察第八章组合变形及连接部分的计算,有一定的综合度,但是,其实 不难,记住,这类题第一步都是分析应力状态,只有这一步分析对了,下面才会水到渠成,所以,
强化基础很重要,属于基本能力题。请考生务必引起重视。几乎年年都考。 解:由题意得:危险点位于固定端,取固定端一截面来分析。
材料力学全部习题解答
弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y
《材料力学》课后习题答案(详细)
第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。
(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。
(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。
(完整版)材料力学课后习题答案
xx8-1 试求图示各杆的轴力,并指出轴力的最大值。
取 1-1 截面的左段;(2) (3) F N1取 2-2 截面的右段;F R用截面法求内力,取1-1、2-2、 3-3 截面;(1) (2) (3) (4)(5)(d)(1)取 1-1 截面的左段2;kN 取 2-2 截面的左段;取 3-3 截面的右段;轴力最大值: 用截面法求内力,取13kN 2 2kN33kN12 3F N11 31kN 21 32 F N33kN1-1、 2-2 截面;38-2 解:8-5 (2) (2) 取 1-1 截面的右段; 取 2-2 截面的右段F ;N112kN 22kN(5) 轴力最大值: 试画出 8-1所示各杆的轴力图。
(a) (b) (c) (d)F NF FN N(+)F图示阶梯形圆截面杆,承受F 轴N 向载荷(+) F 1=50 kN 与3kNF 2作用, 1kN (+) 1kN(-)(+) Fx AB 与 BC 段的直径分别为 x (-)1kN2kNd 1=20 mm 和 d 2=30 mm ,如欲使 AB 与 BC 段横截面上的正应力相同,试求载荷 F 2 之值。
(2) 求 1-1、 2-2 截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷 F=10 kN 作用,杆的横截面面积 A=1000 mm 2,粘接面的方位 角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
l 1l 2解: (1) 用截面法求 AB 、 BC 段的轴力;(2) 分段计F 算个杆向变形;FAC 杆缩短。
2F8-22 图示桁架,杆 1与A 杆 2的横截面面积与材料均相B 同,在节点 A 处承受C 载荷 F 作用。
从解: 8-6 解: (1) 用截面法求出 F 11-1、2-2 截面的轴力;(2) 求 1-1、 2-2 截面的正应A 力 ,利用正应力相B 同 ;题 8-5 图所示圆截面杆,已知载荷 1F 1=200 kN ,F 2=1020 kN ,CAB 段的直径 d 1=40 mm ,如 欲使 AB 与 BC 段横截面上的正应力相同,试求 BC 段的直径。
材料力学全部习题解答讲解
1 2 R2
3
2
(b)
yc =
ydA
A
=
A
b 0
y ayndy b ayndy
=
n n
1 2
b
0
26
Iz =
y2dA
A
Iy =
z2dA
A
解: 边长为a的正方截面可视为由图示截面和一个半 径为R的圆截面组成,则
Iz
=I(za)
I(zR)=
a4 12
2R 4
0
FN A
10103 N 1000 106 m2
10MPa
由于斜截面的方位角 450
得该截面上的正应力和切应力分别为
45
0 cos2 10106 cos2 450 pa 5MPa
0 sin 2 1 10106 sin 900 pa 5MPa
2
18
解:1.求预紧力 由公式l FNl 和叠加原理,故有
EA
l
l1
l2
l3
Fl1 EA1
Fl2 EA2
Fl3 EA3
4F
E
l1 d12
l2 d22
l3 d32
由此得 F
El
18.65kN
4
l1
d
2 1
l2
d
2 2
l3
根据式
tan 2 2I y0z0
I z0 I y0
解得主形心轴 y 的方位角为 a =
3.计算主形心惯性矩
河海大学材料力学习题库
河海大学材料力学习题库1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力ζ与切应力η。
解:应力p与斜截面m-m的法线的夹角α=10°,故ζ=p cosα=120×cos10°=118.2MPaη=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为ζmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m返回1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:返回第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
河海大学出版社 材料力学 习题解答word
第二章 拉压变形2-11 图示一挡水墙示意图,其中AB 杆支承着挡水墙,各部分尺寸均已示于图中。
若AB 杆为圆截面,材料为松木,其容许应力[σ]=11MPa ,试求AB 杆所需的直径。
解:2-16 试校核图示销钉的剪切强度。
已知F =120kN ,销钉直径d =30mm ,材料的容许应力[τ]=70MPa 。
若强度不够,应改用多大直径的销钉?解:MPa A F 88841049210120243./=⨯⨯⨯==-πτ 不满足强度条件46324110571810702101202-⨯=⨯⨯⨯=≥=.][τπF d A F NP3m4m2mkN b h P 40221==γkNF P F F MN N i O111104060032...:)(==⨯-⨯⨯=∑强度条件:cmd m d AF N583102861101110111142363..)/(.][≥⨯=⨯⋅⨯⨯≥≤=-πσσ以上解不合理: 柔度:7557451.)//(/=⨯==d i l μλ3.d3cm第三章 扭转变形3-3 图示组合圆轴,内部为钢,外圈为铜,内、外层之间无相对滑动。
若该轴受扭后,两种材料均处于弹性范围,横截面上的切应力应如何分布?两种材料各承受多少扭矩?dxd φργ= γτG =80120 5050F AB Cc x c r 1r 2 r 3 F M 3-10(b) F=40kN, d=20mm 解:中心c 位置 380/=c x 等效后:kNF M 936103802003.)/(=⨯-=-由F 引起的切应力MPa d kN A F 442403243.)/()/(==='πτ由M 引起的剪切力满足321r F r F r F B A c ///==Mr F r F r F B A C =++321解得kNF C 839.=C 铆钉切应力最大MPa d kN A F C 712683924.)/(./===''πτMpac 1169.=''+'=ττττγ第四章弯曲变形4-12 切应力流4-12 试画出图示各截面的弯曲中心的大致位置,并画出切应力流的流向,设截面上剪力F Q 的方向竖直向下。
材料力学习题册_参考答案(1-9章)
(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。
河海大学材料力学真题汇总
= 88mm ,横截面对中性轴的惯性矩为 I z = 764 × 10−8 m4 。试求梁的容许均布荷载 q 的大小
2007 年第 3 大题 图示钢杆,弹性模量 E
= 200GPa ,截面面积为 2500mm 2 ,受力之前, B 端与刚性墙间的间隙为 δ = 0.3mm ,现于 C 点作
2004 年第 2 部分第 6 大题 图示结构中, AC 梁为矩形截面, CD 杆为圆截面,均由 Q 235 钢制成, C 、 D 两处均为球铰,已知 d
= 20mm , b = 100mm ,
h = 180mm , E = 200GPa ,σ s = 235MPa ,σ b = 400MPa ,强度安全因素 n = 2.0 ,稳定安全因素 nst = 3.0 。试确定
30
o
= 143.3 × 10 −6 ,
Fd /10 , d = 100mm , E = 200GPa ,ν = 0.3 。试求荷载 F 和 Me 。若许用应力 [σ ] = 160 MPa ,试用第三
2007 年第 7 大题 图示结构 AB 为矩形截面梁,Wz
= 105 mm3 ; CD 为圆截面杆,直径 d = 20mm ,两端铰支,可视为细长杆。弹性模量均为
E = 200GPa ,容许应力 [σ ] = 160 MPa , L = 0.8m ,稳定安全系数 nst = 2 ,现在 B 端作用一力偶 M = 10 KN ⋅ m ,试校
= 200GPa )
2006 年第 2 大题 由空心圆管 B 和实心圆杆 A 牢固地粘结在一起组成的轴(横截面如图) ,它们的切变弹模分别为 G A 和 GB ,且 G A (1)画出横截面上切应力分布规律(以任一半径) (2)求出扭矩为 M x 时, A 、 B 材料内的最大切应力
(完整版)材料力学习题册答案..
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】 学号 姓名2-1 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A 1=A 2=1150mm 2。
2-2 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。
A E CD B2-4一直径为15mm,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm,直径缩小了0.022mm,确定材料的弹性模量E、泊松比ν。
2-6图示短柱,上段为钢制,长200mm,截面尺寸为100×100mm2;下段为铝制,长300mm,截面尺寸为200×200mm2。
当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值。
已知E钢=200GPa,E铝=70GPa。
2-7图示等直杆AC,材料的容重为ρg,弹性模量为E,横截面积为A。
求直杆B截面的位移ΔB。
学号姓名2-8图示结构中,AB可视为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A=3000mm2,弹性模量E3=10GPa。
当G点处作用有3F=60kN时,求该点的竖直位移ΔG。
2-11图示一挡水墙示意图,其中AB杆支承着挡水墙,各部分尺寸均已示于图中。
若AB杆为圆截面,材料为松木,其容许应力[σ]=11MPa,试求AB杆所需的直径。
2-12图示结构中的CD杆为刚性杆,AB杆为钢杆,直径d=30mm,容许应力[σ]=160MPa,弹性模量E=2.0×105MPa。
试求结构的容许荷载F。
2-14图示AB为刚性杆,长为3a。
A端铰接于墙壁上,在C、B两处分别用同材料、同面积的①、②两杆拉住,使AB杆保持水平。
在D点作用荷载F后,求两杆内产生的应力。
设弹性模量为E,横截面面积为A。
学号姓名2-15两端固定,长度为l,横截面面积为A,弹性模量为E的正方形杆,在B、C截面处各受一F力作用。
求B、C截面间的相对位移。
2-17 两块钢板塔接,铆钉直径为25mm ,排列如图所示。
已知[τ]=100MPa ,[bs ]=280MPa ,板①的容许应力[σ]=160MPa ,板②的容许应力[σ]=140MPa ,求拉力F 的许可值,如果铆钉排列次序相反,即自上而下,第一排是两个铆钉,第二排是三个铆钉,则F 值如何改变?3-1一直径d=60mm的圆杆,其两端受外力偶矩T=2kN·m的作用而发生扭转。
试求横截面上1,2,3点处的切应力和最大切应变,并在此三点处画出切应力的方向。
(G=80GPa)。
3-3 从直径为300mm的实心轴中镗出一个直径为150mm的通孔而成为空心轴,问最大切应力增大了百分之几?3-4一端固定、一端自由的钢圆轴,其几何尺寸及受力情况如图所示,试求:(1)轴的最大切应力。
(2)两端截面的相对扭转角(G=80GPa)。
学号姓名3-5一圆轴AC如图所示。
AB段为实心,直径为50mm;BC段为空心,外径为50mm,内径为35mm。
要使杆的总扭转角为0.12°,试确定BC段的长度a。
设G=80GPa。
3-8传动轴的转速为n=500转/分,主动轮输入功率1P=500KW,从动轮2、3分别输出功率P2=200KW,P3=300KW。
已知[τ]=70MPa,[θ]=1°/m,G=8×104MPa。
(1)确定AB段的直径d1和BC段的直径d2。
(2)若AB和BC两段选用同一直径,试确定直径d。
3-10图(a)所示托架,受力F=40kN,铆钉直径d=20mm,铆钉为单剪,求最危险铆钉上的切应力的大小及方向。
3-14工字形薄壁截面杆,长2m,两端受0.2kN·m的力偶矩作用。
设G=80GPa,求此杆的最大切应力及杆单位长度的扭转角。
学号姓名A-2试求图形水平形心轴z的位置,并求影阴线部分面积对z轴的面积矩S z。
A-3试计算(b)图形对y,z轴的惯性矩和惯性积。
A-8计算图示(a)图形的形心主惯性矩。
4-1 图(a)所示钢梁(E =2.0×105MPa)具有(b)、(c)两种截面形式,试分别求出两种截面形式下梁的曲率半径,最大拉、压应力及其所在位置。
4-4 求梁指定截面a-a 上指定点D 处的正应力,及梁的最大拉应力m ax t σ和最大压应力m ax c σ。
A B学号姓名4-5图示梁的横截面,其上受绕水平中性轴转动的弯矩。
若横截面上的最大正应力为40MPa,试问:工字形截面腹板和翼缘上,各承受总弯矩的百分之几?4-6一矩形截面悬臂梁,具有如下三种截面形式:(a)整体;(b)两块上、下叠合;(c)两块并排。
试分别计算梁的最大正应力,并画出正应力沿截面高度的分布规律。
4-8一槽形截面悬臂梁,长6m,受q=5kN/m的均布荷载作用,求距固定端为0.5m处的截面上,距梁顶面100mm处b-b线上的切应力及a-a线上的切应力。
4-9一梁由两个18B号槽钢背靠背组成一整体,如图所示。
在梁的a-a截面上,剪力为18kN、弯矩为55kN·m,求b-b截面中性轴以下40mm处的正应力和切应力。
学号姓名4-10一等截面直木梁,因翼缘宽度不够,在其左右两边各粘结一条截面为50×50mm的木条,如图所示。
若此梁危险截面上受有竖直向下的剪力20kN,试求粘结层中的切应力。
4-11 图示一矩形截面悬臂梁,在全梁上受集度为q的均布荷载作用,其横截面尺寸为b、h,长度为l。
(1)证明在距自由端为x处的横截面上的切向分布内力τd A的合力等于该截面上的剪力;而法向分布内力σd A的合力偶矩等于该截面上的弯矩。
(2)如沿梁的中性层截出梁的下半部,如图所示。
问截开面上的切应力τ′沿梁长度的变化规律如何?该面上总的水平剪力F Q′有多大?它由什么力来平衡?4-12 试画出图示各截面的弯曲中心的大致位置,并画出切应力流的流向,设截面上剪力F Q 的方向竖直向下。
4-14 图示铸铁梁,若[t σ]=30MPa,[c σ]=60MPa,试校核此梁的强度。
已知=z I 764×108-m 4。
学号姓名4-15一矩形截面简支梁,由圆柱形木料锯成。
已知F=8kN,a=1.5m,[σ]=10MPa。
试确定弯曲截面系数为最大时的矩形截面的高宽比h/b,以及锯成此梁所需要木料的最d。
4-16截面为10号工字钢的AB梁,B点由d=20mm的圆钢杆BC支承,梁及杆的容许应力[σ]=160MPa,试求容许均布荷载q。
4-18用积分法求下列各梁指定截面处的转角和挠度。
设EI为已知。
学号姓名4-19对于下列各梁,要求:(1)写出用积分法求梁变形时的边界条件和连续光滑条件。
(2)根据梁的弯矩图和支座条件,画出梁的挠曲线的大致形状。
4-20用叠加法求下列各梁指定截面上的转角和挠度。
4-21图示悬臂梁,容许应力[σ]=160MPa,容许挠度[w]=l/400,截面为两个槽钢组成,试选择槽钢的型号。
设E=200GPa。
4-23图示两梁相互垂直,并在简支梁中点接触。
设两梁材料相同,AB 梁的惯性矩为I1,CD梁的惯性矩为I2,试求AB梁中点的挠度w C。
学号姓名5-1单元体上的应力如图所示。
试用解析公式法求指定方向面上的应力。
5-3 单元体上的应力如图所示。
试用应力圆法求单元体的主应力大小和方向,再用解析公式法校核,并绘出主应力单元体。
5-5图示A点处的最大切应力是0.9MPa,试确定F力的大小。
学号姓名5-7 求图中两单元体的主应力大小及方向。
5-8 在物体不受力的表面上取一单元体A,已知该点的最大切应力为3.5MPa,与表面垂直的斜面上作用着拉应力,而前后面上无应力。
(1)计算A点的σx,σy及τx,并画在单元体上。
(2)求A点处的主应力大小和方向。
5-9在一体积较大的钢块上开一个立方槽,其各边尺寸都是1cm,在槽内嵌入一铝质立方块,它的尺寸是0.95×0.95×1cm3(长×宽×高)。
当铝块受到压力F=6kN的作用时,假设钢块不变形,铝的弹性模量E=7.0×104MPa,ν=0.33,试求铝块的三个主应力和相应的主应变。
5-10 在图示工字钢梁的中性层上某点K处,沿与轴线成45°方向上贴有电阻片,测得正应变ε=-2.6×10-5,试求梁上的荷载F。
设E=2.1×105MPa,ν=0.28。
学号姓名5-11图示一钢质圆杆,直径D=20mm。
已知A点处与水平线成70°方=4.1×10-4。
E=2.1×105MPa,ν=0.28,求荷载F。
向上的正应变ε70°5-12 用电阻应变仪测得受扭空心圆轴表面上某点处与母线成45°方向上的正应变ε=2.0×10-4。
已知E=2.0×105MPa,,ν=0.3,试求T的大小。
5-13 受力物体内一点处的应力状态如图所示,试求单元体的体积改变能密度和形状改变能密度。
设E=2.0×105MPa,ν=0.3。
6-1炮筒横截面如图所示。
在危险点处,σt=60MPa,σr=-35MPa,第三主应力垂直于纸面为拉应力,其大小为40MPa,试按第三和第四强度论计算其相当应力。
6-2 已知钢轨与火车车轮接触点处的正应力σ1=-650MPa,σ2=-700MPa,σ=-900MPa。
如钢轨的容许应力[σ]=250MPa,试用第三强度理论和第3四强度理论校核该点的强度。
6-3 受内压力作用的容器,其圆筒部分任意一点A处的应力状态如图(b)所示。
当容器承受最大的内压力时,用应变计测得:εx=1.88×10-4,εy=7.37×10-4。
已知钢材弹性模量E=2.1×105MPa,横向变形系数v=0.3,[σ]=170MPa。
试用第三强度理论对A点处作强度校核。
学号姓名6-4 图示两端封闭的薄壁圆筒。
若内压p=4MPa,自重q=60kN/m,圆筒平均直径D=1m,壁厚δ=30mm,容许应力[σ]=120MPa,试用第三强度理论校核圆筒的强度。
6-6在一砖石结构中的某一点处,由作用力引起的应力状态如图所示。
构成此结构的石料是层化的,而且顺着与A-A平行的平面上承剪能力较弱。
试问该点是否安全?假定石头在任何方向上的容许拉应力都是1.5MPa,容许压应力是14MPa,平行于A-A平面的容许切应力是2.3MPa。
6-7 一简支钢板梁受荷载如图(a)所示,它的截面尺寸见图(b)。
已知钢材的容许应力[σ]=170MPa,[τ]=100MPa,试校核梁内的正应力强度和切应力强度,并按第四强度理论对截面上的a点作强度校核。