农田水利学—作物需水量与灌溉用水量
第二章 作物需水量和灌溉用水量

生育阶段:模系数法
ETi=Ki ET/100
2、基于参照作物需水量计算实际作物需水量。
ETc=kc ET0
Kc:作物系数
ET0:参考作物腾发量,计算以往
常用FAO(1979)的修正Penman 法,最新FAO(1998)Penman-
ET 0
Monteith法
p0 p
Rn
Ea
p0 1
p
第十一页,共88页
因此,必须以作物需水规律和气象条件(特别是降水)等 作为主要依据,从当地具体条件出发,针对不同水文年份,拟
定湿润年(降雨量频率为25%)、中等年(频率为50%) 和中等干旱年(频率为75%)及特旱年(频率为95%)
四种类型的灌溉制度。
也就是说同一种作物在不同水文年有不同的灌溉制度。
一般在灌溉工程规划、设计中多采用中等干旱年的灌溉制 度作为标准。
任一时间t时的土壤计划湿润层内的储水量时段初的土壤计划湿润层内的储水量计划湿润层增加而增加的水量时段内保存在土壤计划湿润层内的有效降雨量时段内的地下水补给量时段内的灌溉水量时段内的作物需水量1根据水量平衡原理制定旱作物灌溉制度33旱作物的灌溉制度旱作物的灌溉制度33旱作物的灌溉制度旱作物的灌溉制度为了满足作物正常生长的要求土壤计划湿润层内的土壤含水量或储水量必须经常保持在一定的范围之内即通常要求不小于最小允许含水量min或最小允许储水量wmin和不大于最大允许含水量max或最大允许储水量wmax当计划湿润层内的平均土壤含水量或储水量降低到或接近于最小允许值min进行灌溉以补充土壤水分维持作物的正常生长
自然因素:气象条件、土壤特征、作物性状等 人为因素:农田灌排措施、农业耕作措施等
(1)气象因素
气象因素是影响作物需水量的主要因素,它不仅 影响蒸腾速率,也直接影响作物的生长发育。 气象因素对作物需水量的影响,往往是几个因素 同时作用,很难将各个因素的影响一一分开。 当气温高、日照时数多、相对湿度小时,需水量
作物需水量与灌溉用水量

四、作物需水量的确定
直接测定 (Lysimeters/测坑、测筒,田测) 计算
1、作物需水量的观测
一般用蒸渗器(Lysimeter,包括测坑和测筒)测 定;只有地下水埋深大于2.5m(沙壤土)或3.5m (粘土、壤土)的旱田,可在试验小区中直接测定 (避免地下水补给量的影响)。水田渗漏量可用蒸渗 器和试验小区结合方法测定。 2.5、3.5为地下水 临界埋深 蒸渗器应达到的技术标准及试验要求参见 (灌溉 试验规范,SL 13 - 2004)
ETi a i bi Ti
ETi a i E 0i C i
(3)用水面蒸发量推算 (4)用气温和水面蒸发量推算
ETi i (t i 50) E 0i
(5) 温度日照法
ETi at bh c
通过计算参照作物需水量来计算实际作物需水量
参照作物需水量
Reference Evapotranspiration ET0
蒸发(Evaporation)
定义:植株间土壤或 田面水分的蒸发 蒸发是一种物理过程 土面蒸发一般小于自 由水面蒸发,但在饱 和含水率时基本等于 自由水面蒸发。
深层渗漏(Seepage)及田间渗漏(Pecolation)
深层渗漏:旱田中由于降雨或灌溉水量太多,使土壤水 分超过了田间持水量,向根系活动层以下的土层产生渗 漏的现象 田间渗漏:水稻田的 渗漏 稻田渗漏造成水和肥 的流失,但可促进土 壤通气,改善还原条 件,消除有毒物质, 有利于作物生长。
2、田间耗水量
( Consumptive Use of Water) 旱地耗水量 稻田耗水量 = 作物需水量 = 作物需水量 + 田间渗漏
水稻田的渗漏 Percolation in paddy field 稻田适当渗漏有利 且不可避免
第二章:作物需水量和灌溉用水量PPT

三、作物田间需水量的估算
(一)全生育期作物需水量的确定 1、以水面蒸发量为参数的需水系数法 常用“蒸发皿法”或“α值法” 大量灌溉试验资料表明,各种气象因素都与当地的水面蒸发 量之间有较为密切的关系,而水面蒸发量又与作物需水量之间 存在一定程度的相关关系。因此,可以用水面蒸发量这一参数 来衡量作物需水量的大小。这种方法的计算公式一般为:
植株蒸腾+株间蒸发=腾发量=作物需水量 作物需水量+渗漏量=田间耗水量
二、作物需水规律
(一)作物需水量影响因素 1、气象条件 2、土壤条件 3、作物条件 4、农业技术措施
(二)作物需水特征 1、中间多,两头少,开花结果期最大。 2、存在需水临界期 (1)定义:在作物全生育期中,对缺水最敏感,如果缺水,对作 物产量影响最大的时期。 水稻:孕穗~开花 棉花:开花~幼铃期 小麦:拔节~灌浆期 (2)了解作物需水临界期的意义: ①合理安排作物布局,使用水不致集中 ②在干旱情况下,优先灌溉处于临界期的作物
(一) 水稻灌溉制度
水稻本田的灌溉制度。可分别针对泡田期及插秧以后的生育期进 行设计。
1、泡田期
泡田期的灌溉用水量(泡田定额)可用下式确定: M1=0.667(h0+S1+e1t1-P1) 式中 M1——泡田期灌溉用水量,m3/亩; h0——插秧时田面所需的水层深度,mm; S1——泡田期的渗漏量,即开始泡田到插秧期间的总渗漏量,mm; t1——泡田期的日数; e1——t1时期(泡田期)内水田田面平均蒸发强度,mm/d,可用水 面蒸发强度代替; P1——t1时期内的降雨量,mm。
四、各生育期田间需水量的确定
(二)通过计算参照作物需水量来计算实际作物需水量的方法 近代需水量的理论研究表明,作物腾发耗水是通过土壤-植物-大 气系统的连续传输过程,大气、土壤、作物三个组成部分中的任何一部 分的有关因素都影响需水量的大小。根据理论分析和试验结果,在土壤 水分充分的条件下,大气因素是影响需水量的主要因素,其余因素的影 响不显著。在土壤水分不足的条件下,大气因素和其余因素对需水量都 有重要影响。目前对需水量的研究主要是研究在土壤水分充足条件下的 各项大气因素与需水量之间的关系。普遍采用的方法是通过计算参照作 物的需水量来计算实际需水量。相对来说理论上比较完善。 有了参照作物需水量,然后再根据作物系数 对ET0进行修正,即 可求出作物的实际需水量
农田水利学—作物需水量与灌溉用水量

第二章作物需水量与灌溉用水量§1 作物需水量一、作物田间水分的消耗(三种途径:叶面蒸腾、棵间蒸发和深层渗漏)叶面蒸腾:作物植株内水分通过叶面气孔散发到大气中的现象;棵间蒸发:植株间土壤或水面(水稻田)的水分蒸发;深层渗漏:土壤水分超过了田间持水率而向根系以下土层产生渗漏的现象。
解释:棵间蒸发能增加地面附近空气的湿度,对作物生长环境有利,但大部分是无益的消耗,因此在缺水地区或干旱季节应尽量采取措施,减少棵间蒸发(如滴灌<局部灌溉>、水田不建立水层)和地面覆盖等措施。
深层渗漏对旱田是无益的,会浪费水源,流失养分,地下水含盐较多的地区,易形成次生盐碱化。
但对水稻来说,适当的深层渗漏是有益的,可增加根部氧分,消除有毒物质,促进根系生长,常熟、沙河、涟水等灌溉试验站结果都表明:有渗漏的水稻产量比无渗漏的水稻产量高3.9% ~26.5%。
叶面蒸滕量+棵间蒸发量=腾发量=作物田间需水量水田:田间需水量+渗漏量=田间耗水量由于水田不同土壤渗漏量大小差别很大,为了使不同土质田块水稻需水具有可比性,因此水稻的田间需水量不包括渗漏量,如计入渗漏量,则称为田间耗水量。
二、作物需水规律(一)影响作物需水量的因素1、气象条件主要因素,气温高、日照时间长、空气湿度低、风速大、气压低等使需水量增加;2、土壤条件含水量大,砂性大,则需水量大(棵间蒸发大)3、作物条件水稻需水量较大,麦类、棉花需水量中等,高粱、薯类需水量较少;4、农业技术措施地面覆盖、采用滴灌、水稻控灌等能减少作物需水量。
(二)作物需水特性1、中间多,两头少;开花结实期需水量最大2、存在需水临界期需水临界期:在作物全生育期中,对缺水最敏感,影响产量最大的时期。
几种作物的需水临界期:水稻孕穗至开花期棉花开花至幼铃形成期小麦拨节至灌浆期了解作物需水临界期的意义:1、合理安排作物布局,使用水不至过分集中;2、在干旱情况下,优先灌溉正处需水临界期的作物。
第二章 作物需水量和灌溉用水量

灌溉制度是灌溉工程规划设计的基础,是已建成 灌区编制和执行用水计划,合理用水的重要依据。
灌溉制度关系到灌区内作物产量(效益)和品质 的提高,及灌区水土资源的充分利用和灌溉工程设 施效益的发挥。
一、充分灌溉条件下的灌溉制度
1、制定灌溉制度的方法 在灌区规划、设计或管理中,常采用以下几种方法来 确定灌溉制度。 1)根据群众丰产灌水经验确定作物灌溉制度 经过多年的实践、摸索,各地群众都积累了不少 确定灌溉制度的经验与方法。这些经验是制定灌溉制 度的重要依据,应成为制定灌溉制度最宝贵的资料。 灌溉制度调查应根据设计要求的水文年份,仔细调查 这些年份不同生育期的作物田间耗水强度 [mm/d]及灌 水次数、灌水时间、灌水定额及灌溉定额,并由此确 定这些年份的灌溉制度。
2、田间耗水量
作物耗水量,简称耗水量:就某一地区而言,指 具体条件下作物获得一定产量时实际所消耗的水量。
需水量是一个理论值,又称为潜在蒸散量(或潜在 腾发量),而耗水量是一个实际值,又称实际蒸散量。 需水量与耗水量的单位一样,常以 m3 亩-1 或 mm 水 层表示。 旱地耗水量 = 作物需水量 稻田耗水量 = 作物需水量 + 田间渗漏
人为因素:农田灌排措施、农业耕作措施等
(1)气象因素
气象因素是影响作物需水量的主要因素,它不仅 影响蒸腾速率,也直接影响作物的生长发育。
气象因素对作物需水量的影响,往往是几个因素
同时作用,很难将各个因素的影响一一分开。 当气温高、日照时数多、相对湿度小时,需水量 会增加。
4、影响作物需水量的因素:
1、制定灌溉制度的方法 3)按水量平衡原理分析制定灌溉制度
水量平衡法以作物各生育期内水层变化(水田) 或土壤水分变化(旱田)为依据,从对作物充分供 水的观点出发,要求在作物各生育期内水层变化 (水田)或计划湿润层内的土壤含水量维持在作物 适宜水层深度或土壤含水量的上限和下限之间,降 至下限时则应进行灌水,以保证作物充分供水。 应用时要参考、结合前几种方法的结果,这样 才能使得所制定的灌溉制度更为合理与完善。
第二章-作物需水量和灌溉用水量

第二节 作物灌溉制度
第三节 灌溉用水量
第四节 灌水率
第二章 作物需水量和灌溉用水量
第一节 作物需水量
一、作物需水量及影响因素
作物根系吸水,也称植株蒸腾 植株间水分蒸发,也称棵间蒸发 渗漏
深层渗漏:旱作物 田间渗漏:水稻
农田水分消耗
根系吸水
植物体输水
植物体蒸腾
Hale Waihona Puke 植株蒸腾:作物将根系从土壤中吸收的水分,通过叶片的气孔蒸散到大气中的现象。 棵间蒸发:植株间土壤或田面的水分蒸发。 深层渗漏:旱地中由于降雨量或灌溉水量太多,使土壤水分超 过了田间持水量,向根系吸水层以下土层渗漏的现象。
1、制定灌溉制度的方法
一、充分灌溉条件下的灌溉制度
1、制定灌溉制度的方法
3)按水量平衡原理分析制定灌溉制度 水量平衡法以作物各生育期内水层变化(水田)或土壤水分变化(旱田)为依据,从对作物充分供水的观点出发,要求在作物各生育期内水层变化(水田)或计划湿润层内的土壤含水量维持在作物适宜水层深度或土壤含水量的上限和下限之间,降至下限时则应进行灌水,以保证作物充分供水。 应用时要参考、结合前几种方法的结果,这样才能使得所制定的灌溉制度更为合理与完善。
2、基于参照作物需水量计算实际作物需水量 参照作物需水量ET0:指的是土壤水分充足,地面完全 覆盖、生长正常、高矮整齐的开阔(长、宽均在200m以 上)绿草地(高3~15cm)的蒸发蒸腾量。 参照作物需水量只受气象条件的影响。 目前采用的计算作物需水量方法,大致分为以下两步: 第一步:考虑气象因素对作物需水量的影响,计算参照 作物蒸发蒸腾量ET0 ; 第二步:考虑土壤水分及作物条件的影响,对参照作物 需水量进行调整或修正,从而计算出实际需水量ET 。
农田水利学第二章 作物需水量及作物灌溉制度1

一、作物需水量与影响因素
1.作物需水量 植株蒸腾 棵间蒸发 农田水分消耗的途径
深层渗漏或田间渗漏
地表径流 组成植株体的一部分
植株蒸腾:作物将根系从土壤中吸收的水
分,通过叶片的气孔蒸散到大气中的现象。
棵间蒸发:植株间土壤或田面的水分蒸发。
深层渗漏:旱地中由于降雨量或灌溉水量太
多,使土壤水分超过了田间持水量,向根系
各种作物需水临界期不完全相同,但
大多数出现在从营养生长向生殖生长的过
渡阶段,在作物需水临界期缺水,会对产
量产生很大影响。
一、作物需水量与影响因素
作物需水系数:生产单位产量作物(如 1kg小麦)的需水量(mm kg-1)。 作物水分利用效率:作物每消耗单位水量 所能生产的产量(kg/mm或kg/m3。
二、作物需水量(蒸发蒸腾量)的估算
(一)直接计算
1.水面蒸发量法(蒸发皿法或α 值法): 水面蒸发量与作物需水量之间存在一定程度
的相关关系,因此可用水面蒸发量这一参数来计
算作物需水量:ETc =αE0 或
ETc = aE0+ b
二、作物需水量(蒸发蒸腾量)的估算 1.水面蒸发量法(蒸发皿法或α 值法): α —需水系数或蒸发系数,为需水量与水面蒸 发量的比值,由实测资料确定,一般水稻田的 α = 0.9~1.3,旱作的α = 0.3~0.7。 一般水稻用α 值法比较好。
别?
2、解释作物需水关键期、作物需水系数、
作物水分利用效率;
3、作物需水量的估算方法有哪些?各有何
特点?
4、解释参照作物。
学习提纲 第二部分:
灌溉制度的内涵及确定方法
水量平衡法确定旱作物的灌溉制度 主要讲授:充分灌水条件下灌溉制度的确 定(重点)
作物需水量和灌溉用水量

<乙>早种物灌溉制度。原理:以作物主要根系吸水层作为灌水计划湿润层,将该层内的土壤含水量保持在作物所要求的范围内。。当计划湿润层(平均)上壤含水量低于设计灌水下限时,需要灌水,高于上限时, 一般需要排 水(通常在渍涝危害情况下).
第三十三页,编辑于星期四:十二点十四分。
1 、以 水面蒸发为参数(a 值法)。气象因素与水面蒸发量关系密切,而水面蒸发与作物需水量有一定的相关关系,因此可以用水面蒸发和 需水量的相关关系计算需水量。·ET=aE₀+b·E o
第八页,编辑于星期四:十二点十四分。
说明。蒸发量简单易得,在水稻地区曾被广泛应用。●除注意蒸发皿的规格安装方法外,还应考虑非气象条件的影响。如土壤、水文地质、农业措施等·该方法具所获得的参数具有很强的地域 局限性
P、灌水定额计算·1)m=667nh(ex-Cn)-m- 灌水定额, m3/亩;,θ一允许最大和最小土壤含水率(占土壤孔 隙体积的百分数);-n- 土壤孔隙率;- H-计划湿润层深度, m
第三十六页,编辑于星期四:十二点十四分。
。2)m=10000nh(θmax-θmin)或- m一灌水定额, m3/ha-Bmax,θ min允许含水量上下限(占土壤孔隙体 积的百分数)- n上壤孔隙率; Y-土壤干容重,t/m3- H 计划湿润层深度,m-ms/ha 是标准单位,用于正式文件中,
第十三页,编辑于星期四:十二点十四分。
·Et1/100×K;×ET·Et; 一第I个生育阶段的需水量·k,为需水量模比系数, 可由试验 资料确定,·其他各项意义同前。
第十四页,编辑于星期四:十二点十四分。
<二>间接法。通 过参考作物需水量间接计算作物实际需水量ET,, 乘以相应的作物系 数,得到作物实际需水量·参照作物需水量(Reference cropEvapotranspirati on) 是指土壤供水充分、面完全覆盖、生长正常、高矮整齐的开 阔 矮 草 地 的 腾 发 量 。 该 条 件 下 , 需 水量主要受 象条件影响。
《灌溉排水工程学》第三章:作物需水量、灌溉制度及用水量、灌水率

C :取决于平均相对湿度与白天风速的修正系数。
ET0 的计算只考虑了气象因素对需水量的影响,实际作物 需水量ET 还应考虑作物与土壤因素进行修正。
第二步:实际作物需水量ET 的计算 1)土壤水分充足:
ET Kc ET0
Kc : 作物系数,与作物种类、品种、生育期、作物群体叶 面积有关。实测结果表明,Kc 在作物全生育期的变化规
作物水分生产函数:在作物生长发育过程中,作物 产量与投入水量或作物消耗水量之间的数量关系。
作物水分生产函数的定性分析: 1)Y-W 线的拐点A0左边(阶段1), d y /d w逐步增大:表明产量的增 加幅度大于投入量增加幅度;
2)Y-W 线的拐点A0右边(阶段2), d y /d w逐步减小:表明产量的增 加幅度小于水投入量增加幅度,即 “报酬递减”。 结论:在水资源不足的情况下,从 优化用水的角度看,应该首先考虑 水的利用效率。
充分灌溉制度:灌溉供水能够充分满足作物各生
育阶段的需水量要求而设计制定的灌溉制度。
充分灌溉制度的3种确定方法: (1)根据群众丰产灌水经验来确定; (2)根据灌溉实验资料来确定(作物需水量、灌溉制度、
灌水技术); (3)按水量平衡原理分析、确定。 生产实践中,第3种方法结合第1、2种方法的实际资料, 得出的制度比较完善。水生作物和旱作物的灌溉制度的 制定方法截然不同。
P1 : t1时期内的降雨量(mm);
(2)水稻生育期内灌溉制度:水量平衡方程
h2 h1 P m E C
h1: 时段初田面水层深度;h2:时段末田面水层深度;
P :时段内降雨量;m:时段内的灌水量; E :时段内
田间耗水量;C:时段内排水量,式中各式均以mm计。
如果时段初的农田水分处于适宜水层上限(hmax),经过一 个时段的消耗,田面水层降到适宜水层的下限(hmin),这时 如果没有降雨,则需进行灌溉,灌水定额即为:
作物需水量和灌溉用水量详解演示文稿

2、基本资料收集
• 1) 土壤计划湿润层深度
• 指旱田灌溉时,计划调节土壤水分状况 的土层深度。
– 与作物种类、生育阶段和土壤性质、 地下水位有关。
第38页,共66页。
2〕土壤适宜含水率和最大、 最小含水率
• 与作物种类、土壤理化性质和土壤状况有关。
– 旱田灌溉中通常以田间持水量为最大含水率,作为 灌水上限。
• 当计划湿润层(平均)土壤含水量低于设计灌 水下限时,需要灌水,高于上限时,一般需要排 水(通常在渍涝危害情况下).第33Leabharlann ,共66页。1. 水量平衡方程
• 计划湿润层含水量变化可用下式表
Wt-W0=Wr+P0+K+M-ET
– W0 、Wt-时段末和任意时间的土壤储水量;
于计划湿润层增加而增加的水量;
第19页,共66页。
一、充分灌溉(Full Irrigation) 条件下的灌溉制度
• 充分灌溉:作物各生育阶段所需的水分都能够得到要 求,作物处于最佳分条件,产量最高。
• 非充分灌溉(Deficit Irrigation)
– 灌溉供水不足,不能充分满足作物各阶段的需水量要 求,其实际腾发量小于充分灌溉条件下的需水量。
第25页,共66页。
• 1、 泡田定额:
– M1=0.667(h0-S1+e1t1-P1) – 式中: M1-泡田定额,m3/亩; – h0-插秧时所需水深,mm; – S1-泡田期渗漏量,mm; – e1-泡田期水田平均蒸发强度,mm/d; – t1―泡田时间,d, – P1-泡田期间的降雨量,mm。
• <一> 水稻灌溉制度:
• 1、 泡田定额:
– M1=0.667(h0+S1+e1t1-P1) – 式中: M1-泡田定额,m3/亩; – h0-插秧时所需水深,mm;
作物需水量和灌溉用水量讲课文档

– 盐碱地含水率应满足盐类溶液浓度要求的最小含水 率。
– 以允许含水率上下限控制,可以减少灌溉次数。
现在三十八页,总共六十七页。
3〕降雨入渗量
• 储存于计划湿润层内的雨量。 P0=αΡ
α-降雨入渗系数,
✓ α与次降雨量、地形及土壤质地和覆盖有关。 超过计划湿润层田间持水量的降雨是无效水量。
现在六页,总共六十七页。
1、以水面蒸发为参数(α值法)
• 气象因素与水面蒸发量关系密切,而 水面蒸发与作物需水量有一定的相关 关系,因此可以用水面蒸发和需水量 的相关关系计算需水量。
• ET=aE0+b • ET=aE0
现在七页,总共六十七页。
说明
• 蒸发量简单易得,在水稻地区曾被 广泛应用。
• 除注意蒸发皿的规格安装方法外,还 应考虑非气象条件的影响。如土壤、 水文地质、农业措施等
8
26
6.26
8
18
6.27
8
12
6.28
8
4+20=24
20
现在三十页,总共六十七页。
排水量 (mm)
54
5、说明
• 一般情况下灌水量为整数,便于计算。
• 水稻烤田期间水层可能出现负数。
– 烤田的作用在于减少无效分蘖及水肥浪费。
– 负数表示土壤含水量低于饱和含水率。
现在三十一页,总共六十七页。
<二>旱种物灌溉制度
现在二十五页,总共六十七页。
2、生育期水量平衡方程
• h1+P+m-WC-d=h2
– h1、h2-时段初、末水田水深; – P-时段内降雨,mm; – d-时段排水量,mm;
作物需水量和灌溉制度

第三节 灌水率
灌水率:灌区单位面积(例如以万亩计)上所需灌溉的
净流量q净又称灌水模数。 作用:计算灌区渠首的引水流量和灌溉渠道的设计流 量。单位:m3/(s /104×667m2 )
设计方法 :灌水率q净应分别根据灌区各种作物的每 次灌水定额,逐一进行计算。
设灌区面积为A(亩),种有甲、乙、丙…种作物, 面积各为α1 A、 α2A、 α3A、…; α1、 α2 、α3 …分别为各种作物的种植面积占灌区面积 的百分数。
第二节 作物灌溉制度
农作物的灌溉制度是指作物播种前(或水稻栽秧前)及全 生育期内的灌水次数、每次的灌水日期和灌水定额以及 灌溉定额。
灌水定额(m): 一次灌水单位灌溉面积上的灌水量; 灌溉定额(M): 各次灌水定额之和; 单位:(1) m3/667m2 = m3/亩;
(2) mm
一、充分灌溉条件下的灌溉制度
任一时段内土壤计划湿润层的储水量必须经常保持在 一定的适宜范围内,处于 Wmin ~ Wmax之间。
当无有效降雨时,计划湿润层中的储水量由于作物的 消耗接近于Wmin,此时需要进行灌溉,补充水量。
Wmin= W0 – ET + K
则,推算出开始进行灌水时的时间间距
t= (W0-Wmin) / (e-k)
二、通过计算参照作物需水量来计算实际作物需水量的方 法
参照作物需水量ET0 指土壤水分充足、地面完全覆盖、 生长正常、高矮整齐的开阔(地块的长度和宽度都大于 200m) 矮草地(草高8~15cm)上的蒸发量, 一般是指 在这种条件下的苜蓿草的需水量而言。
参照作物需水量主要受气象条件的影响,所以都是根 据当地的气象条件分阶段(月和旬)计算。
一、直接计算需水量的方法
1、以水面蒸发为参数的需水系数法(简称“α值法” 或称蒸发皿法)
71_作物需水量和灌溉用水量

第十九页,共七十一页,2022年,8月28日
一 、充分 灌溉(Full Irrigation ) 条件下的灌溉制度。充分灌溉:作物各生育阶段所需的水分都能够得到要求, 作物处于最佳分条件,产量最高。。非充分灌溉 (Deficit Irrigation)-灌溉供水不足,不能充分满足作物各阶段的需水量要求,其实 际腾发量小于充分灌溉条件下的需水量。-充分灌溉是目前使用最广泛的灌水方法,适于水源丰富地区。 目前的灌溉制度、通常是充分灌溉条件下的灌溉制度
。水稻适宜的水层深度范围: h, maax。当水层深度降低到灌水下限时,开始灌溉,灌水量为;·m=hmx—hmin。若雨后田内水深大于允许蓄水深度,排水量·d=ha—hp·h a— 雨后水深, hp一雨后允许蓄水深度。
第二十八页,共七十一页,2022年,8月28日
3、 水 稻灌溉制定( 1 ) 收集基本资料,主要包括:- 1)水稻各生育阶段的耗水强度;-2)各生育阶段降雨量;-3)各生育阶段适宜水深及最大蓄水深度。·雨后最大蓄水深度:为充分利用降雨量而允许短期水深。·( 2)逐日计算水层变化。低于下限时灌溉,高于 雨后最大蓄水深度时排水至该值。-灌水至适宜水深上限,灌水定额一般取整数。适宜上下限并非绝对不可改变。
第六页,共七十一页,2022年,8月28日
二、计算方法·<一>直接计算法从影响作物需水量择主要因素, 如水面蒸发,气温、湿度,目照和辐射等,根据试验 观测资料,分析上述因素与作物 需水量之间的根系,归纳出经验 公式第七页,共七十一页,2022年,8月28日
1、 以 水面蒸发为参数(a 值法)· 气象因素与水面蒸发量关系密切, 而水面蒸发与作物需水量有一定的 相关关系,因此可以用水面蒸发和 需水量的相关关系计算需水量。·ET=aE+b· ET=aE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章作物需水量与灌溉用水量§1 作物需水量一、作物田间水分的消耗(三种途径:叶面蒸腾、棵间蒸发和深层渗漏)叶面蒸腾:作物植株内水分通过叶面气孔散发到大气中的现象;棵间蒸发:植株间土壤或水面(水稻田)的水分蒸发;深层渗漏:土壤水分超过了田间持水率而向根系以下土层产生渗漏的现象。
解释:棵间蒸发能增加地面附近空气的湿度,对作物生长环境有利,但大部分是无益的消耗,因此在缺水地区或干旱季节应尽量采取措施,减少棵间蒸发(如滴灌<局部灌溉>、水田不建立水层)和地面覆盖等措施。
深层渗漏对旱田是无益的,会浪费水源,流失养分,地下水含盐较多的地区,易形成次生盐碱化。
但对水稻来说,适当的深层渗漏是有益的,可增加根部氧分,消除有毒物质,促进根系生长,常熟、沙河、涟水等灌溉试验站结果都表明:有渗漏的水稻产量比无渗漏的水稻产量高3.9% ~26.5%。
叶面蒸滕量+棵间蒸发量=腾发量=作物田间需水量水田:田间需水量+渗漏量=田间耗水量由于水田不同土壤渗漏量大小差别很大,为了使不同土质田块水稻需水具有可比性,因此水稻的田间需水量不包括渗漏量,如计入渗漏量,则称为田间耗水量。
二、作物需水规律(一)影响作物需水量的因素1、气象条件主要因素,气温高、日照时间长、空气湿度低、风速大、气压低等使需水量增加;2、土壤条件含水量大,砂性大,则需水量大(棵间蒸发大)3、作物条件水稻需水量较大,麦类、棉花需水量中等,高粱、薯类需水量较少;4、农业技术措施地面覆盖、采用滴灌、水稻控灌等能减少作物需水量。
(二)作物需水特性1、中间多,两头少;开花结实期需水量最大2、存在需水临界期需水临界期:在作物全生育期中,对缺水最敏感,影响产量最大的时期。
几种作物的需水临界期:水稻孕穗至开花期棉花开花至幼铃形成期小麦拨节至灌浆期了解作物需水临界期的意义:1、合理安排作物布局,使用水不至过分集中;2、在干旱情况下,优先灌溉正处需水临界期的作物。
三、经验公式法确定作物田间需水量(一)全生育期作物田间需水量的确定1、α值法(蒸发皿法)前面已讲过,气温、日照、湿度、风速、气压等气象因素是影响作物需水量的最重要的因素,而水面蒸发正是上述各种气象因素综合作用结果,因此作物的田间需水量与水面蒸发量之间存在一定程度的相关关系。
因此我们可以用水面蒸发量作为参数来估计作物田间需水量。
E=αE0式中:E--全生育期作物田间需水量(mm)α--需水系数,江苏中稻α=1.15E0--与E同时段的水面蒸发量(mm)。
α值法适用于水稻。
(旱作物的E与E0相关不显著)2、K值法(产量法)实践表明作物的产量与田间需水量之间存在一定的相关关系,在一定范围内E随作物产量的提高而提高。
因此可以用产量作为参数来估计作物的田间需水量。
E=KY式中E--需水量,m3/亩;K--需水系数(m3/Kg),由试验资料确定;Y--作物产量(kg/亩)由于E与Y实际上并不是成线性关系,因此有人对上式作了修正。
E0为保证作物存活下来,但产量为零(棵粒无收)。
E=KY n + C式中:n--经验指数;C--经验常数。
K值法适用于旱作。
(二)各生育阶段田间需水量的确定(1)利用需水模系数有了全生育期田间需水量,可以借助需水模系数,把总需水量按各生育阶段进行分配。
需水模系数是作物某一生育阶段田需水量占生生育期需水量的百分比。
Ei=Ki E式中 Ei --第i阶段作物田间需水量;Ki --第i阶段作物需水模系数。
需水模系数通过试验取得,表2-7列出了几种主要作物的需水模系数。
(2)利用阶段需水系数(水稻)式中αi--第i阶段需水系数;E0i --第i阶段的水面蒸发量(mm)。
(三)需水强度的确定需水强度即为某一天的需水量。
单位:mm/d 或 m3/(亩d)公式: ei=Ei/ti式中 ei--第i阶段的需水强度;Ei--第i阶段的需水量;ti--第i阶段的天数。
四、彭曼法计算作物需水量英国科学家彭曼于1949年首次提出,又于1963年简化了他的公式。
联合国粮农组织推荐采用彭曼法计算作物需水量。
彭曼法的特点是:理论基础可靠,计算精度较高;但计算较复杂,所需基础数数较多。
计算时分两步。
(一)计算出潜在需水量(参考作物需水量)潜在需水量指:参考作物(如苜蓿mu xu、牧草)在供水充足条件下的需水量。
式中 P0--标准大气压;P--计算地点平均大气压;Δ--平均气温时饱和水气压Ea随温度变化的变率;γ--湿度计常数;Rn--太阳净幅射。
(二)计算实际作物的需水量E=Kc×Ep式中 Kc--作物系数。
§2 作物灌溉制度天然降雨可满足作物的部分需水要求,但降水不强能完全满足作物的需水要求。
在干旱和半干旱地区更是如此,因此为实现农业的高产稳产,必须进行灌溉。
要灌溉就牵涉到什么时候灌、灌多少等问题。
本节讨论的作物灌溉制度就是解决上述问题。
一、概述1.什么是灌溉制度灌溉制度:为了保证作物适时播种(或栽秧)和正常生长,通过灌溉向田间补充水量的灌溉方案。
灌溉制度的内容:灌水定额、灌水时间、灌水次数和灌溉定额。
灌水定额:一次灌水在单位面积上的灌水量。
单位:水田可用mm,旱田用m3/亩。
换算:1mm= 0.667m3/亩灌溉定额:生育期各次灌水的灌水定额之和。
总灌溉定额:播前灌水定额(或泡田定额)+ 灌溉定额2.为什么要制定灌溉制度(1)为灌溉工程规划设计提供依据。
(2)为灌区用水管理提供依据。
3.制定灌溉制度的方法(1)总结群众丰产经验;(2)进行灌溉试验;(3)按水量平衡原理进行计算。
在生产实践中,常把上述三种方法结合起来使用。
具体做法是:根据设计年份的气象资料和作物的需水要求,参照群众丰产经验和灌溉试验资料,根据水量平衡原理拟定作物灌溉制度。
二、水稻的灌溉制度水稻种植一般采取育秧移栽的方法。
育秧的田块叫秧田。
移栽的田块叫本田或大田。
秧田育秧时间短,田块面积小,灌水量较少,因此下面主要讨论的是大田的灌溉制度。
秧田的灌溉:先灌浅水,水深10~20mm,苗高3cm后,增加水深至20~40mm,苗高10cm 后,排水落干,促进根系生长,拔秧前为便于拔秧,再深水浸泡。
本田插秧前需要泡田整田,便于插秧,并为秧苗返青创造条件。
所以本田分为泡田期和插秧后的生育期。
泡田期灌水定额称为泡田定额。
(一)泡田定额泡田额一般为80~110m3/亩。
江苏昭关灌区多年平均M饱=98.7m3/亩。
(二)生育期灌溉制度1.水田水量平衡方程某时段水量耗损:蒸发E、渗漏S、排水C水量补给:降雨P、灌溉M设时段初水层深为h1,时段末水层深h2,则2.计算灌溉制度计算原理见下图:3、计算方法(1)列表逐日计算(2)编写电算程序,利用计算机计算三、旱作物的灌溉制度(一)播前灌水定额播前灌水的作用:保证种子发芽出苗;储水。
计算公式:式中 H--计划湿润层深,即计划到调节与控制土壤水分的土层深度,播前灌水时H=0.3~0.4m;A--孔隙率;βmax、βo--分别为灌水上限含水率和初始含水率(以水的体积占孔隙体积的百分数表示)。
(二)生育期内灌溉制度1.水量平衡方程研究对象:计划湿润层土壤含水量平衡方程: W1+P+WT+K+M-E-S-C=W2图中各变量单位均为m3/亩。
W1、W2--分别为时段初、末计划湿润层内含水量,H1--时段初计划湿润层深;H2--时段末计划湿润层深;E--腾发量,即作物田间需水量;M--灌水量;P--降水量;C--排水量(地表径流量);K --地下水补给量;一般地下水埋深大于3米时,取K=0,地下水埋深小于3米时,K按试验资料取值。
S--深层渗漏;WT--因计划湿润层增加而增加的水量。
令P0为入渗雨量(m3/亩),则P0 = P-CC =αPP0=P-αP=(1- α)P=σPP--降雨量(m3/亩);α--径流系数。
σ--降雨入渗系数,参考表2-15。
(参阅本科教材)计划湿润层水量平衡方程变为:W1+ P0+WT + K + M -E-S = W2各变量单位均为m3/亩。
2.计算灌溉制度的原理(1)计算各时段灌水上下限及田间持水量(2)推算灌溉制度列表或图解计算时采用旬为时段,电算时可以日为计算时段。
先设无m、无s,计算该时段末含水量W2=W1+WT+P0+K-E如果,则不需灌溉,也无深层渗漏。
如果,则m=Wmax-W2 (实际计算时宜对m取整)灌水后W2'=W2+m如果,则s=W2-W田持排水后 W2'=W田持计算方法(1)列表或图解逐旬计算(2)编写电算程序,利用计算机计算3.列表法计算步骤(1)收集基本资料;(2)计算生育期计划湿润层内含水量;(3)计算各次降雨的入渗雨量及时段入渗雨量;(4)计算因计划湿润层增加而增加的含水量WT;(5)计算各时段地下水补给量;(6)计算各时段田间需水量;(7)逐日计算灌溉制度;(8)校核各生育阶段及全生育期的计算结果。
§3 灌溉用水量和灌溉用水流量前面介绍了灌溉制度,但还有两个问题未解决。
(1)水库兴利调节需要用水过程,因此存在一个如何确定灌区灌溉用水量的问题。
(2)设计抽水站、引水闸等,应以用水流量为依据,因此还存在一个如何确定灌区灌溉用水流量的问题。
本节的任务就是讨论如何计算灌溉用水量和灌溉用水流量。
一、灌溉用水量(一)直接法直接利用各种作物的灌溉制度来计算。
一般以旬为时段来计算。
若有K种作物,则某时段的灌溉用水量为式中 Wi--第i时段灌区用水量;Mij--第i时段第 j种作物的灌水定额;Aj--第j 种作物的种植面积;η水--灌溉水利用系数;全生育期或全年用水量:直接法适用于小型灌区。
例题:某小型灌区作物单一为水稻,某次灌水有1000亩需灌水,灌水定额为40mm,灌区灌溉水利用系数为0.75,试计算该次灌水的净灌溉用水量和毛灌溉用水量。
(二)间接法利用综合灌水定额来计算,综合灌水定额:是某一时段内各种作物灌水定额的面积加权平均值,称为该时段的综合灌水定额.式中α1、α2、α3、αn--各种作物的种植比(之和为1),mi,1、mi,2、mi,3、mi,n--第 i时段各种作物的灌水定额。
某时段的灌溉用水量:m综:1 它是衡量全灌区用水状况的一个综合指标;2 若全灌区种植比例相似,可用综合灌水定额方便地计算出某一局部的灌溉用水量;3 在供水水源有限的情况下,可用综合灌水定额计算保灌面积,即。
间接法适用于大中型灌区。
例题:某灌区A=20万亩,A水田=16万亩,A棉花=4万亩,m水田=45mm,m棉花=40m3/亩。
求m综。
二、灌溉用水流量(一)直接法直接根据灌溉制度或灌溉用水量计算。
式中 T--时段内天数;t --1天灌水时数,自流为24h,提灌为18~22h .适用于小型灌区。
例题:某小型提水灌区,作物均为水稻,面积1000亩,用水高峰期最大灌水定额为100m3/亩,灌溉水利用系数为0.75,灌水延续4天,每天灌水20小时。