锂离子二次电池安全性能相关资料(内部参考)

锂离子二次电池安全性能相关资料(内部参考)
锂离子二次电池安全性能相关资料(内部参考)

关于电池鼓壳和爆炸的原因分析

一、锂离子电池特性

锂是化学周期表上直径最小也最活泼的金属。体积小所以容量密度高,广受消费者与工程师欢迎。但是,化学特性太活泼,则带来了极高的危险性。锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施

锂电池芯过充到电压高于4.2V后,会开始产生副作用。过充电压愈高,危险性也跟着愈高。锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。当电芯电压低于2.4V时,部分材料会开始被破坏。又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。因此,3.0V是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。电流过大

时,锂离子来不及进入储存格,会聚集于材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。万一电池外壳破裂,就会爆炸。

因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

二、电池爆炸原因:

1:内部极化较大.

2:极片吸水,与电解液发生反应气鼓.

3:电解液本身的质量,性能问题.

4:注液时候注液量达不到工艺要求.

5:装配制程中激光焊焊接密封性能差,漏气,测漏气时漏测.

6:粉尘,极片粉尘首先易导致微短路.

7:正负极片较工艺范围偏厚,入壳难.

8:注液封口问题,钢珠密封性能不好导致气鼓.

9:壳体来料存在壳壁偏厚,壳体变形影响厚度.

三、爆炸类型分析

电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。这些细小的针状金属,会造成微短路。由于,针很细有一定的电阻值,因此,电流不见得会很大。铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或

是组装厂筛检出来。而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。因此,因毛刺微短路引发爆炸的机率不高。

这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。因此,内部短路引发的爆炸,主要还是因为过充造成的。因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。因此,电池温度会逐渐升高,最后高温将电解液气体。这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

综合以上爆炸的类型,我们可以将防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方面。其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。

四、设计规范

由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。由于,电路板的故障率一般都远高于一亿分之一。因此,电池系统设计时,必须有两道以上的安全防线。常见的错误设计是用充电器(adaptor)直接去充电池组。这样将过充的防护重任,完全交给电池组上的保护板。虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。

电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。常见的电池充电系统方块图如下,包含充电器及电池组两大部分。①充电器又包含适配器(Adaptor)及充电控制器两部分。适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。

②电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。

文字方块: 适配器交流变直流文字方块:电控制器限流限压文字方块: 充电器文字方块: 保护板过充、过放、过流等防护文字方块: 电池组文字方块: 限流片文字方块: 电池芯以手机电池系统为例,过充防护

系统利用充电器输出电压设定在4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会被过充而发生危险。第二道防护是保护板上的过充防护功能,一般设定为4.3V。这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。由于过放电只会发生在电子产品被使用的过程。因此,一般设计是由该电子产品的线路板来提供第一到防护,电池组上的保护板则提供第二道防护。当电子产品侦测到供电电压低于3.0V时,应该自动关机。如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V 时,关闭放电回路。

总论:电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。其中保护板是第二道防护。把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。结果,劣币驱逐良币,市面上出现了许多劣质充电器。这使得过充防护失去了第一道也是最重要的一道防线。而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。

当然,并非所有的电池系统都采用如上图的方案。在有些情况下,电池组内也会有充电控制器的设计。例如:许多笔记型计算机的外加电池棒,就有充电控制器。这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。

最后的防线:如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。

★ 铝壳电芯与钢壳电芯安全性比较

铝壳相对于钢壳具有很高的安全优势。

锂离子二次电池及其电解质的分析研究

锂离子二次电池及其电解质的研究 摘要介绍了锂离子二次电池的发展以及与其它二次电池性能的比较,并对影响锂离子二次电池性能的几个问题作了阐述。着重论述了锂离子二次电池的电解质及其导电性能,以及制备六氟磷酸锂的方法。 随着微电子技术的进步和大量问世的可移动电子设备的发展,如手机、摄像机以及近年来出现的电动汽车等,都要求有高能量、体积小、性能可靠的电源做动力,特别是对比能量在100~150Wh/kg(能量密度在250~300Wh/L> 的电池的需要越来越迫切,这种需求为二次锂电池的研制开发提供了切实的动力。如果说七十年代末二次锂电池仅是实验室的产物,那么短短二十年间,以金属锂为负极的电池得到了迅速发展。从用于计算机存储保护的Li/MnO2电池的商品化〔1-5〕以及有军事和民用潜力的2~100Ah的大型锂电池的成膜及测试技术的发展〔6-8〕,到Sony〔9〕、Moly 〔10〕、Bellcore〔11〕相继研制推出的以碳插入化合物为负极,以LiCoO2、LiNiO2、LiMn2O4 为正极的锂离子二次电池和对电导率接近液体电解质的固体电解质的研制开发,二次锂电池的各个技术环节都有了长足的进展。预计到本世纪末,锂离子电池将与Ni/Cd、Ni/MeH电池形成三足鼎立的局面。目前,世界各国政府都投入大量的人力、物力,投身到这场技术竞争中。 八十年代发展起来的二次锂电池是一类以金属锂为负极<阳极),以适合于Li+迁移的锂盐溶液为电解质,以具有通道结构,Li+可以方便地嵌入、脱出,但嵌入、脱出过程中结构变化小的材料为正极<阴极)的新型电池体系。由于负极金属锂电位极低<相对于氢电极为-3.3V),且原子量小,因而从每克锂中可以获得大量的电子容量<3862mAh/g 或13907C/g)。这样可使二次锂电池具有高的工作电压和高的比能量。加之锂负极制作简单,工作温度范围较宽<-40℃-70℃),这些都使二次锂电池具有突出的优势,符合国际电池市场向小型、轻量、高比能方向发展的趋势,使之从问世之日起就成为科技热点。 二次锂电池虽然具有高能、自放电等诸多优点,但上市的产品却并不多,原因在于电池的寿命短,库仑效率低,更为突出的是安全问题。究其原因则是锂的活性太高所致,并且金属锂负极的循环能力限制了电池寿命只有200~300次充放电循环能力。 为了解决安全问题,前人进行了许多代用负极<阳极)的研究,如选用Li-Al、Li-Cd-Pb、Li-Sn-Cd、Li-Al-Mn等含Bi、Pb、Cd、Sn的合金或Li/Li3N、LixPb/聚对苯二胺复合负极及嵌入型化合物。合金电极如β-LiAl可抑制枝状晶的形成,使再充电能力提高,但充放电过程中锂的增减造成相变,使合金体积变化明显,机械稳定性变差;另由于电化学因素使电池电压下降,且电极中的锂被铝部分取代,容量减小,较大的牺牲了能量密度,失去了二次锂电池的突出优势。 真正既克服了安全问题又保持了锂电池高电压、高比能的优势,则是锂离子二次电池的出现。1990年2月,Sony 公司开发了正负极都用嵌入化合物的新电池,充、放电时,Li+在两电极间嵌入、脱嵌往复运动。因不用金属锂,体系稳定,循环寿命达1200次;能量密度高,为Ni/Cd 电池<115Wh/kg )的2倍,Ni/MeH电池<175Wh/kg)的1.5倍,工作电压为3.6V,是Ni/Cd、Ni/MeH电池的3倍,自放电率与Ni/Cd电池相当,充电快。工作性能见表1 表1Sony Li+离子电池工作性能表 规格重量电压容量能量密度比能量寿命自放率工作温度 D型122g 3.6V 14.0Wh 253Wh/L 115Wh/kg 1200<深放)12%每月-20~60℃ Sony Li+离子电池工作时的电压、电流与时间的关系见图1,电压与绝对电流时间的关系见图2 图1Sony Li+离子电池工作时的电压、电流与时间的曲线 图2Sony Li+离子电池工作时的电压与电流*时间的曲线 Sony电池的优异性能以及锂离子二次电池的出现,重新唤起了人们的研究兴致,并成为九十年代以致二1 / 7 十一世纪的科研热点。

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

浅析影响锂离子电池安全性的主要因素

Open Journal of Nature Science 自然科学, 2018, 6(5), 391-394 Published Online September 2018 in Hans. https://www.360docs.net/doc/578308734.html,/journal/ojns https://https://www.360docs.net/doc/578308734.html,/10.12677/ojns.2018.65050 Analysis of the Main Factors Affecting the Safety of Lithium Ion Batteries Haowen Liu School of Chemical Materials Science, South-Central University for Nationalities, Wuhan Hubei Received: Aug. 20th, 2018; accepted: Aug. 31st, 2018; published: Sep. 7th, 2018 Abstract Currently, safety issue is one of the bottlenecks in the development of lithium ion batteries from portable products to power batteries and large-scale energy storage technologies. This paper briefly introduces the influence of cathode, anode, cell separator, electrolyte and the use of battery on the safety of lithium-ion batteries. It is concluded that use and storage is a key factor in the ac-cident of lithium ion battery. Keywords Lithium Ion Batteries, Safety, Influence Factors 浅析影响锂离子电池安全性的 主要因素 刘浩文 中南民族大学化学材料科学学院,湖北武汉 收稿日期:2018年8月20日;录用日期:2018年8月31日;发布日期:2018年9月7日 摘要 当前,安全是锂离子电池从便携式产品向动力电池和大规模储能技术发展的瓶颈之一。本文从正极、负极、隔膜、电解质和电池使用方式五个方面简要介绍对锂离子电池安全性的影响,总结出电池的使用方式和存放环境是引起锂离子电池发生事故的一个关键因素。

锂离子二次电池正极材料的构造解析

锂离子二次电池正极材料的构造解析 携带电子机器使用的锂离子二次电池具有“高容量化”“高安全性”的要求。 (Me=Ni/Co/Mn)。关于此材文中列举了用于锂离子二次电池中的正极材料LiMeO 2 料应该重点把握详细的原子构造,由此达到“高容量化”、“高安全性”、“高寿命” 等各种各样的要求,从而提高电池的特性。作为此次的基础研究是,以LiMeO 2(Me=Ni/Co/Mn)中Me的组成种类变化、BL16B2的局部构造的VAFS测定、全体BL16XU的XRD测试,根据结果进行讨论所得出的报告。根据XAFS在测定时修补带上的涂覆进行放射性测试。XRD是在直径为1mm封闭式的细长玻璃试管中进行放射而测试的。根据线源使用25KeV的能量,抑制玻璃的衍射峰,得到了只有试验品良好的衍射轮廓图。 XAFS测定的例如图所示。此次测定很容易的确认, Mn的添加量的变化对Ni的价数所产生的影响。 的XANES(Ni)光谱图 Li(NiCoMn)O 2

前言:由于期待锂离子二次电池的充放电特性、安全性等特性不断提升,为此有 进行研究,尤其是开发其性能。因此必要对作为其正极材料的Li(NiCoMn)O 2 我司以评论性能为基础,对电池材料的构造进行解析。 目的:根据回折/XAFS测定,对于锂离子二次电池用正极材料进行详细的构造解析。 →根据解析构造正确的模型,用数字来说明结晶构造的不完全性(氧素的缺损量、晶格的歪斜)。 测定射线 ●BL16B2(XAFS测定) Ni?Co?Mn透过法测定 ●BL16XU(XRD测定)使用玻璃细管透过法

池相比较,突显出能量密度越高,记忆效果小的特征。

锂离子动力电池的安全性问题分析Word版

锂离子动力电池的安全性问题分析 () 摘要:本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。 关键词:锂离子电池;安全性能;热稳定性;影响因素 Power type lithium ion battery safety problem analysis (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract:This article from the lithium ion battery materials and production process analysis of two aspects of influence of lithium ion battery safety performance factors, and further analysis of lithium ion battery safety problems. Key words:Lithium ion battery; Safety performance; Thermal stability; Influence factors. 0 引言 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池是最晚研究而商品化进程最快的一种高性能电池。锂离子电池以其独特的优势目前以成为各个领域广泛应用的新能源。锂离子电池具有电压高、比能量高、循环性能好等特点,越来越广泛应用发的3C市场领域、电动车(EV)和混合型电动车(HEV)市场领域、军事用途及空间技术领域。虽然,锂离子二次电池的安全性相对于金属锂二次电池有了很大的提高,但仍存在着许多隐患,比如:由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。根据Ph.Biensan等的研究证明:锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。因此对锂离子电池的研制和生产来说,电池的安全性不仅是指在各种测试条件下不出现冒烟、着火、爆炸等现象,最为重要的确保人员在电池滥用的条件下不受伤害。 1 锂离子电池的几代变革 第一代锂离子电池:负极:锂金属,工作电压高达3.7。由于直接以极其活跃的金属锂作为负极,安全隐患太大已经被淘汰。

锂离子电池基本知识

一.电池常规知识 目录 1.什么是电池? 2.一次电池和二次电池有什么区别? 3、充电电池是怎样实现它的能量转换? 4、什么是Li-ion电池? 5、Li-ion电池的工作原理? 6、Li-ion电池的主要结构。 7、Li-ion电池的优缺点。 8、Li-ion电池安全特性是如何实现的? 9、什么是充电限制电压?额定容量?额定电压?终止电压? 10、Li-ion铝壳和钢壳电池比较它的区别有哪些? 11、目前常见的各种可充电电池之间有什么区别? 1、什么是电池? 电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池

电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它 们的电化学成分和电极的结构可知,可充电电池的内部结构之 间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会 在电极的体积和结构上引起可逆的变化,那么可充电电池的内 部设计就支持这种变化。而一次电池在给定的电池环境中两个 电极之间的电化学反应是不可逆的,因此,不可以将一次电池 拿来充电,这种做法很危险也很不经济。如果需要反复使用, 应选择真正的循环次数在1000次左右的充电电池,这种电池又 称为二次电池。 ?另一明显的区别就是它们具有较高的比能量和负载能力,以及 自放电率。一次电池能量密度远比一次电池高。然而他们的负 载能力相对要小。 ?二次电池具有相对较高的负载能力,可充电电池Li-ion,随着 近几年的发展,具有高能量容量。 ?不管何种一次电池的电化学系统属于哪种,所有的一次电池的 自放电率都很小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转 换成电能。就二次电池而言(另一术语也称可充电便携式电池),

锂离子电池性能测试.

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1. 熟悉、掌握锂离子电池的结构及充放电原理。 2. 熟悉、掌握锂离子正极材料的制备过程及工艺。 3. 熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li +嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO 2,Li x NiO 2或Li x Mn 2O 4,负极采用锂-碳层间化合物Li x C 6。电解质为溶有锂盐LiPF 6,LiAsF 6,LiClO 4等的有机溶液。溶剂主要有碳酸乙烯酯(EC )、碳酸丙烯酯(PC )、碳酸二甲酯(DMC ) 和氯碳酸酯(CIMC )等。在充放电过程中,Li +在两极间往返嵌入和脱出,被形象的称之为 “摇椅电池”。 锂离子电池充放电原理和结构示意图如下。

锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiMx O y (+ 其电池反应为: LiM x O y +nCLi 1-x M x O y +Lix C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn 2O 4、乙炔黑、PVDF 、无水乙醇、电解液(1M LiPF6溶与体积比 EC:DEC:EMC=1:1:1 的溶液)、锂片、去离子水、碳甲基吡咯烷酮。 四、实验步骤 1. 正极片的制备

对锂离子电池的安全性评判

对锂离子电池的安全性评判 近年来多起电动汽车着火事件的曝光,使得人们对电动汽车尤其是是锂离子电池的安全性问题越来越关注。当然这不是说电动汽车的安全性就很差,普通汽油车也容易发生起火事件,特别是夏天,只要留心就会发现汽油车的自燃事件发生也不在少数,但是我们也希望能从锂离子电池安全设计上避免类似的事故发生,毕竟人的安全是大于一切的,就如同那句话说的"人是万物的尺度"。 目前我们对锂离子电池安全性的评判还停留在一个较为初级的阶段,判断标准比较模糊,只能判断电池危险程度的几个明显的点,但实际上锂离子电池从完全安全状态转变到完全危险的状态是一个连续变化的曲线,也就是说现在的评判体系无法判断两个状态之间的电池安全状态,这就形成了一个电池安全状态的盲区,因此对锂离子电池的安全性评判函数化、数字化就显得尤为重要,特别是对于动力电池在电动汽车上的应用有着重要的意义。 目前针对锂离子电池安全性常用的标准为欧洲汽车研究发展理事会制定的危害等级分类。该危险级别分类表将电池风险等级共分为0-7八个级别,级别越高电池越危险。 例如6级表明电池发生起火但未发生爆炸,而最高的7级表明电池不仅发生了起火,还发生了危险的爆炸。为了保证操作人员的安全,需要将危险级别控制在4以内,也就是说电池不发生破裂、起火和爆炸。 首先我们要树立一个概念,安全性与滥用是相对立的,增加滥用强度,则必然降低电池系统的安全性。目前大多数针对锂离子电池安全性描述,都是基于经验的总结,缺乏数字性质的准确描述。

为了将电池风险数字化,Ashtiani发明的风险模式和风险分析(HMRMA)模型,该模型主要由两个中要参数组成风险严重程度Hs和风险概率HL。 其中Hs值为0-7代表风险的严重程度,HL值为1-10表示风险发生的可能性,代表每100万件样品中发生风险的数量。为了降低风险HR的值,可以选择降低Hs或者HL,或者我们也可以引入一个新的变量风险控制Hc,因此上式就可以转变为,其中Hc的值的范围为0-1,完全不控制Hc为1,完全控制则Hc为0。 电池的风险随着电池的使用状态是在不断的发生变化的,为了体现这种变化,Lu等基于电池电压和使用温度探讨了电池使用安全性问题,并引入了功能状态函数SOF,该函数主要有电池充电状态SOC和电池安全状态SOH,以及电池的输出功率有关。 其中P(t)为电池输出的瞬时功率,Pd为瞬时需求功率,Pmax为电池全新状态时最大输出功率。其中P(t)=Pmax·SOC(t)·SOH(t),其中SOH(t)可以根据电压的值来确定,如下式所示,其中V(t)为瞬时输出电压,Vd为负载最小需求电压,Vlim为电池全新状态时搭载负载最小出输出电压。 该系统能在铅酸电池上良好运行主要依赖于铅酸电池SOC与电压之间良好的线性关系,但是对于锂离子电池SOC与电压之间并不是完全的线性关系,因此需要做适当的修正。 本文上篇的内容主要介绍了一些目前学者们针对锂离子电池安全性模型的研究成果,下篇将结合18650电池的安全实验数据,介绍推导和使用电池安全性模型方法。

锂离子二次电池安全性能相关资料(内部参考)

关于电池鼓壳和爆炸的原因分析 一、锂离子电池特性 锂是化学周期表上直径最小也最活泼的金属。体积小所以容量密度高,广受消费者与工程师欢迎。但是,化学特性太活泼,则带来了极高的危险性。锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。 锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。 保护措施 锂电池芯过充到电压高于4.2V后,会开始产生副作用。过充电压愈高,危险性也跟着愈高。锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。最理想的充电电压上限为4.2V。 锂电芯放电时也要有电压下限。当电芯电压低于2.4V时,部分材料会开始被破坏。又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。因此,3.0V是一个理想的放电截止电压。 充放电时,除了电压的限制,电流的限制也有其必要。电流过大

锂离子二次电池_电芯规格书

锂离子二次电池 型号:454060AP 1000mAh 销售部地址:电话:(86)0755-传真:(86)0755-工厂地址:电话:(86)传真:(86) 网址: 目 录

●封面 (1) ●目录 (2) ●适用范围 (3) ●引用标准 (3) ●产品类型 (3) ●产品规格 (3) ●外观 (3) ●性能 (3) ●常规性能 (4) ●环境适应性能 (5) ●安全性能 (6) ●技术和安全要求 (6) ●包装、储存及运输 (7) ●保质期限 (7) ●电池使用时警告及注意事项 (8) ●附:产品外形图 (9) 1、适用范围:本产品规格适用于能源实业有限公司生产的二次锂离子电池主要性能指标 的描述,此此份说明书仅适用于单体电池,用户请务必严格按说明书中的测试或使用方法进行使用,如有不明的事项,请与供应方协商解决。

2、引用标准:GB/T18287-2000 3、产品类型、型号和外形尺寸 3.1产品类型:二次锂离子电池 3.2产品型号: 3.3电芯外观尺寸(Max):厚×宽×长(mm) 4、产品规格: 项目特征备注标称容量(最小容量)mAh0.2C5A放电容量标称电压 3.7V0.2C5A放电平均电压标准充电电流0.2C5A工作温度:0~45℃ 快速充电电流 1.0C5A工作温度:0~45℃ 充电截止电压 4.20V±0.05V CC/CV 标准放电电流0.2C5A工作温度:-20~60℃ 瞬间最大放电电流 2.0C5A工作温度:0~60℃ 放电截止电压 3.0V 充电模式恒流恒压充电模式 标称内阻≤60mΩ半充电态,AC1KHZ条件下测试 贮存温度≤1个月-20~45℃ 电池应在带电50%或电池应 在 3.70~3.80V的状态下储 存;长期贮存温度:20 ±5℃(推荐) ≤3个月0~30℃ ≤6个月20±5℃ 贮存湿度65±20%RH 5、外观 表面没有如脏污、严重擦伤、漏液、凹点和变形等缺陷。 6、性能 6.1、标准测试条件 无其他指定时,按GB/T18287-2000标准测试条件。 本规格书中所有的测试均在23±2℃(温度) 、65±20%RH(湿度)下进行;如果测试结果与要求条件无关,则也可以在15~30℃(温度)、25~85%RH(湿度)下进行。(潮湿中进行测试会影响测试结果) 6.2、测试的手段和仪器 6.2.1、测量尺寸的工具 用0.01mm或更精确的工具来测量尺寸,其量程为0-200mm. 6.2.2、电压表和电流表 电压表的精确度为±5mv,其量程为0-20V;电流表的精确度为当前电流±0.3%.

锂离子动力电池安全性问题影响因素

锂离子动力电池安全性问题影响因素... 影响动力电池安全性能的因素贯穿了一个动力电池从电芯选材到使用终结的生命周期的始终,因此原因复杂多样层次丰富。电芯材料本身,电芯的制造过程,电池集成中关于BMS(电池管理系统)和安全性方面的设计和使用工况都是锂离子电池安全性表现的影响因素。 在这些环节中,出现制造误差和滥用工况是无论如何也难以避免的,所以在这个现实条件下,对电池发生热失控的预案设计就显得尤其重要。本文通过对锂离子动力电池安全性能影响因素的梳理总结,以期为其在高能量/高功率领域的应用和研究提供可靠的依据。 1前言 锂离子电池因为其具备高能量密度,高功率密度和长使用寿命的特点,在化学储能器件中脱颖而出,现在在便携式电子产品领域已经技术成熟广泛应用了,如今在国家的政策支持下,在电动车领域和大规模储能领域的需求量也呈爆发式的增长。 锂离子电池在通常情况下是安全的,但是,时有安全性事故的报道呈现在公众面前。比较著名的有近几年的波音公司737 和B787飞机电池着火,比亚迪电动车起火,特斯拉MODEL S起火…这些锂离子电池安全性事故进入公众视野的最早时间可以追溯到4、5年以前。发展到现在,安全性仍然是制约锂离子电池在高能量/高功率领域应用的关键性因素。热失控不仅是发生安全性问题的本质原因,也是制约锂离子电池性能表现的短板之一。

锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期待BMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生, 但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面临的所有安全状况,所以,对其引发原因的分析和研究对一个安全可靠的锂离子电池来说仍然是必要的。 2电芯材料的选择 锂离子电池的内部组成主要为正极|电解质|隔膜|电解质|负极,在此基础上再进行极耳的焊接,外包装的包裹等步骤最终形成一只完整的电芯。电芯再经过初始的充放电,化成分容排气等步骤以后,就可以出厂使用了。这个过程的第一步,是材料的选择。影响材料的安全性因素主要是其本征的轨道能量、晶体结构和材料的性状。 正极材料 正极活性材料在电池中的主要作用是贡献比容量和比能量,其本征电极电势对安全性有一定的影响。例如,近年来,中国已经将低电压材料LiFePO4(磷酸铁锂)作为动力电池的正极材料广泛应用于交通工具(例如混合式动力车HEV,电动车EV)和储能设备(例如不间断电源UPS)中,但是LiFePO4在众多材料中所展现出来的安全性优势实际是以牺牲能量密度为代价的,也就是说会制约其使用者(如EV,UPS)的续航能力。而像NMC (LiNixMnyCo1-x-yO2)等三元材料虽然在能量密度上表现优异,但是作为动力电池的理想正极材料,安全性问题一直得不到完善

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。 Sony 公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属 4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为 1 30mAh/g ,循环次数可达到 300至500次以上:而锰酸锂的实际比容量在 100mAh / g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为 2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升, 2006 年需求量达到 6500 吨, 2008年需求量接近 9000吨。 2001 年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时 Umicore 公司,美国OMG口 FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料 (钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1 活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶

锂离子二次电池

锂离子二次电池 锂离子二次电池由于具有容量大、寿命长、无环境污染、使用安全等优点,已广泛应用于移动电话、笔记本电脑等便携式电器中。随着技术的发展,锂离子电池在未来的电动汽车和储能领域也有着非常好的应用前景,必将对未来人们的生活产生深刻的影响。 在人们接触锂电池的初期,主要使用的是液态锂电池。但液态锂电池有着有些巨大的弱点。 1.容易液漏安全性差 2.容易发生锂枝晶现象,导致电池正极与负极相连,导致短路。 聚合物电解质分类 1.无溶剂的全固态聚合物电解质 2.含有有机增塑剂的凝胶型聚合物电解质 3. 物理交联型化学交联型 有机增塑剂:聚乙二醇、聚乙二醇二甲醚、碳酸乙烯酯和钛酸二丁酯。

全固态聚合物电解质:一般情况下不含游离有机溶剂,由聚合物基体和锂盐复合后所得。这种电解质可看作电解质盐溶解于聚合物基体而成为的一个固态溶液。 胶型聚合物电解质:聚合物基体,增塑剂和电解质锂盐通过互溶的方法而形成的具有合适微结构的聚合物电解质体系。 例子:PMMA基GPE PMMA- LiCLO4 -PC体系 聚合物单体锂盐增塑剂 PMMA基GPE 特点 通过实验得出结论 1.PMMA中基团与电解质锂盐没有相互作用PMMA在GPE体系中是惰性的 2.循环次数多容量可以保持在90% 循环性能好 3.整个体系在电池安装后基本稳定PMMA基GPE与锂极界面稳定性好 PMMA机械强度较差,需要通过改性之后才能使用。 可通过共聚,共混,添加填料等方法对PMMA进行改性。 高分子锂离子二次电池 优点 1.其电池内部不含液态电解液,使用的是胶态的高分子固体电解质————无电池漏液问题安全得到保障 2.电池可设计成多种形状可制成薄型电池:以 3.6V、400mAh的容量,其厚度可薄至0.5mm 电池可弯曲变形:高分子电池最大可弯曲90度左右电池的外形设计和组装方便,可以适应商品 3.液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内作成多层组合达到高电压。 4.使用寿命长无记忆性可循环重复使用40000-100000次。

锂离子电池安全性问题(最新版)

锂离子电池安全性问题(最新 版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0176

锂离子电池安全性问题(最新版) 1、使用安全型锂离子电池电解质 目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于抑制电解液的燃烧。目前研究的氟代溶剂包括氟代酯和氟代醚。 阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。阻燃电解液是目前解决锂离子电池安全性最经济有效的措施,所以尤其受到产业界的重视。 使用固体电解质,代替有机液态电解质,能够有效提高锂离子

电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的改善非常有限。干态聚合物电解质由于不像凝胶型聚合物电解质那样包含液态易燃的有机增塑剂,所以它在漏液、蒸气压和燃烧等方面具有更好的安全性。目前的干态聚合物电解质尚不能满足聚合物锂离子电池的应用要求,仍需要进一步的研究才有望在聚合物锂离子电池上得到广泛应用。相对于聚合物电解质,无机固体电解质具有更好的安全性,不挥发,不燃烧,更加不会存在漏液问题。此外,无机固体电解质机械强度高,耐热温度明显高于液体电解质和有机聚合物,使电池的工作温度范围扩大;将无机材料制成薄膜,更易于实现锂离子电池小型化,并且这类电池具有超长的储存寿命,能大大拓宽现有锂离子电池的应用领域。 常规的含阻燃添加剂的电解液具有阻燃效果,但是其溶剂仍是易挥发成分,依然存在较高的蒸气压,对于密封的电池体系来说,

高分子型锂离子二次电池介绍

高分子型鋰離子二次電池介紹 陳浩銘、林泱蔚、林滄浩 台大化學系 鋰離子電池具有工作電壓高(3.6 V olt )、能量密度大(120 Wh/kg )、重量輕、壽命長及環保性佳等優點。鋰金屬二次電池,是最早有系統的鋰電池,雖然具有很高的能量密度,金屬鋰的化性很強,易與電解質反應,造成電池不穩定和安全上的問題。基於安全性的考量,鋰二次電池的發展逐漸由鋰金屬二次電池轉成鋰合金與鋰離子二次電池。然而,因液態鋰離子二次電池使用有機電解液,易揮發燃燒,又有漏液的可能,有安全上的疑慮。近年來,高分子鋰離子的發展,改用高分子電解質為電解液,大大提高安全性與可撓性,已在近幾年成為市場的新寵。 前言 - 傳統鋰離子二次電池原理 傳統電化學電池主要是由陰極 (anode )、陽極(cathode )及電解質(electrolyte )所組成,組成一個高電荷密度電池,需要高電容量電極材料,此材料亦同時提供了高工作電壓V c 。一般而言,要達到高V c ,必須陰極有較低的work function φa ,而陽極有高work function φc ,得到: ()e V a c oc /φφ?= 如圖所示 正極材料 常用正極材料有Li X CoO 2、 Li X NiO 2、 Li X Mn 2O 4(通稱為Lithium Insertion Compounds )。其中,Li X CoO 2及Li X NiO 2為層狀結構(layer structure )如附圖,充電時, 由實驗結果得知僅能釋出約一半的鋰離子,一旦超過此限,六方最密堆積結構將被破壞,而失去了可逆性充放電功能,故實際電容量約為理論值之半。而Li X Mn 2O 4為尖晶石(spinel )結構,如附圖。鋰離子填在Mn 3+/4+及O 2-所組成的四面體之間,在釋出鋰離子之後,對於結構並不會造成任何改變,實際充放電量與理論值相近。 負極材料

锂电池的安全性设计(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 锂电池的安全性设计(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

锂电池的安全性设计(标准版) 为了避免因使用不当造成电池过放电或者过充电,在单体锂离子电池内设有三重保护机构。一是采用开关元件,当电池内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止;三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。 有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生

安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 另外,采用锰酸锂材料还可以大幅度降低成本。 提高现有安全控制技术的性能,首先要提高锂离子电池芯的安全性能,这对大容量电池尤为重要。选择热关闭性能好的隔膜,隔膜的作用是在隔离电池正负极的同时,允许锂离子的通过。当温度升高时,在隔膜熔化前进行关闭,从而使内阻上升至2000欧姆,让内部反应停止下来。 当内部压力或温度达到预置的标准时,防爆阀将打开,开始进

液态电解质对锂离子电池安全性能的影响因素

液态电解质对锂离子电池安全性能影响因素 摘要:锂离子电池的安全安全问题成为近年来制约其迅速发展的瓶颈。那么要如何才能解决其安全问题呢?本文从影响电池安全性能的因素出发,以液态电解质为例,从优化电解液的组成到使用特殊的添加剂等方面论述了液态电解质与电池安全问题的关系。 引言 锂离子电池由于具有能量密度高、输出电压高、循环寿命长、环境污染小等优点,在小型数码电子产品中获得了广泛应用,在电动汽车、航空航天等领域也具有广阔的应用前景。然而,近年来用于手机、数码相机和笔记本电脑中的锂离子电池爆炸伤人事件已经屡见不鲜,锂离子电池的安全问题引起人们广泛的关注。目前安全问题已成为制约锂离子电池向大型化、高能化方向发展的瓶颈。 一、引起锂离子电池安全问题的主要原因 1、电池系统的安全问题。锂离子电池作为一个系统,其安全问题主要源于滥用情况下热失控的发生。电池系统的热失控即为系统产生的热量大于释放的热量而导致热量积累,温度迅速升高的过程。锂离子电池发生热失控,主要是由电极和电解液间的化学反应引起的。 2、易燃的电解质。锂离子电池具有较高的能量密度,在于其较高的输出电压。在通常的正负极材料的工作电位下,水溶液难以稳定使用,所以锂离子电池电解液使用有机溶剂。而有机溶剂通常极易燃烧,特别是电解液中的线型碳酸酯具有较高的蒸气压和较低的闪点,使锂离子电池在安全性上背上了沉重的负担。 3、电池材料的热稳定性。锂离子电池安全性能的另一个更重要的方面即是其热稳定性。在一些滥用状态下,如高温、过充电、针刺穿透以及挤压等情况下,导致电极和有机电解液的强烈相互作用,如有机电解液的剧烈氧化、还原或正极分解产生的氧气进一步与有机电解液反应等,这些反应产生的大量热量如不能及时散失到周围环境中,必将导致热失控的产生,最终导致电池的燃烧、爆炸。 二、改善电池安全性能的途径 电池安全性能的改善主要途径有: 1、使电池系统更稳定,以避免热失控的发生; 2、使用更安全的电解液体系,即使热失控发生,也不会因为易燃电解质存在而导致电池燃烧或者爆炸。

锂离子电池及性能研究

毕业设计(论文) 题目锂离子电池正极材料尖晶石 锰酸锂的制备及性能研究 系(院)化学与化工系 专业应用化工技术 班级 学生姓名 学号 指导教师 职称讲师 二〇年月日 锂离子电池正极材料尖晶石锰酸锂的制备及性能研究 摘要

锂离子电池因其优越的电化学性能、高比容量、长循环寿命、高能量密度以及放电电压高、体积小、环保绿色等特性在过去的十年内得到了迅猛发展。作为锂离子电池重要组成部分的正极材料也成为当前该领域研究的热点之一。尖晶石型LiMn2O4以其高能量密度、价格低廉、无环境污染等特点而被视为最具发展潜力的锂离子电池的正极材料之一。对高温反应而言,包括高温固相反应法、熔融浸渍法、微波烧结法及其他改进的方法;在低温反应方法中,主要讨论了溶胶凝胶法、共沉淀法及乳化干燥法等。体相掺杂和表面修饰是抑制尖晶石型LiMn2O4容量衰减的有效方法。从锰酸锂的制备与改性研究方面综述了锂离子电池正极材料锰酸锂的研究进展,在此基础上提出了正极材料锰酸锂的发展方向。 关键词: 锂离子电池;正极材料;锰酸锂

Preparation and modification of LiMn2O4 as cathode material for lithium ion batteries Abstract Lithium-ion batteries have developed greatly because of its excellent electrochemical properties, high specific capacity, long cycle performance, high energy density and other merits, such as high discharge voltage, small volume and less harm to environment. Spinal LiMn2O4 is a potential cathode material of Li-ion batteries because of its high energy density, low cost and no pollution to environment, etc. Among the synthetic methods, conventional solid-state reaction method, melt-impregnation method, microwave sintering method an-dot her modified method are included in the high-temperature synthetic methods whereas the sol-gel method, co-precipitation method and micro-emulsion method are included in the low-temperature methods. Doping and surface modification are the effectively ways to restrain the capacity loss in cycling. Research progress in recent years on preparation and modification of lithium manganate cathode material was introduced, and based on that, the major developing trend was prospected. Key words: lithium ion battery;cathode material;LiMn2O4

相关文档
最新文档