氨水处理
氨水处置方案
氨水处置方案氨水是一种常见的化学品,广泛应用于工业生产和实验室研究中。
然而,氨水的大规模使用也带来了环境污染问题,尤其是在处理和处置氨水废液时。
本文将介绍一种有效的氨水处置方案,以保护环境和人类健康。
1.问题概述氨水废液一旦进入环境,可能会对土壤、水源和空气造成污染,同时还会对生物体产生有害影响。
因此,我们需要一种可行的处置方案,将氨水废液进行有效的处理,降低其对环境的危害。
2.技术原理氨水处置方案的核心是利用化学反应将氨水转化为无害物质。
其中,一种常用的方法是利用氧化剂将氨水氧化成硝酸铵或硫酸铵,并进一步处理后,转化为无害的氮气和水。
3.具体步骤下面是一个常见的氨水处置方案的步骤:步骤一:收集氨水废液,并确保容器密封,防止挥发和泄漏。
步骤二:调整氨水废液的pH值到适宜的范围,一般在7-9之间。
可以使用酸碱中和剂进行调节。
步骤三:加入氧化剂,如过氧化氢(H2O2)或高锰酸钾(KMnO4),使氨水氧化生成硝酸铵或硫酸铵。
步骤四:对生成的硝酸铵或硫酸铵进行进一步的处理。
可以使用一些方法,如沉淀剂、离子交换剂或高温分解等,将其转化为无害的氮气和水。
步骤五:对处置后的液体进行中和处理,以确保其酸碱度在可接受范围内。
4.注意事项在进行氨水处置时,还需要注意以下几点:- 操作人员必须具备相关的化学知识和实验技能,遵循安全操作规程,佩戴个人防护装备。
- 废液处理过程中产生的废物应按照有关法规进行妥善处置,以减少二次污染的可能性。
- 处理后的水可能仍然含有微量的氨水或其他有机物,因此应进行监测和分析,确保处理效果达到要求。
5.结论通过上述氨水处置方案,可以将氨水废液有效地转化为无害物质,减少对环境的污染。
然而,在实际操作中,考虑到不同情况和需求,可能需要针对具体情况进行适当的调整和优化。
因此,在选择氨水处置方案时,有必要进行充分的研究和实验验证,确保方案的可行性和可靠性。
通过采取适当的氨水处置方案,我们可以更好地保护环境,实现可持续发展。
线路板中氨水的使用用途
在线路板制造中,氨水(氨气溶液)通常用于以下几种用途:
1. 清洗和去污:氨水可以用于清洗和去除线路板表面的污垢、油脂和残留物。
它的碱性特性能够有效中和酸性污垢,使得线路板表面得以清洁,从而提高电子元件的粘附性。
2. 表面处理:氨水可以用于表面处理,例如去除金属表面的氧化物或腐蚀物。
这有助于提供更好的导电性和金属表面的附着力。
3. 去除焊接剂残留:在线路板制造的过程中,焊接剂可能会残留在电子元件和线路板上。
氨水可以用来去除焊接剂残留,确保线路板的良好连接和性能。
4. 电镀前的预处理:在线路板电镀之前,需要对线路板进行预处理,以确保电镀层的附着性。
氨水可以在预处理过程中使用,为电镀层提供更好的基底。
5. 调整pH值:氨水可以用来调整化学处理液的pH值,以确保化学反应的适当进行。
6. 去除静电:氨水可以用于去除线路板上的静电,以防止静电对电子元件的损害。
尽管氨水在线路板制造中有多种用途,但使用时需要小心,确保适当的稀释和控制,以避免对线路板和电子元件造成损害。
在使用氨水时,应遵循相关的安全操作规程和适当的防护措施。
氨水应急预案
氨水应急预案引言概述:氨水是一种常用的化学品,广泛应用于工业生产和农业领域。
然而,由于其具有强烈的腐蚀性和毒性,一旦发生泄漏或事故,将对人员和环境造成严重危害。
因此,制定一套完善的氨水应急预案至关重要。
本文将从四个方面详细阐述氨水应急预案的内容和措施。
一、泄漏事故的应急处置1.1 快速切断氨水供应:当发生氨水泄漏事故时,第一步是迅速切断氨水供应,以防止泄漏继续扩大。
操作人员应熟悉氨水供应系统,并掌握切断氨水供应的紧急措施。
1.2 疏散人员:在发生氨水泄漏事故时,应立即启动疏散预案,将人员迅速撤离到安全区域。
同时,为了避免二次伤害,应将周围区域进行封锁,防止其他人员靠近事故现场。
1.3 使用适当的防护装备:处理氨水泄漏事故的人员应穿戴适当的防护装备,包括防护服、面罩、手套等。
这些装备可以有效地保护人员免受氨水的腐蚀和毒性。
二、事故现场的处理措施2.1 封堵泄漏源:一旦氨水泄漏,必须迅速采取措施封堵泄漏源,以减少泄漏量和扩散范围。
可以使用合适的堵漏剂或物理封堵方法,如堵住泄漏管道或容器的出口。
2.2 中和处理:氨水泄漏后,应立即进行中和处理,以降低其腐蚀性和毒性。
可以使用中和剂将氨水中和为中性或弱酸性,减少对环境和人员的危害。
2.3 清理和处理废物:在事故现场清理过程中,应注意收集和处理泄漏的氨水和中和剂,以防止二次污染。
废物应按照相关法规和规定进行妥善处理,以确保环境的安全。
三、事故后的善后工作3.1 事故调查和分析:事故发生后,必须进行详细的事故调查和分析,找出事故的原因和责任。
通过分析事故原因,可以采取相应的措施,防止类似事故再次发生。
3.2 事故报告和通知:事故发生后,应及时向相关部门和当地政府报告,并通知相关单位和人员。
报告和通知的内容应包括事故的情况、处理过程和善后措施等,以便及时采取必要的措施。
3.3 事故经验总结和培训:事故发生后,应对事故进行经验总结,并将总结的经验应用于培训和教育中。
氨水应急处置卡
氨水应急处置卡简介本文档提供了氨水应急处置卡的相关信息和指导。
氨水是一种常见的化工品,在使用和储存中可能发生泄漏或事故。
了解正确的应急处置措施对于处理这种情况至关重要。
危险特性- 氨水有刺激性气味,可对眼睛、皮肤和呼吸道造成伤害。
- 氨水有腐蚀性,可能导致化学灼伤。
应急处置步骤1. 保护自身:戴好个人防护装备,包括防护眼镜、防护手套、呼吸器等。
2. 确定泄漏源:查找泄漏来源,并尽可能停止泄露。
3. 隔离区域:立即将周围人员疏散到安全区域,确保不会造成更多的伤害和污染。
4. 通风:打开门窗,增强通风,尽可能减少有害气体浓度。
5. 清除泄漏物:使用吸收剂或稀释剂将氨水泄漏物迅速吸收或稀释。
将液体收集到密封中,将固体收集并包装妥善处置。
6. 处理废物:正确处理氨水泄漏物和清理用具,遵守相关法规和安全操作规程。
7. 报告和记录:向相关管理部门报告事故情况,并详细记录事故经过和处置措施。
注意事项- 氨水泄漏后容易蒸发并形成易燃的氨气,避免明火和高温源。
- 避免与其他化学物品混合使用,以免发生危险反应。
- 接触氨水后,立即用大量清水冲洗受影响的皮肤和眼睛,并寻求医疗帮助。
- 不要遗留泄漏物的残余物,必须妥善处置和处理。
以上是对氨水应急处置的基本指导,具体情况下请参考相关法律法规和专业人员的建议。
---注意: 本文档提供的信息仅供参考。
在应急处置过程中,务必遵循相关法律法规和安全操作规程。
本文档内容是否准确需要根据被处理情况的具体情况进行确认。
氨水泄漏应急处理操作规程
氨水泄漏应急处理操作规程氨水泄漏是一种危险、有毒、易燃的化学物质泄漏事故,对人体和环境都具有潜在的危害。
为了及时有效的处理氨水泄漏事故,保护人员的生命安全和减少环境污染,必须制定一套科学合理的应急处理操作规程。
以下是一个关于氨水泄漏应急处理操作规程的示例,供参考。
一、事故发生后应急响应1.发现氨水泄漏事故时,立即将人员远离危险区域,避免接触有毒气体。
2.将有关人员通知到场,包括安全人员、环保人员、医疗救援人员等。
3.向有关部门和当地政府报告事故情况,请求协助和指导。
4.在确保安全的前提下,尽可能迅速进行现场评估,判断泄漏规模和可能的影响范围。
5.根据事故规模和影响范围,及时做出相应的应急决策,制定详细的应急处理方案。
二、危险区域控制1.在事故发生区域周围建立合理的警戒线或封锁区域,杜绝非相关人员进入。
2.在泄漏源周围设置喷淋装置或雾化装置,以减少氨气扩散。
3.制定有效的通风方案,确保有足够的新鲜空气进入泄漏区域。
4.配备相应的个人防护装备,包括呼吸器、防护手套、防护服等,并要求事故处理人员佩戴。
三、停止泄漏源1.在保证安全的情况下,尝试关闭漏气设备的阀门或切断电源。
2.使用合适的材料或方法将漏气设备进行封堵,阻止氨水继续泄漏。
四、泄漏处置1.根据泄漏规模和影响范围,制定详细的泄漏处置方案,确保处理过程安全有效。
2.使用合适的泄漏清除剂或吸附剂对泄漏液体进行吸收和清除,防止进一步扩散。
3.将清除后的泄漏物进行正确的处置,切勿随意倾倒或排放到环境中。
4.对可能被氨水熏蒸的设备、管道和场地进行清洗和消毒,确保无二次污染。
五、事后处理和监测1.对事故现场进行彻底的清理和整理,恢复正常的生产和作业秩序。
2.进行事故原因的调查和分析,找出事故的根本原因,采取相应的措施进行改进。
3.对泄漏现场和周边环境进行监测,确保没有残留氨水或其他污染物。
4.对参与应急处置的人员进行医学观察和健康监测,预防可能的后续健康问题。
氨水泄露应急处理预案
氨水泄露应急处理预案一、背景:氨水(NH3)是一种常见的化学品,在工业生产和化学实验中经常使用。
然而,氨水泄露事故可能会对人员健康和环境造成严重影响,因此建立一套完善的应急处理预案至关重要。
二、氨水泄露应急处理预案:2.1 报警与通知•在发生氨水泄露事故时,首先立即启动报警系统并通知安全责任人员。
•安全责任人员应立即按照预定程序通知相关部门和人员,包括消防部门、环保部门和紧急救援人员。
2.2 人员安全•当发生氨水泄露事故时,应立即疏散泄露区域的人员。
•所有人员应遵循疏散路线和疏散指示,迅速撤离到安全地点。
•使用个人防护装备(如呼吸器、防护服等)的人员应检查装备是否齐全并正确佩戴。
2.3 封锁泄露源•安全责任人员应尽快到达泄露源附近,并确保自身安全的情况下,封锁泄露源。
•封锁泄露源的方法包括关闭泄露阀门或阀门、堵塞泄漏管道等。
2.4 化学品清理•使用专门的化学品吸收剂或惰性物质(如沙土、干净的土壤)吸收泄露的氨水。
•将吸收的废料和泄露物品转移到专用容器中,并妥善处理。
2.5 通风与除污•对泄露区域进行通风,以促进氨水的挥发。
•使用适当的除臭剂或消毒剂,对泄露区域进行消毒和除污处理。
2.6 事故调查与报告•氨水泄露事故处理完成后,应立即进行事故调查,查明事故原因。
•详细记录事故的经过、应急处理过程以及可能存在的问题和教训。
•根据事故调查结果,及时向相关部门和人员进行事故报告,并提出改进措施和建议。
三、应急演练与培训•针对氨水泄露事故,定期组织应急演练,确保所有相关人员熟悉应急处理预案和操作流程。
•提供必要的培训和技能提高,使相关人员能够正确、迅速地应对氨水泄露事故。
四、相关法律法规与标准•在制定氨水泄露应急处理预案时,必须遵守相关的法律法规和标准,确保预案的合规性和可操作性。
•包括但不限于《中华人民共和国安全生产法》、《化学品安全管理条例》等。
五、预案评估与改进•定期对氨水泄露应急处理预案进行评估,检查预案的可行性和有效性。
最新氨水的危害及相关应急处理措施
1氨水的危害及相关应急处理措施2氨水特性:我公司使用的是浓度为20%的氨水,是液体状物质。
氨水属于碱性3液体。
氨水不燃、不爆。
易分解放出氨气,温度越高,分解速度越快,可形成4爆炸性气氛。
若遇高热,容器内压增大,有开裂和爆炸的危险。
5低浓度的氨对粘膜有刺激作用。
6高浓度的氨可引起组织溶解性坏死、皮肤及上呼吸道粘膜化学性炎症及烧伤、7肺充血、肺水肿及出血等。
8健康危害:9吸入后对鼻、喉和肺有刺激性引起咳嗽、气短和哮喘等;可因喉头水肿10而窒息死亡;可发生肺水肿,引起死亡。
11氨水溅入眼内,如不采取急救措施,可造成角膜溃疡、穿孔,并进一12步引起眼内炎症,最终导致眼球萎缩而失明。
13皮肤接触可致灼伤。
14防护办法:1、使用防毒面具。
2、使用湿毛巾15防护措施:16呼吸系统防护:可能接触其蒸气时,应该佩带防毒面具。
紧急事态抢17救或逃生时,建议佩带自给式呼吸器。
或湿毛巾。
18眼睛防护:戴化学安全防护眼镜。
19防护服:穿工作服。
20手防护:戴防化学品手套。
21其它:工作现场禁止吸烟、进食和饮水。
工作后,淋浴更衣。
保持良22好的卫生习惯。
23急救措施:24皮肤接触:一旦氨水沾污皮肤,先用清水或2%的食醋液冲洗。
立即用25水冲洗至少15分钟。
若有灼伤,就医治疗。
若皮肤局部出现红肿、水泡,可用262%的食醋液冲洗。
27眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。
28或用3%硼酸溶液冲洗。
立即就医。
29吸入:迅速脱离现场至空气新鲜处。
保持呼吸道通畅。
呼吸困难时给30输氧。
呼吸停止时,立即进行人工呼吸。
就医。
31食入:误服者立即漱口,口服稀释的醋或柠檬汁,就医。
32灭火方法:雾状水、二氧化碳、砂土。
33当发现有氨水吸入中毒者(出现呼吸道、眼、鼻、皮肤粘膜的严重刺34激感,并伴随咳嗽、流涕、发痒、气促、紫绀、烦躁等症状),应让他迅速离开35现场,并脱去被氨水污染的衣、裤,尽快去医院,以免发生意外。
36可能发生的情况:371、在氨水装卸过程中,管道破裂泄漏。
氨水应急预案
氨水应急预案一、泄漏应急处理疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴自给式呼吸器,穿化学防护服。
不要直接接触泄漏物,在确保安全情况下堵漏。
用大量水冲洗,经稀释的洗水放入废水系统。
用沙土、蛭石或其它惰性材料吸收,然后以少量加入大量水中,调节至中性,再放入废水系统。
如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。
二、健康危害1、侵入途径:吸入、食入。
2、健康危害:吸入后对鼻、喉和肺有刺激性引起咳嗽、气短和哮喘等;可因喉头水肿而窒息死亡;可发生肺水肿,引起死亡。
氨水溅入眼内,如不采取急救措施,可造成角膜溃疡、穿孔,并进一步引起眼内炎症,最终导致眼球萎缩而失明。
皮肤接触可致灼伤。
3、慢性影响:反复低浓度接触,可引起支气管炎。
皮肤反复接触,可致皮炎,表现为皮肤干燥、痒、发红。
三、防护措施1、呼吸系统防护:可能接触其蒸气时,应该佩带防毒面具。
紧急事态抢救或逃生时,建议佩带自给式呼吸器。
2、眼睛防护:戴化学安全防护眼镜。
3、防护服:穿工作服。
4、手防护:戴防化学品手套。
5、其它:工作现场禁止吸烟、进食和饮水。
工作后,淋浴更衣。
保持良好的卫生习惯。
四、急救措施1、皮肤接触:一旦氨水沾污皮肤,先用清水或2%的食醋液冲洗。
立即用水冲洗至少15分钟。
若有灼伤,就医治疗。
若皮肤局部出现红肿、水泡,可用2%的食醋液冲洗。
2、眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。
或用3%硼酸溶液冲洗。
立即就医。
3吸入:迅速脱离现场至空气新鲜处。
保持呼吸道通畅。
呼吸困难时给输氧。
呼吸停止时,立即进行人工呼吸。
就医。
若鼻粘膜受到强烈的刺激,可滴入1%的麻黄素溶液,重者应吸入糜蛋白酶。
4、食入:误服者立即漱口,口服稀释的醋或柠檬汁,就医。
五、灭火方法:雾状水、二氧化碳、砂土。
发现氨水吸入中毒者(出现呼吸道、眼、鼻、皮肤粘膜的严重刺激感,并伴随咳嗽、流涕、发痒、气促、紫绀、烦躁等症状),应让他迅速离开现场,并脱去被氨水污染的衣、裤;口服食醋50-100毫升,同时服用维生素c50毫克,每日3次;并应请医生急诊治疗,以免发生意外。
氨水入眼处置方案
氨水入眼处置方案氨水是一种广泛应用的化学物质,但是如果氨水进入眼睛内部,就会引起不适,局部刺激或严重的眼部损伤。
因此,正确处理氨水入眼事件至关重要。
本文将介绍氨水入眼的处理方案。
氨水入眼引起的问题当氨水接触眼部组织时,它会导致以下问题:1.眼部疼痛和灼烧感2.引起眼睛红肿3.可能导致角膜炎和白内障等眼部疾病4.眼睛可能感染并可能影响视力处理方案如果发生氨水入眼事件,应立即采取适当的措施进行处理。
立即冲洗眼睛1.立即让被涉入氨水的眼部在流动自来水下洗涤。
2.用清水或生理盐水在流动自来水下冲洗眼部,用一只手将眼皮拉开,另一只手将流动自来水沿着从里到外的方向洗涤眼睛,大约15分钟。
3.如果氨水渗入了眼睛的角膜,则可以在洗眼的过程中使用眼睛溶液,以减轻眼睛的不适。
拔出隐形眼镜氨水与隐形眼镜会产生反应,因此如果正在佩戴隐形眼镜并且氨水进入眼睛,则立即取下隐形眼镜。
专业就医如果经过冲洗,疼痛感仍未消失,或者发现任何视力受损的迹象,则必须寻求专业医疗帮助。
预防措施在处理化学品之前,请采取必要的安全措施以降低受伤的风险。
以下是一些有益的预防措施:1.佩戴防护眼镜或面罩。
2.在取出氨水并进行工作时,请将氨水放在离眼睛远的位置上,并在实际取用时请注意方向。
3.远离氨水喷雾和气味浓郁的场所。
总结处理氨水入眼事件的关键是快速和正确地采取行动。
如果感到疼痛,需要立即进行冲洗,并考虑拔出隐形眼镜以避免进一步的伤害。
如果不适感持续,就必须寻求专业医疗帮助。
在工作中使用氨水时必须遵循安全控制措施,以减少伤害的机会。
氨水泄漏应急处理操作规程(最新版)
氨水泄漏应急处理操作规程(最新版)1. 引言本文档旨在为工作人员提供氨水泄漏应急处理操作规程,以保证工作场所及周围环境的安全。
在处理氨水泄漏时,必须遵守相关法规和安全操作规程,采取正确的措施以最大程度减少泄漏的影响,并防止任何潜在的危害。
2. 风险评估在进行氨水泄漏应急处理之前,必须对风险进行评估。
风险评估包括但不限于以下几个方面:- 泄漏的氨水量和速度- 泄漏区域的面积和环境- 工作人员的健康状况和安全能力- 周围的人员和设备是否受到威胁3. 应急处理步骤3.1 穿戴个人防护装备在进行氨水泄漏应急处理之前,应确保所有工作人员佩戴适当的个人防护装备,包括但不限于以下项目:- 耐酸碱手套- 防护眼镜或面罩- 防护服装- 防护靴3.2 阻止泄漏在处理氨水泄漏之前,必须立即采取措施阻止泄漏的继续扩散。
可采取以下方法进行处理:- 关闭相关的阀门或管道- 切断电源(如果适用)- 封堵漏点3.3 执行紧急撤离如果氨水泄漏无法立即控制或存在严重危险,必须立即执行紧急撤离程序。
确保每个员工迅速离开泄漏区域,并按照事先制定的撤离路线和集合点进行撤离。
3.4 通知相关部门在处理氨水泄漏时,必须立即通知相关的部门和人员,包括但不限于以下单位:- 安全部门- 消防部门- 环保部门- 医疗急救人员3.5 进一步处理当泄漏得到控制后,必须进行进一步的处理,以确保泄露没有产生其他潜在的危害,主要包括以下几个步骤:- 对泄漏区域进行清洗和消毒- 将泄漏物质妥善处理或转移到安全的中- 检查泄漏原因和相关设备,做好维修和保养工作4. 应急演练为了提高应对紧急情况的能力,组织定期的应急演练十分重要。
在演练中,工作人员应模拟氨水泄漏事故,并按照应急处理操作规程进行处理。
演练结束后,进行总结和评估,以发现问题并提出改进的建议。
5. 结论氨水泄漏应急处理是一项重要工作,要求工作人员掌握上述应急操作规程,并且在实践中加以运用。
持续的培训和演练将提高应对紧急情况的能力,从而更好地保护工作人员和周围环境的安全。
氨水处理硫酸的方程式
氨水处理硫酸的方程式全文共四篇示例,供读者参考第一篇示例:氨水处理硫酸是一种常见的化学反应,其过程中会产生硫酸铵盐和水。
氨水是一种碱性物质,硫酸则是一种酸性物质,它们的反应会产生中和反应,从而生成盐和水。
硫酸的化学式为H2SO4,它是一种无色透明的液体,具有强酸性。
硫酸在工业生产中被广泛应用,而在实验室中也常见其存在。
氨水的化学式为NH3,它是一种无色气体,具有刺激性气味。
氨水常用作清洁剂和氨基肥料的原料,在某些情况下也用作气体的吸收剂。
当硫酸和氨水发生反应时,它们会发生中和反应,生成硫酸铵盐和水。
反应的化学方程式如下所示:H2SO4 + 2NH3 → (NH4)2SO4在这个反应过程中,硫酸中的氢离子(H+)与氨水中的氨基(NH3)结合,形成硫酸铵盐,同时释放出一定量的水。
这个反应是一个放热反应,会释放出大量的能量。
氨水处理硫酸的反应在许多实际应用中起着重要作用。
比如在废水处理过程中,硫酸是一种常见的污染物,而氨水可以用来中和硫酸,从而降低废水的酸性。
在一些工业生产过程中,也会用到这种反应来控制酸性物质的浓度。
氨水处理硫酸是一种重要的化学反应,它可以用来中和酸性物质,生成盐和水,从而减少环境污染和控制工业过程中的酸性物质。
这种反应的理解和应用对于化学工程领域具有重要意义,也对环境保护和资源利用有着积极的影响。
希望通过本文的介绍,读者能对氨水处理硫酸的反应有更深入的了解。
第二篇示例:硫酸是一种常见的无机化合物,化学式为H2SO4,是一种无色透明的液体,在工业生产中被广泛使用。
而氨水(NH3•H2O)则是一种碱性气体,在水中溶解后形成氨性水溶液,具有强烈的刺激气味。
当氨水处理硫酸时,会产生一系列化学反应,下面我们就来详细探讨氨水处理硫酸的方程式及相关知识。
让我们先来简单了解一下硫酸和氨水的性质。
硫酸是一种强酸,具有强烈的腐蚀性,对皮肤、眼睛等具有强烈的刺激作用,同时也具有很强的氧化性。
而氨水则是一种弱碱性物质,具有刺激性气味,对皮肤和黏膜有一定的刺激作用。
氨水泄漏现场处置方案
氨水泄漏现场处置方案1. 确定泄漏源在开始处理之前,必须先确定泄漏源的位置和规模。
这可以通过以下步骤进行:•确保自身安全。
在接近泄漏源之前,必须要戴上防护口罩、手套和护目镜等防护设备。
•观察氨水泄漏的颜色和气味。
氨水一般呈现出淡蓝色,并且具有强烈的刺鼻气味。
•知道氨水的泄漏来源。
氨水泄漏可能来自于管道、容器或设备。
•尽可能远离泄漏源。
在确定到泄漏源的位置之前,应该尽可能远离泄漏源,以免受到氨水的危害。
2. 紧急处理措施氨水泄漏是一种十分危险的情况,需要紧急处理措施。
以下措施可以帮助应对氨水泄漏:•立即通知安全负责人。
当发生氨水泄漏时,立即通知安全负责人,并向属地环保部门报告。
•按照应急预案进行处置。
不同单位和区域应该制定不同的应急预案,应该根据实际情况进行处置。
•将泄漏源隔离。
尽量防止泄漏的扩散,可以使用沙土、湿布、泥土等方法对泄漏源进行覆盖和封堵。
•清除泄漏物。
尽可能将泄漏物清除干净,可以使用专业的氨水吸收剂或者其他化学品进行处理。
3. 危险提示在处理氨水泄漏时,必须时刻注意危险提示。
以下行为可能会导致更严重的事故:•不要直接触摸氨水。
氨水具有强烈的腐蚀性,如果直接接触皮肤,可能会导致灼伤或者化学烧伤。
•不要吸入氨水。
氨水具有刺激性气味,如果长时间吸入,可能会导致喉咙肿胀、呼吸困难等症状。
•不要随意处理氨水。
氨水具有一定的毒性,随意处理可能会引起火灾、爆炸等严重后果。
4. 现场清理在完成初步现场处置后,还需要对现场进行彻底的清理工作。
以下工作可以帮助完成现场清理:•使用清洁剂进行清洁。
通过使用清洁剂对泄漏区域进行清洁,可以有效去除氨水的刺鼻气味。
•做到全面彻底。
不仅对泄漏物表面进行清理,还要对泄漏物的周围地面、设备等都进行彻底清洁。
•定期检查。
在清理完成后,应该定期检查,以确认是否已经完全清理干净。
5. 总结在如今的化学工业领域中,氨水泄漏的事件时有发生。
为了更好地掌握应急处置技能,必须要熟悉化学物质的本质、特性和相应的危害。
氨水操作规程
氨水操作规程
《氨水操作规程》
一、操作前的准备工作
1. 检查氨水储存容器,确保容器完好无损,无漏氨现象。
2. 穿戴好防护装备,如护目镜、防护手套和防护衣服等。
二、操作过程
1. 在通风良好的地方进行操作,避免氨气积聚。
2. 定量取出所需氨水,避免浪费和溢出。
3. 注意避免与其他化学物质混合,避免产生危险的化学反应。
4. 使用完毕后,及时将残留的氨水储存容器密封好,防止氨气扩散。
三、操作后的处理
1. 清洗操作工具和储存容器,保持干净整洁。
2. 将废弃的氨水妥善处理,不可乱倒或直接排放到环境中。
四、注意事项
1. 氨水具有刺激性气味,使用时注意避免直接吸入氨气。
2. 操作人员应具备一定的化学实验基础知识,避免操作失误。
3. 若发生意外情况,应立即停止操作并通知相关人员进行处理。
以上就是氨水操作规程的具体内容,希望操作人员能够严格执行规程,确保操作过程中的安全和环保。
《2024年氨水预处理解构柠条细胞壁及提高纤维素酶解率研究》范文
《氨水预处理解构柠条细胞壁及提高纤维素酶解率研究》篇一一、引言随着全球对可再生能源和生物质资源的关注度不断提高,生物质资源的利用与开发已成为科研领域的重要课题。
柠条作为一种具有高纤维素含量的植物资源,其细胞壁的结构复杂,纤维素的有效利用一直是研究的热点。
氨水预处理技术因其环境友好、成本低廉及处理效果显著等优点,在生物质资源利用领域得到广泛应用。
本研究旨在通过氨水预处理解构柠条细胞壁,提高纤维素的酶解率,为柠条的高效利用提供理论依据和技术支持。
二、材料与方法1. 材料柠条、纤维素酶、氨水等。
2. 方法(1)柠条的收集与预处理:收集柠条,进行清洗、干燥、粉碎等处理。
(2)氨水预处理:将粉碎后的柠条与氨水按一定比例混合,在一定温度和时间内进行预处理。
(3)细胞壁解构:对预处理后的柠条进行解构处理,观察细胞壁结构的变化。
(4)酶解实验:将解构后的柠条进行纤维素酶解实验,测定酶解率。
三、结果与分析1. 细胞壁结构变化通过显微镜观察,发现氨水预处理后柠条的细胞壁结构发生明显变化。
预处理过程中,氨水与细胞壁中的某些成分发生反应,破坏了细胞壁的紧密结构,使纤维素更容易被酶解。
2. 酶解率提高实验结果表明,经过氨水预处理的柠条,其纤维素酶解率得到显著提高。
与未处理的柠条相比,酶解率提高了约XX%。
这表明氨水预处理可以有效解构柠条细胞壁,提高纤维素的酶解效率。
3. 影响因素分析(1)氨水浓度:在一定范围内,随着氨水浓度的增加,酶解率逐渐提高。
但当浓度过高时,可能会对纤维素造成一定的破坏,导致酶解率降低。
因此,存在一个最佳的氨水浓度。
(2)预处理时间:预处理时间对酶解率也有影响。
在一定时间内,随着预处理时间的延长,酶解率逐渐提高。
但当时间过长时,可能会导致纤维素的过度降解,降低酶解效率。
因此,需要找到一个合适的预处理时间。
(3)温度:温度对氨水预处理效果和酶解率也有影响。
在一定的温度范围内,提高温度可以加快反应速度,提高酶解率。
氨水的应急处置预案
一、预案背景氨水是一种具有强烈刺激性气味的无色液体,对皮肤、眼睛和呼吸道有强烈的刺激作用。
在氨水泄漏、火灾、爆炸等事故发生时,会对人员造成严重伤害,甚至危及生命。
为保障人民群众的生命财产安全,提高应急处置能力,特制定本预案。
二、预案目标1. 确保事故现场人员迅速撤离,减少人员伤亡;2. 快速控制泄漏,防止事故扩大;3. 及时救治受伤人员,降低事故损失;4. 恢复生产秩序,确保企业稳定运行。
三、应急处置原则1. 生命至上,确保人员安全;2. 预防为主,减少事故损失;3. 快速反应,协同作战;4. 科学处置,确保安全。
四、应急处置流程1. 报警与启动应急预案(1)发现氨水泄漏、火灾、爆炸等事故时,立即向企业值班室报告,启动本预案。
(2)企业值班室接到报告后,立即向企业领导汇报,并通知相关部门。
2. 人员疏散与救援(1)迅速组织人员疏散,确保事故现场周边人员安全撤离。
(2)组织救援队伍对受伤人员进行救治,并及时送往医院。
3. 控制泄漏与事故扩大(1)立即关闭泄漏源,防止事故扩大。
(2)对泄漏区域进行隔离,设置警示标志。
4. 环境监测与评估(1)对泄漏区域及周边环境进行监测,确保空气质量达标。
(2)评估事故影响范围,为后续处置提供依据。
5. 消防灭火与救援(1)根据火灾等级,迅速调集消防队伍进行灭火。
(2)对受伤人员进行紧急救治,确保生命安全。
6. 事故调查与处理(1)事故发生后,立即成立事故调查组,查明事故原因。
(2)根据事故原因,对责任人进行严肃处理。
7. 预案总结与改进(1)事故处理后,对应急预案进行总结,查找不足。
(2)根据总结结果,对预案进行修订,提高应急处置能力。
五、应急物资与设备1. 个人防护装备:防毒面具、防化服、手套、靴子等。
2. 灭火器材:干粉灭火器、泡沫灭火器、二氧化碳灭火器等。
3. 救援器材:担架、急救箱、医疗救护车等。
4. 通讯设备:对讲机、手机、电话等。
六、应急演练1. 定期组织应急演练,提高应急处置能力。
氨水处理的正确方法
氨水处理的正确方法
氨水处理可是个重要的事儿呢!大家都知道氨气这玩意儿吧,要是处理不好,那可麻烦啦!
咱先来说说为什么要重视氨水处理。
就好比家里的卫生,不打扫干净就会滋生细菌,让人不舒服。
氨水处理不好,也会带来很多问题呀!它对环境、对我们的健康都可能有不好的影响呢。
那怎么处理才是正确的呢?这可得好好讲讲。
首先得选对方法呀,就像你去买衣服,得选适合自己的款式和尺码。
比如可以采用物理方法,像吸附啊之类的,把氨气给“抓住”。
这就好像用一个大网,把那些乱跑的氨气都网住,让它们跑不掉。
还有化学方法呢!通过一些化学反应,把氨气转化成别的无害物质。
这就好像变魔术一样,把不好的东西变成好的啦!这多神奇呀!
在处理的时候,可得注意细节哦!就像画画一样,一笔画错了,整幅画可能就不完美了。
要注意处理的条件呀,温度啦、压力啦,这些都得把握好。
这可不是随便玩玩的,得认真对待呢!
而且呀,要随时监测处理的效果。
这就像你走路得看着路,不然一不小心就会摔倒。
要是发现效果不好,就得赶紧调整方法,可不能马虎呀!
难道不是这样吗?如果不认真处理氨水处理,那后果会很严重啊!我们的环境会被污染,我们的健康会受到威胁。
所以呀,一定要重视氨水处理,要用正确的方法去处理它。
这是我们每个人的责任呀,可不能推脱哦!大家都行动起来,让我们的环境更美好,让我们的生活更健康!。
氨水处理hcl废气的方法
氨水处理hcl废气的方法
氨水处理HCl废气的方法如下:
1. 预处理:在氨水处理HCl废气之前,需要对废气进行预处理。
这包括去除废气中的大颗粒杂质、有机物和氮氧化物等有害物质。
可以使用物理方法,如过滤和筛分离,或者使用化学方法,如氧化和还原处理。
2. 吸收:使用吸收剂来吸收废气中的HCl,并将其转化为无害的化合物。
常用的吸收剂包括氢氧化钠、氢氧化钾、硫酸等。
在吸收过程中,需要控制吸收剂的浓度和温度,以避免过度吸收和反应过度。
3. 燃烧:将氨水处理的HCl废气通过燃烧处理,将其转化为二氧化碳和水。
这种方法适用于小批量处理,但需要注意燃烧设备的安全和效率。
4. 转化:将氨水处理的HCl废气通过化学转化处理,将其转化为无害的化合物。
常用的化学转化剂包括尿素、碳氢化合物等。
这种方法需要严格控制反应条件,以避免产生有毒的副产物。
氨水处理HCl废气的方法有多种选择,具体取决于废气的性质和处理目标。
在选择和处理过程中,需要严格遵守相关的环保法规和技术规定,以确保处理效果的安全和可靠性。
突发氨水泄漏如何处理
突发氨水泄漏,如何处理?企业标杆第732天发文!20%氨水是氨气的水溶液,不同于无色无味的液氨,氨水挥发吸入后对鼻、喉和肺有刺激性,会引起咳嗽、气短和哮喘等,可因喉头水肿而窒息死亡,可发生肺水肿引起死亡。
氨水溅入眼内,可造成严重损害,甚至导致失明,皮肤接触可致灼伤。
慢性影响:反复低浓度接触,可引起支气管炎。
皮肤反复接触,可致皮炎,表现为皮肤干燥、痒、发红。
发生氨水泄漏事故时,员工如有皮肤接触,应立即用水冲洗至少15分钟,若有灼伤应就医治疗。
若不慎溅入眼内,应立即提起眼皮,用流动清水(洗眼器)或生理盐水冲洗至少15分钟,或用3%医用硼酸溶液冲洗,随后立即就医。
吸入氨气者,应迅速逃离现场至空气新鲜处,保持呼吸道通畅。
如果有人食入或吸入该物质,其他人不要口对口进行人工呼吸,可用单向阀小型呼吸器或其他适当的医疗呼吸器进行人工呼吸。
误服氨水者,应立即漱口,口服稀释的醋或柠檬汁,然后立即就医。
正压式呼吸器如何使用?1)、使用前的检查、准备工作A、打开空气瓶开关,气瓶内的储存压力一般为28~30MPa,随着管路、减压系统中压力的上升,会听到余压报警器报警。
B、关闭气瓶阀,观察压力表的读数变化,在5 min内,压力表读数下降应不超过2MPa,表明供气管系高压气密性好。
否则,应检查各接头部位的气密性。
C、通过供给阀的杠杆,轻轻按动供给阀膜片组,使管路中的空气缓慢的排出,当压力下降至4~6MPa时,余压报警器应发出报警声音,并且连续响到压力表指示值接近零时。
否则,就要重新校验报警器。
D、压力表有无损坏,它的连接是否牢固。
E、中压导管是否老化,有无裂痕,有无漏气处,它和供给阀、快速接头、减压器的连接是否牢固,有无损坏。
F、供给阀的动作是否灵活,是否缺件,它和中压导管的连接是否牢固,是否损坏。
供给阀和呼气阀是否匹配。
带上呼气器,打开气瓶开关,按压供给阀杠杆使其处于工作状态。
在吸气时,供给阀应供气,有明显的“咝咝”响声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nano Res (2010) 3: 126–137 126Microwave Synthesis of Large Few-Layer Graphene Sheets in Aqueous Solution of AmmoniaIzabela Janowska1 ( ), Kambiz Chizari1, Ovidiu Ersen2, Spyridon Zafeiratos1, Driss Soubane1, Victor Da Costa2, Virginie Speisser2, Christine Boeglin2, Matthieu Houllé1, Dominique Bégin1, Dominique Plee3, Marc-Jacques Ledoux1, and Cuong Pham-Huu11 Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (LMSPC), UMR7515 CNRS-Université de Strasbourg 25, rue Becquerel, 67087 Strasbourg Cedex 08, France2Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR7504 CNRS-Université de Strasbourg 23, rue du Loess, 67037 Strasbourg Cedex 02, France3 Arkema, Groupement de Recherche de Lacq (GRL), BP 34, 64170 LACQ, FranceReceived: 9 November 2009 / Revised: 10 December 2009 / Accepted: 12 December 2009© The Author(s) 2010. This article is published with open access at ABSTRACTFew-layer graphene (FLG) sheets with sizes exceeding several micrometers have been synthesized by exfoliation of expanded graphite in aqueous solution of ammonia under microwave irradiation, with an overall yield approaching 8 wt.%. Transmission electron microscopy (in bright-field and dark-field modes) together with electron diffraction patterns and atomic force microscopy confirmed that this graphene material consisted mostly of mono-, bi- or few-layer graphene (less than ten layers). The high degree of surface reduction was confirmed by X-ray photoelectron and infrared spectroscopies. In addition, the high stability of the FLG in the liquid medium facilitates the deposition of the graphene material onto several substrates via low-cost solution-phase processing techniques, opening the way to subsequent applications of the material. KEYWORDSGraphene, transmission electron microscopy (TEM), expanded graphite exfoliation, microwavesIntroductionGraphene has been attracting increasing scientific attention owing to its outstanding physical properties [1]. Since the first attempt to isolate an individual graphene sheet, which is a monolayer of sp2 bonded carbon [2], numerous studies have been devoted to its synthesis with the aim of improving the overall yield and reproducibility, in order to be able to exploit its various possible applications [3–5]. Graphene sheets are mostly prepared by physical methods such as micro-mechanical cleavage of graphite [2], chemical reduction of exfoliated graphite oxide [6], growth of graphene sheets on metal substrates [7], or vacuum annealing of SiC single crystals [8].In order to improve the yield of the resulting graphene material, several different approaches have recently been proposed. Dato et al.[9] synthesized graphene sheets in a gas-phase medium using ethanol as carbon source and a microwave argon plasma reactor at atmospheric pressure. In the study of Dresselhaus and co-workers [10], large (micrometerNano Res (2010) 3: 126–137DOI 10.1007/s12274-010-1017-1 Research ArticleAddress correspondence to janowskai@unistra.frsize) graphene sheets were synthesized by chemical vapor deposition (CVD) on a nickel film. Very recently, four new methods have been reported for unzipping a carbon nanotube lengthways [3, 11–14]. One method is based on the use of strong oxidizing reagents, e.g., H2SO4/KMnO4, whilst a second one uses the parallel insertion of metal atoms, e.g., Li, in the presence of liquid ammonia followed by a thermal treatment. Regarding these chemical unzipping routes, problems associated with the use of hazardous chemical reagents, and thus the waste disposal, need to be addressed. A third method employs plasma etching to cut nanotubes lengthways after embedding them into a polymer film. The last method reports the synthesis of graphene by catalytic unzipping of carbon nanotubes under microwave irradiation. The as-synthesized graphene materials can be further self-assembled in a liquid medium after partial reduction leading to the formation of millimeter size superstructures similar to the ones reported by Biswas and Drzal [15].Liquid phase exfoliation of graphite or graphite oxide (GO) by chemical solvents has also been reported by several groups. Hernandez et al.[16] reported the synthesis of graphene sheets by liquid phase exfoliation of graphite—which is the most readily available and least expensive precursor of graphene—in various solvents with yields ranging between 1 wt.% and 12 wt.%. The resulting graphene sheets consisted mostly of mono- and/or few-layer graphene sheets with sizes of a few hundred nanometers. Microwave synthesis of exfoliated graphite nanoplatelets has also been reported [17]. However, the average lateral size of the graphite nanoplatelets was somewhat smaller than that obtained in the present work (lateral sizes of several micrometers).1. Methods1.1MaterialsThe expanded graphite used in the present work was purchased from Carbone Lorraine. Ultrapure Milli-Q®water was used for all experiments and the ammonia solution was supplied by Carlo Erba (99.9%) and used as received. 1.2Graphene synthesisThe expanded graphite (EG) with different concent- rations (0.01–1.0 mg/mL) was dispersed in the liquid phase, i.e. distilled water and aqueous solution of ammonia (33 wt.% and 16 wt.%). The dispersion was homogenized by sonication in a low-power sonic bath for 30 min. The sediment was separated by filtration and dried before further processing.The microwave experiments were carried out on a Mars (CEM Corp.) microwave oven with the following characteristics: adjustable power between 300 and 1200 W and maximum temperature of 250 °C. The microwave irradiation was set at 300 W, keeping the temperature between 120 and 200 °C for 60–120 min. The FLG sheets were formed as a suspension in the aqueous phase above the solid residual EG. In order to extract as much as possible of the FLG from the starting EG, the mixture was sonicated for 30 min followed by a decantation step. In the case of pure water as a solvent, the colourless suspension of the graphene sheets was separated from the starting EG by decantation or extraction with a toluene–ammonia (aq.) system, due to the low concentration of the FLG material in the solution.1.3CharacterisationThe morphologies of the EG and the FLG recovered after the microwave synthesis were analyzed on a JEOL 6700 scanning electron microscope (SEM). The microstructure of the as-synthesized samples was investigated by transmission electron microscopy (TEM) on a JEOL 2100 field-emission gun (FEG) microscope operated under an acceleration voltage of 200 kV. TEM measurements were made by drop casting of the FLG dispersion onto holey carbon grids. The XPS measurements were performed on a Thermo VG spectrometer, using Al Kα radiation (hν= 1486.6 eV). The base chamber pressure was 2 ×10–10 mbar. Survey and high-resolution spectra were recorded in constant pass energy mode (100 and 20 eV, respectively). The binding energy scale of SiO2-supported graphene layers was corrected for electrostatic charging using the C 1s peak at 284.5 eV as an internal reference. A Shirley background was subtracted for all spectra. Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectra were recorded on a Shimadzu Spectrum 100system. The AFM measurements were performed with a Digital Instruments Nanoscope. A diluted FLG dispersion in toluene (0.1 mg/mL) was spin coated (with a speed of 800 r/min) on a SiO2/Si wafer and examined by AFM in a tapping mode. Scanning tunneling microscopy (STM) was performed in order to ascertain whether the as-synthesized FLG sheets were conductive and also to obtain more insight into the material roughness and regularity. For the thermal treatments, the sample was transferred into a separate chamber and the sample holder was connected to a tungsten filament which played the role of a heating source and allowed thermal treatments up to 600 °C. The thermal treatment was carried out under a dynamic vacuum of 10–9 mbar, which provides a rapid desorption of adsorbed impurities on the FLG surface.2. Results and discussionIn this work, we report the synthesis of large few-layer graphene (FLG) sheets with sizes of a few tenths to a hundred micrometers and their detailed characteri- zation. We show that graphene material with relatively high quality, i.e., low oxygen decoration and large size, can be prepared in high yields by microwave treatment of expanded graphite in aqueous solution of ammonia at low temperatures (below 200 °C). In a previous paper, we have reported that FLG sheets could be produced by catalytic unzipping of carbon nanotubes in water under microwave irradiation [12], although the resulting FLG possessed a relatively high amount of oxygenated functional groups on its surface. In the present work, water is replaced by ammonia which displays a higher reducibility and hence may prevent the incorporation of oxygenated groups into the synthesized FLG. Moreover, the decomposition products of ammonia are also less harmful than other chemical products used to date to synthesize graphene in liquid media. The synthesis of FLG in ammonia could also open a new field of research dealing with the production of nitrogen-doped graphene. As far as the synthesis of graphene-like materials via chemical routes is concerned, this is the first time that FLG sheets with such large sizes have been reported. Our results show that the ammonia concentration can drastically influence the exfoliation of the expanded graphite as well as the dimensions of the final FLG sheets. In addition, the FLG formed by this versatile and easily scalable method is in the form of a stable suspension in the reaction medium that can be further processed or deposited on a variety of substrates for downstream applications.2.1Influence of the ammonia concentrationThe microstructure of the sample formed after micro- wave irradiation was investigated by transmission electron microscopy (TEM). Typical TEM images of the FLG sheets at different magnifications are pre- sented in Fig. 1. A low-magnification TEM micrograph (Fig. 1(a)) shows part of a micrometer size FLG material that is made up of smaller individual graphene sheets. The FLG sheets constituting the assembly exhibit a relatively sharp border (Fig. 1(a)) and statistical TEM analysis indicates that their average size is about 10 µm (see Section S-4 in the Electronic Supplementary Material (ESM)). General TEM views of the graphene sheet assembly show the crumpled structure of the FLG sheet (Figs. 1(b) and 1(c)). Such crumpled structure allows the sheet to accommodate the high aspect ratio of the material without scrolling [18, 19]. The high- resolution TEM micrograph taken at the border of the FLG sheet (Fig. 1(d)) clearly shows the number of graphene layers of the FLG, i.e., five layers. A quantitative analysis is possible in this case due to the particular morphology of the graphene sheets, whereas they are usually scrolled and partially folded at their edges [20]. By statistical analysis of a large number of graphene flakes, we can conclude that the graphene sheets formed by exfoliation of expanded graphite in a ammonia solution (33 wt.%) are made up of no more than ten layers.Furthermore, the size of the as-synthesized FLG sheets is also influenced by the ammonia concen- tration in the solution (see Fig. S-2 in the ESM). At high ammonia concentrations, extremely large graphene sheets with a lateral size exceeding a hundred micro- meters were observed, whereas at lower ammonia concentrations, the average size of the FLG was centered around 10 µm. It seems that the FLG sheets retain their planar morphologies on the TEM grid after the evaporation of the solution. This suggests that the large graphene sheets can be directly deposited onplanar substrates for relevant applications. Again, typical TEM images (Fig. 2(a)) show that the edges of the sheets are generally scrolled and partially folded due to the high surface tension needed for the material to maintain its planarity over a large distance. Indeed, perfect 2-D atomic crystals cannot exist as such without scrolling, unless they are of limited size or contain many crystal defects [21]. The crystallographic structure of the sheet was determined using the selected area electron diffraction (SAED) technique which probes the whole reciprocal lattice of the sample. The SAED pattern of an assembly of three superposed sheets (Fig. 2(b)) is presented in Fig. 2(c) and corresponds to the superposition of three hexagonal lattices, one principal one with strong reflections and two others rotated slightly in-plane with respect to the first one. The typical sixfold symmetry of the pattern comes from the crystallographic structure of the graphene — composed by carbon atoms arranged in a strictly 2-D honeycomb —in real space. To label the diffraction peaks, we use the Miller–Bravais indices {hkil } of graphite, putting the last index l = 0. The two main distances determined by frequency analysis of the spots in the innermost and the next hexagon are 2.13 Å (corresponding to the {1100} spots) and 1.23 Å ({1120} spots), respectively. Such a diffraction pattern suggests the presence of several layers in the graphene sheet assembly (see Section S-4 in the ESM). High-resolution TEM images next to the edge confirm that this FLG is made of two double layer graphene sheets, visualized as two sets of dark lines running in a parallel direction (Fig. 2(d)). Such FLG sheets could be formed by van der Waals forces during the stabilization of the material in solution. It is thought that these sheet assemblies were formed by π-stacking of the graphene material formed during the synthesis or during the cooling step. In fact, these aggregates can be easily re-dispersed by mild sonication.In order to evaluate the typical number of graphenelayers in the dispersed sheets, SAED was utilized toFigure 1 (a) General view of the as-synthesized graphene sheet (using an aqueous solution with 33 wt .% of ammonia) with a width of several micrometers. (b) Closer TEM view of the FLG sheets showing that they are made up of several individual sheets with crumpled morphologies due to their high aspect ratio. (c) Border view of the graphene sheet showing the curled structure of the sheet. (d) High-magnification TEM view of the curled border showing the number of graphene layers forming the graphene sheet. In this micrograph,there are five layers spaced with an interplanar distance of ca. 0.34 nmanalyze several FLG sheets from different samples. This technique allows confident identification of single graphene layers by comparing the peak intensities from the innermost hexagon of the diffraction pattern with those of the next one [16]. In particular, if the multi-layers retain the Bernal (AB) stacking of the material source, which is generally the case for few-layer sheets prepared from graphite, the {2110} spots appear to be more intense than the {1100} spots, whereas for single graphene layers this intensity ratio is reversed. Such an analysis was performed on typical graphene flakes, focusing on their edges. The TEM images suggest the presence of two individual sheets superposed at the edge of the flake (Fig. 3(a)). This observation is confirmed by the analysis of the diffraction pattern that shows the presence of two parallel hexagonal lattices slightly rotated around the perpendicular axis of the hexagon (Fig. 3(a) insert). By comparing the intensity of the {2110} and {1100} spots belonging to each hexagonal lattice, we can conclude that one of the sheets is a single-layer while the other is few-layer. Moreover, the separation in reciprocal space of the spots belonging to the two lattices allows one to visualize each graphene sheet individually, by selecting one of the two equivalent spots with the objective aperture and thus obtaining the corresponding dark field image. As a result it is possible to visualize either or both graphene sheets (by selecting both spots, Fig. 3(b)), or only one of them(Figs. 3(c) and 3(d)).Figure 2 (a) Border view of the FLG sheets showing that each individual sheet is partly folded onto itself. (b) TEM image of an assembly of three superimposed and relatively flat graphene flakes with slight in-plane disorientations between them. (c) Selected area electron diffraction (SAED) pattern of the three graphene sheets depicted in (b). The pattern is indexed using the Miller–Bravais indices for graphite with the Bragg reflections of the innermost hexagon of (0-110) type (2.13 Å spacing) and those of the next hexagon of (-1-120) type (1.23 Å spacing). (d) High-resolution TEM micrograph of the curled border revealing the superposition of two double graphene sheets. The spacing measured between the two contrasted lines is close to 0.34 nmGraphene sheets formed by reaction in water are thicker with smoother borders those synthesized in aqueous solution of ammonia, allowing high-resolution micrographs to be obtained without damaging the sheets with the electron beam (see Fig. S-5 in the ESM). According to the observed results one can state that the nature of the liquid medium has a substantial influence on both the morphology and the microstructure of the graphene layers. TEM analysis carried out on several samples synthesized in aqueous solution of ammonia indicated that the resulting FLG sheets were relatively homogeneous in thickness, with a maximum of ten layers. The results suggest that expanded graphite has been extensively exfoliated to give only few-layer graphene sheets with a yield of around 8 wt.%.The electrical conductivity of the FLG, recovered after 1 h of settling, and spin coated (with a speed of 800 r/min) on a glass substrate with patterned gold was also measured. The thickness of the FLG film deposited onto a SiO 2/Si wafer was ca. 400 nm. The electrical conductivity of the sample deposited at room temperature was 2.5 S/m, which is comparable to that reported in other work, and steadily increased after reduction of the sample in flowing H 2 at 200 °C for 2 h, eventually reaching 250 S/m[22]. Such resultsFigure 3 (a) Representative TEM image of an area where only two superposed and relatively flat graphene sheets are present. The SAED pattern taken with an aperture of 250 nm on the area marked by the white circle is shown in the insert. The Bragg reflections are indexed using the Bravais–Miller indices for graphite. The diffraction pattern is composed of two individual reciprocal lattices corresponding to the two superposed sheets. (b) Dark field image obtained by selecting the two (-1010) diffraction peaks: both graphene sheets are visible. (c, d) Dark fields images obtained by selecting each of the (-1010) diffraction peak separately which allows individual imaging of the two superposed sheets. These images correspond to the multilayer and the monolayer graphene sheets, respectivelycan be attributed to the removal of the oxygenated functional groups decorating the FLG edges, as suggested in the Ref. [13]. The conductivity of the as-synthesized FLG is relatively high compared to that of activated charcoal (1×10–7 S/m) [23] but is still low compared to that of graphite (3×104 S/m) [24]. However, the conductivity of the FLG obtained in the present work is still high in comparison to that of the graphene obtained by solvothermal synthesis wherea conductivity of only 0.067 S/m was obtained [22].2.2Proposed mechanism for the exfoliationTang et al.[25] have reported a new method to synthesize graphene by rapid quenching of pristine highly oriented pyrolytic graphite (HOPG) in an aqueous solution of NH4HCO3. The exfoliation pheno- menon was attributed to the formation of cracks on the HOPG surface during the rapid quenching followed by infiltration of NH4HCO3 into the material. Sub- sequent decomposition of NH4HCO3 (see Eq. (1)) leads to the formation of steam and carbon dioxide which help the exfoliation process.NH4HCO3(aq.) ⎯⎯→ NH3(g) + CO2(g) + H2O(g) (1)Based on the results of Tang et al., a mechanism can be proposed to explain the influence of the ammonia on the exfoliation of the graphite. It is expected that the high wetting of the graphite surface by the ammonia solution enhances the infiltration of the liquid between the graphene planes and thus, during the microwave irradiation, leads to an exfoliation process which produces isolated graphene sheets with different thicknesses. Indeed, the fast evaporation of water and/or the decomposition of ammonia during the microwave irradiation and the subsequent infiltration of the gaseous steam and NH3 (see Eq. (2)) within the expanded graphite matrix could give rise to an exfoliation process when the gaseous pressure over- comes the van der Waals forces between the graphene layers (5.9 kJ/mol). Furthermore, this decomposition is thought to be almost spontaneous due to the high microwave absorption properties of the graphite, which could give rise to a fast temperature increase inside the solid matrix.NH4OH(aq.) ⎯⎯→ NH3(g) + H2O(g) (2)It is expected that at high ammonia concentrations, the liquid wetting is better and thus leads to a deeper infiltration of the ammonia solution between the graphene planes of the expanded graphite, causing the exfoliation of graphene sheets of larger sizes. Again, liquid infiltration in the interlayer galleries of the graphene planes inside the expanded graphite can be put forward to explain the observed results (see Section S-1 in the ESM).2.3Surface characteristics of the few-layer graphene sheetsThe electronic structure of the graphene is strongly influenced by basal-plane or edge functionalization by oxygenated groups. In order to detect the presence of any oxygenated groups, X-ray photoelectron spectros- copy (XPS) and attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy were performed. Characteristic C 1s and N 1s core level spectra are presented in Fig. 4. The C 1s spectrum of the graphite/graphene sample shows a narrow peak at 284.5 eV indicating the presence of sp2 hybridized C–C bonds, typically assigned to graphite (Fig. 4(c)) [26]. On samples synthesized in ammonia, a low concentration of nitrogen species is detected (atomic fraction of nitrogen ~ 1%–2%) as indicated by the N 1s spectra (inset of Fig. 4(d)). The binding energy of the N 1s peak at 400.2 eV corresponds to nitrogen atoms bonded to sp2 carbon, and can be attributed to nitrogen atoms substituting for carbon in the graphene sheets [27]. It should be noted that the expected contribution of carbon-bonded nitrogen species in the C 1s spectra is not more than 2%, which is far below the uncertainty of the fitting procedure (estimated around 10%). As expected, on samples synthesized in non-ammonia containing solutions, nitrogen is not detected in the N 1s spectra.An important factor determining the quality of graphene is the degree of oxidation, which affects the electrical properties of the material [28]. Graphene oxide involves bonding of carbon with various oxygen functional groups like hydroxyl (–OH), keto (C=O), carboxyl (–COOH) or epoxy groups. These species have a clear fingerprint in the C 1s region, since theirFigure 4XPS C 1s spectra of the graphene sheets synthesized in (a) pure water and (b) 33 wt.% aqueous solution of ammonia.(c) Direct comparison between the two spectra ((a) and (b)) highlights the presence of a high amount of oxygenated functional groups on the FLG surface (a) synthesized without ammonia. (d) The C 1s spectrum of an unsupported graphene+graphite mixture is presented at the bottom as a reference spectrum. The FLG samples were deposited as a thin film on a SiO2/Si substrate (1 cm ×1 cm) and subsequently dried at 10–7 mbar at room temperature. (d, left) Inset spectrum: the N 1s peaks for samples prepared in ammonia solution and pure waterbinding energies are shifted between 1.5 and 4 eV from the main graphene carbon peak. The C 1s spectra of graphene layers supported on SiO2, prepared in pure water (Fig. 4(a)) and in a 33 wt.% aqueous solution of ammonia solution (Fig. 4(b)) are presented in Fig. 4. For the sake of clarity, a direct comparison between the two XPS spectra, obtained from the FLG synthe- sized in water and in aqueous solution of ammonia is also presented in Fig. 4(c). The comparison confirms the higher concentration of the oxygenated functional groups on the FLG surface synthesized in water than on that synthesized in aqueous solution of ammonia. The increased width of the peaks of the SiO2 supported graphene sheets (Fig. 4(a)) compared to those of the graphene/graphite sample (Fig. 4(d)) (1.5 eV instead of 1 eV), is probably related to the poor electrical conductivity of the SiO2 support, resulting in an electrostatic charging of around 2 eV. As in the case of the “bulk” sample, the C 1s peak is dominated by C–C species at 284.5 eV. For the ammonia-treated samples, only one additional minor component at 289.0 eV is present. The binding energy of this com- ponent can be attributed to nitrogen-bonded carbon species. This is also supported by quantitative calcula- tions which showed that the atomic fraction of the C 1s peak at 289 eV and the N 1s peak is close to unity [29]. For the water-treated sample, two additional com- ponents at 286.6 and 288.6 eV are necessary to fit the overall spectrum. These species are typically assigned to keto and carboxylic carbon species, without exclu- ding the presence of hydroxyl groups. The important information obtained by comparing the C 1s peaks of the samples prepared in aqueous solution of ammonia and pure water is that graphene synthesized in ammonia solution exhibits a very low content of oxygenated species and is mostly composed of graphitic carbon. Again, this information highlights the more reduced state of the graphene sheets prepared in aqueous solution of ammonia.This high degree of reducibility was also confirmed by attenuated total reflection infrared measurements (see Fig. S-6 in the ESM) [6, 29–31]. According to these results, an almost complete lack of peaks in the COOH/C–OH stretching region (3000–3700 cm–1) is found for the sample synthesized in aqueous solution of ammonia, in marked contrast to the spectrum for the sample synthesized in water.2.4Atomic force microscopy analysisThe morphology and thickness of the as-synthesized FLG were examined by atomic force microscopy (AFM). The FLG with quite small lateral size, i.e., 0.2–0.4 µm was well dispersed on a SiO2/Si wafer surface (Fig. 5(a)) and lay flat on the SiO2/Si wafer substrate. The thickness of the FLG in Fig. 5(a) was measured by line profile and a value of around 4.4 nmwas obtained. According to Ref. [32], which indicates that the thickness of a single graphene layer is around 1 nm, the FLG obtained in the present work contain between two and five graphene layers. FLG with larger lateral sizes, i.e., 0.6 µm, was also observed, as highlighted in Fig. 5(b). Statistical analysis revealed that the FLG has an average thickness ranging between3 and 5 nm, which corresponds to FLG containing three to five layers of graphene. It is worth mentioning that FLG with even larger lateral sizes (> 1 µm), as observed by TEM, was not found by AFM. This difference can be explained by the instability of such large lateral sizes of FLG on the hydrophilic SiO2/Si wafer surface. FLG with large lateral sizes have a tendency to scroll during the drying step and thus the analysis of these structures by AFM was not successful.It is expected that FLG with such large lateral sizes is easier to observe by TEM due to the presence of the underlying carbon membrane on the TEM grid which prevents them scrolling during the drying step. This hypothesis is confirmed by using a membrane-free TEM grid (see Figs. S-3(a) and S-3(b) in the ESM) in which case the large FLG readily scrolled, due to its high difficulty in maintaining a high aspect ratio 2-D structure. We are currently investigating the Langmuir– Blodgett method as a way to prepare samples with better stability on the SiO2/Si wafer surface for subsequent AFM analysis.2.5Scanning tunneling microscopy analysisThe topology roughness and the electrical conductivityof the FLG sheets synthesized in aqueous solution of ammonia were measured by scanning tunneling microscopy (STM). The graphene sample was annealedin vacuum at 150 °C for 1 h before analysis. Topographic STM images (Fig. 5(c)) show the relatively high roughness of the sheet with a height variation of up to 5 nm. After further annealing at a higher temperature, 400 °C, the roughness was significantly decreased from 5 to around 2 nm (Fig. 5(d)). Such a decrease can be attributed to the removal of adsorbed species. The morphology of graphene films is dominated by elongated strips with periodic stacking which are characterized by 2 nm high protuberances. Meyer et al. [20] have reported that graphene sheets are stabilized by an out-of-plane deformation which can reach 1 nm in height, similar to the STM results in the present work. Such a corrugation becomes smaller for bilayer graphene and disappears for thicker graphene sheets.In order to further explore the conductivity of these graphene sheets, localized current vs. bias potential curves were acquired (Fig. 5(e)). The curve acquired from –3 V to +3 V clearly exhibits an ohmic behavior over the whole potential range of conductivity (–2 V to +1.8 V). The conductivity is observed at positive and negative bias, clearly indicating the ambipolarity of graphene, where carriers can be tuned between holes and electrons by supplying the requisite bias. Moreover, the signal acquired during the measurement was quite stable (low noise level) indicating that the surface probed by the tip was rather clean and lacking significant amounts of adsorbed impurities. Outside these limits, the conductivity reached saturation levels, demonstrating that all the electronic states of the FLG sheets have been probed [33, 34]. Figure 5(f) highlights the positive effect of the annealing on the conductivity: a ten-fold increase of the conductivity slope (d I/d V) was observed when the sample was heated from 150 °C to 400 °C. These results are in line with the observations already made by Kosynkin et al. [13], who also reported an increase in the conductivity of graphene nanoribbons annealed at 300 °C under H2/Ar, and is also consistent with previously reported data from Hernandez et al.[16], where the authors also found a large increase in conductivity after thermal annealing of the sample. This shows that most of the conducti- vity comes only from the intrinsic properties of the graphene sheets and not from adsorbed impurities. Even if it is very difficult to make assumptions concerning the tip shape and size, one can estimate a tunneling effect area of about 1 nm² over the sample. Considering this, it is possible to make a simple calculation, assuming an ohmic conductivity along one dimension:σ⎛⎞=⎜⎟⎝⎠setpointbiasi tE Awhere σ is the conductivity, i setpoint is the probe current, E bias is the applied bias potential, A is the tunneling。