小学经典奥数题

合集下载

小学奥数题100道及答案

小学奥数题100道及答案

小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,吃掉了3个,还剩几个?答案:7个10. 应用题:小红有5个橘子,妈妈又买了8个,现在一共有多少个橘子?答案:13个11. 逻辑推理题:小华比小刚高,小刚比小明高,请问谁最高?答案:小华12. 逻辑推理题:小猫比小狗轻,小狗比小猪轻,请问谁最重?答案:小猪答案:选项A答案:选项B15. 数字排列题:将1、2、3、4四个数字排列,使它们组成的四位数最小。

答案:16. 数字排列题:将5、6、7、8四个数字排列,使它们组成的四位数最大。

答案:876517. 数字推理题:1、3、5、7、(),请填写下一个数字。

答案:918. 数字推理题:2、4、8、16、(),请填写下一个数字。

答案:3219. 时间计算题:如果现在是上午9点,再过3小时是几点?答案:中午12点20. 时间计算题:如果现在是下午3点,2小时前是几点?答案:下午1点答案:一组是水果(苹果、橘子),另一组是学习用品和体育用品(书本、铅笔、篮球)。

22. 重量比较题:一个西瓜重5千克,一个菠萝重2千克,哪个更重?答案:西瓜更重。

23. 长度比较题:一根绳子长10米,另一根绳子长15米,哪根绳子更长?答案:15米长的绳子更长。

答案:选项C25. 速度计算题:小明骑自行车,每小时行驶15公里,2小时能行驶多远?答案:30公里26. 温度转换题:摄氏度0度等于华氏度多少度?答案:32度27. 面积计算题:一个长方形的长是8厘米,宽是4厘米,它的面积是多少?答案:32平方厘米28. 体积计算题:一个正方体的边长是3厘米,它的体积是多少?答案:27立方厘米29. 平均数计算题:小明、小红、小华的年龄分别是8岁、10岁、12岁,他们的平均年龄是多少?答案:10岁答案:731. 因数分解题:将数字24分解成两个因数的乘积。

小学四年级奥数题及答案[5篇]

小学四年级奥数题及答案[5篇]

小学四年级奥数题及答案[5篇]1.小学四年级奥数题及答案篇一1、王爷爷家养的4头奶牛每个星期产奶896千克,平均1头奶牛每天产多少奶呢?2、4辆汽车3次运水泥960袋,平均每辆汽车每次运水泥多少袋?3、水波小学每间教室有3个窗户,每个窗户安装12块玻璃,9间教室一共安装多少块玻璃?4、小红买了2盒绿豆糕,一共重1千克。

每盒装有20块,平均每块重多少克?5、一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄。

结果只用了3个小时就到达了。

这辆汽车实际平均每小时行驶多少千米?参考答案:1、896÷4÷7=32(千克)2、960÷4÷3=80(袋)3、12×9×3=324(块)4、1千克=1000克1000÷2÷20=25(克)5、60×4÷3=80千米/小时2.小学四年级奥数题及答案篇二1.用一根150厘米长的绳长围成一个等边三角形。

这个等边三角形的每条边的长是多少厘米?2.等腰直角三角形两条相邻的边分别是8米、5米,它的周长是多少米?3.用20分米和50分米的木条围成一个等腰三角形,所得等腰三角形的周长是多少?4.等腰三角形顶角度数是一个底角的一半,这个三角形顶角和底角各是多少度?5.一个等边三角形和一个正方形的周长相等。

正方形的边长是12厘米,等边三角形的边长是多少厘米?参考答案:1.150÷3=50(厘米)答:这个等边三角形的每条边的长是50厘米。

2.8+5+5=18(米)答:它的周长是18米。

3.20+50+50=120(分米)答:所得等腰三角形的周长是120分米。

4.180÷(1+2+2)=36°36°×2=72°(次)答:这个三角形顶角是36°,底角是72°。

5.12×4÷3=16(厘米)答:等边三角形的边长是16厘米。

小学经典奥数题50道

小学经典奥数题50道

小学经典奥数题50道1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米相遇,甲比乙速度快,甲每小时比乙快多少千米?4、李军的张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。

每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需要交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时走3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食吨。

甲仓库的储存吨数比乙仓库的4倍少5吨。

甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出,快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

问:托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游,第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小学奥数题及答案

小学奥数题及答案

小学奥数题及答案
小学奥数题及答案
小学奥数题及答案一
小学六年级奥数练习题:隧道
习题:某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
答案与解析:
根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
某列车的'速度为:(250-210)÷(25-23)=40÷2=20(米/秒)
某列车的车长为:20×25-250=500-250=250(米),
两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒) 小学奥数题及答案二
A、B、C、D四个同学猜测他们之中谁被评为三好学生。

A说:“如果我被评上,那么B也被评上。

”B说:“如果我被评上,那么C 也被评上。

”C说:“如果D没评上,那么我也没评上。

”实际上他们之中只有一个没被评上,并且A、B、C说的都是正确的。

问:谁没被评上三好学生?
答案与解析:A没有评上三好学生。

由C说可推出D必被评上,否则如果D没评上,则C也没评上,与“只有一人没有评上”矛盾。

再由A、B所说可知:
假设A被评上,则B被评上,由B被评上,则C被评上。

这样四人全被评上,矛盾。

因此A没有评上三好学生。

小学经典奥数题50道

小学经典奥数题50道

小学经典奥数题50道1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元2、3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米相遇,甲比乙速度快,甲每小时比乙快多少千米4、李军的张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。

每支铅笔多少钱5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需要交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时走3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组7、有甲乙两个仓库,每个仓库平均储存粮食吨。

甲仓库的储存吨数比乙仓库的4倍少5吨。

甲、乙两仓各储存粮食多少吨8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元10、一列火车和一列慢车,同时分别从甲乙两地相对开出,快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

问:托运中损坏了多少箱玻璃12、五年级一中队和二中队要到距学校20千米的地方去春游,第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小学适用的奥数题100道及答案

小学适用的奥数题100道及答案

小学适用的奥数题100道及答案1. 在统计学年级水平考试中,班上有80位学生。

根据调查,80% 的学生会打乒乓球,60% 的学生会踢足球,40% 的学生既会打乒乓球又会踢足球。

那么至少会打乒乓球或踢足球的学生人数是几人?解答:既会打乒乓球又会踢足球的学生人数为80×40% = 32人,所以至少会打乒乓球或踢足球的学生人数为80 - 32 = 48人。

2. 小明从家到学校一共要经过3个红绿灯。

他观察到第1个红绿灯是每2分钟变换一次,第2个红绿灯是每3分钟变换一次,第3个红绿灯是每5分钟变换一次。

那么小明在一次通行中不会遇到红灯的概率是多少?解答:第1个红绿灯每2分钟变换一次,所以小明不会遇到红灯的概率为2/2 = 1/2。

同理,第2个红绿灯的概率为3/3 = 1/3,第3个红绿灯的概率为5/5 = 1/5。

按照概率相乘的原理,小明在一次通行中不会遇到红灯的概率为(1/2) × (1/3) × (1/5) = 1/30。

3. 将一些相同大小的正方形铺满一个边长为4cm的大正方形区域,每个小正方形的边长为0.5cm。

那么一共需要多少个小正方形?解答:大正方形的面积为4 × 4 = 16cm²,小正方形的面积为0.5 ×0.5 = 0.25cm²。

所以一共需要16 / 0.25 = 64个小正方形。

4. 在一个数列中,每个数都比前一个数大2。

如果第8个数是10,那么第1个数是多少?解答:根据题意,第8个数比第1个数大了7 × 2 = 14。

所以第1个数是10 - 14 = -4。

5. 一辆车以每小时60千米的速度行驶,行驶2小时后停下来休息。

之后每小时以每小时50千米的速度继续行驶。

那么车行驶了多少千米?解答:前两小时行驶了60 × 2 = 120千米。

之后每小时行驶50千米,所以再行驶的距离为50 × (2 + 1) = 150千米。

小学奥数题库全部题型100道及答案(完整版)

小学奥数题库全部题型100道及答案(完整版)

小学奥数题库全部题型100道及答案(完整版)题目1:有一串数1,4,7,10,…,301,求这串数的平均数。

答案:这是一个等差数列,公差为3,首项为1,末项为301。

项数= (301 - 1)÷3 + 1 = 101 。

总和= (1 + 301)×101÷2 = 15251 ,平均数= 15251÷101 = 151 。

题目2:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的 3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 120,被减数= 60。

又因为减数是差的3 倍,所以差= 60÷(3 + 1)= 15 。

题目3:两个数的和是682,其中一个加数的个位是0,如果把这个0 去掉,就得到另一个加数。

这两个加数各是多少?答案:一个加数是另一个加数的10 倍。

较小的加数= 682÷(10 + 1)= 62 ,较大的加数= 62×10 = 620 。

题目4:一桶油连桶重16 千克,用去一半后,连桶重9 千克,桶重多少千克?答案:油重= (16 - 9)× 2 = 14 千克,桶重= 16 - 14 = 2 千克。

题目5:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。

那么有多少人两个小组都不参加?答案:参加了至少一个小组的人数= 15 + 18 - 10 = 23 人,两个小组都不参加的人数= 40 - 23 = 17 人。

题目6:有一根木材长8 米,要把它锯成8 段,每锯一段要用3 分钟,共锯了多少分钟?答案:锯成8 段需要锯7 次,共锯了7×3 = 21 分钟。

题目7:已知9 个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是多少?答案:9 个数的总和= 9×72 = 648 ,余下8 个数的总和= 8×78 = 624 ,去掉的数= 648 - 624 = 24 。

小学奥数题及答案 - 趣味题及答案

小学奥数题及答案 - 趣味题及答案

1.如下图所示,一只蚂蚁从一个正方体的A点沿着棱爬向B点,如不故意绕远,一共有几种不同的走法?
答案:案因考虑到不能故意绕远,那么从A点到B点最少要走3条棱.这样一共有6种方法.如下
4. 1只小狗与3只小兔子一样重;1只小兔子和3只小鸡一样重。

问: 1只小狗和几只小鸡一样重?
答案:由第二幅图知道,1只小兔子和3只小鸡一样重,那么3只小兔子和9只小鸡一样重,又知道1只小狗与3只小兔子一样重。

从而知道1只小狗和9只小鸡一样重。

10.贪吃的小熊口袋里只有25元钱,他跑到“味多美”餐厅大吃大喝了一顿,把钱全都花光了.下面是快餐厅出售的食品,你知道小熊可能吃了些什么吗?(每种食物只能要一份)
答案:因为小熊把钱全都花光了,所以小熊吃到的几种食品的钱数和应是25元.看一看哪几样食品的钱数相加和是25,小熊就吃到了哪几样食品.
因为10+6+5=25 (元)
所以小熊可能吃的是
因为10+8+2+5=25 (元)
所以小熊可能吃的是
因为8+2+6+4+5=25 (元)
所以小熊可能只有炸鸡块没吃,其余都各吃了一份.
22.在六面体的顶点B和E处各有一只蚂蚁(见下图),它们比赛看谁能爬过所有的棱线,最终到达终点D。

已知它们的爬速相同,哪只蚂蚁能获胜?。

小学数学50道经典奥数题及解析

小学数学50道经典奥数题及解析

小学数学50道经典奥数题及解析1. 小明的妈妈给他买了一些贴纸,其中3/4是花纹贴纸,剩下的是字母贴纸。

如果小明得到了60个字母贴纸,那么他一共收到了多少个贴纸?解析:假设小明一共收到了x个贴纸,则有3/4x是花纹贴纸,剩下的x - 3/4x = 1/4x 是字母贴纸。

根据题目可得:1/4x = 60。

解方程可得:x = 240。

所以小明一共收到了240个贴纸。

2. 某个数的三分之一加上四分之一等于40,这个数是多少?解析:设这个数为x,根据题目可得:1/3x + 1/4x = 40。

化简方程可得:7/12x = 40。

解方程可得:x = 40 * 12 / 7 = 68.57。

所以这个数约等于68.57。

3. 甲、乙、丙三个人合作种地,甲每天种地的1/5,乙每天种地的1/4,丙每天种地的1/3。

如果三个人连续工作8天,他们一共种了多少地?解析:甲、乙、丙三个人每天种地的比例为1/5:1/4:1/3。

将分母相同化简后相加可得:12/60 + 15/60 + 20/60 = 47/60。

所以三个人连续工作8天一共种了(47/60) * 8 = 6.27 地。

4. 一个两位数,各位数字的和是9,除以6的余数是3。

这个两位数是多少?解析:设这个两位数为10a + b,其中a为十位上的数字,b为个位上的数字。

根据题目可得:a + b = 9,并且(10a + b) % 6 = 3。

列举10的倍数加上3的倍数得到的数,最终找到满足条件的两位数为33。

所以这个两位数是33。

5. 甲、乙、丙三个人一起喝了一桶水,甲喝了其中的1/4,乙喝了剩下的1/3,丙喝了剩下的1/2。

如果桶中还有1升水,那么这桶水一共有多少升?解析:设桶中水的总体积为x,根据题意可得:(3/4) * (2/3) * (1/2) * x = 1。

化简方程可得:x = 4/3。

所以这桶水一共有(4/3 + 1) = 7/3升,约等于2.33升。

小学生奥数题五篇

小学生奥数题五篇

小学生奥数题五篇1.小学生奥数题篇一1、在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36)。

所求自然数共有1000-(31+10)+3=962(个)。

2、用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?解:4*5*5=100个3、要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?解:6*6*6=216种4、已知15120=24×33×5×7,问:15120共有多少个不同的约数?解:15120的约数都可以表示成2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5,4,2,2种,所以共有约数5×4×2×2=80(个)。

5、大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n 本,也就是说这n本书在两人之间的分配情况共有(n+1)种。

所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

2.小学生奥数题篇二1、爸爸、妈妈今年的年龄和是82岁。

5年后爸爸比妈妈大6岁。

今年爸爸、妈妈两人各多少岁?分析5年后,爸爸比妈妈大6岁,即爸爸、妈妈的年龄差是6岁,它是一个不变量。

因此,爸爸、妈妈现在的年龄差仍然是6岁。

这样原问题就归结为已知爸爸、妈妈的年龄和是82岁,他们的年龄差是6岁,求两人各是几岁的和差问题。

解爸爸年龄:(82+6)÷2=44(岁)妈妈年龄:44-6=38(岁)答:爸爸的年龄是44岁,妈妈的年龄是38岁。

小学奥数经典应用题含答案解析

小学奥数经典应用题含答案解析

小学奥数经典应用题含答案解析奥数题100道01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。

【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。

02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。

【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。

03、同学们进行广播操比赛,全班正好排成相等的6行。

小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。

从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。

04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。

第600颗是( )颜色。

【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。

05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。

【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。

06、一只蜗牛在10米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。

【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。

07、锯一根10米长的木棒,每锯一段要2分钟。

如果把这根木棒锯成相等的5段,一共要( )分钟。

【解析】把这根木棒锯成相等的5段,只需要锯4次,每次要2分钟,所以一共需要4×2=8分钟。

最难小学奥数题100道及答案(完整版)

最难小学奥数题100道及答案(完整版)

最难小学奥数题100道及答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。

这三个数分别是多少?解题方法:将60 分解质因数,60 = 2×2×3×5 = 3×4×5答案:3、4、5题目2:在一个减法算式里,被减数、减数与差的和是180,减数比差大10。

差是多少?解题方法:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 180,被减数= 90。

又因为减数-差= 10,减数+ 差= 90,所以差= (90 - 10)÷2 = 40答案:40题目3:甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次相遇在离 B 地55 千米处。

A、B 两地相距多少千米?解题方法:第一次相遇时,甲走了75 千米,两人共走了一个全程。

从开始到第二次相遇,两人共走了三个全程,所以甲走了75×3 = 225 千米。

此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米答案:170 千米题目4:一个数除以5 余3,除以6 余4,除以7 余5。

这个数最小是多少?解题方法:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208答案:208题目5:有一堆苹果,平均分给5 个人多4 个,平均分给6 个人多5 个,平均分给7 个人多6 个。

这堆苹果最少有多少个?解题方法:如果这堆苹果再多1 个,就能正好平均分给5 个人、6 个人、7 个人。

5、6、7 的最小公倍数是210,所以这堆苹果最少有210 - 1 = 209 个答案:209 个题目6:一个长方体,如果高增加2 厘米,就变成一个正方体。

这时表面积比原来增加56 平方厘米。

原来长方体的体积是多少立方厘米?解题方法:增加的表面积是 4 个相同的长方形的面积,长方形的宽是2 厘米,长就是正方体的棱长,正方体棱长= 56÷4÷2 = 7 厘米,原长方体高= 7 - 2 = 5 厘米,体积= 7×7×5 = 245 立方厘米答案:245 立方厘米题目7:甲、乙、丙、丁四人拿出同样多的钱,合伙订购同样规格的若干件货物。

小学全部奥数题及答案-经典奥数题目

小学全部奥数题及答案-经典奥数题目

六年级奥数题及答案1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)5、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)6、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天7、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

小学生奥数题5篇

小学生奥数题5篇

小学生奥数题5篇某次选拔考试,共有1123名同学参加,小明说:"至少有10名同学来自同一个学校."如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?答案与解析:本题需要求抽屉的数量,反用抽屉原理和最"坏"情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)小学生奥数题2A、B两人买了相同张数的信纸.A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了多少张信纸?答案与解析:每个信封先放一张纸,就多出40张纸.再将40个信封中的纸拿出来,就会有80张纸,此时再将这80张纸放入还有着一张纸的信封,每封放2张,由题意,恰好放完,所以这样的信封有80÷2=40个。

所以信纸有80+40=120张.小学生奥数题3蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现有这三种昆虫共17只,有120条腿和11对翅膀。

求每种昆虫各几只?搂抱:这个问题有三种昆虫,有腿和翅膀的比较,比前面的鸡和兔子同笼的问题复杂。

仔细分析后我们会发现,如果把昆虫的腿数分类的话,可以分为8腿和6腿两大类。

但只有六足昆虫有翅膀,所以我们知道八足和六足昆虫的总腿数和总腿数。

根据鸡兔同笼的基本公式,可以得出8条腿的蜘蛛数和6条腿的蜻蜓蝉之和。

这样,再利用鸡兔同笼问题的基本公式,就知道了蜻蜓和蝉的总翅数和各自的翅数,就可以得到蜻蜓和蝉各自的翅数。

解:蜘蛛数:(120-17×6)÷(8-6)=9(只)6条腿的昆虫数:17-9=8(只)蝉的只数:(8×2-11)÷(2-1)=5(只)蜻蜓的只数:8-5=3(只)答:有9只蜘蛛、5只蝉和3只蜻蜓小学生奥数题4牛过河奥数题及答案小明要赶四头牛过河,这四头牛分别所用的时间是2分钟,4分钟,6钟,8分钟,可是一条河同一时间只能容两头牛,请问至少能用多少时间把四头牛都赶过河?答案与解析:最新的的小学三年级牛过河奥数题及答案:方法有多种,首先确定用8分钟和6分钟的那两头牛过河时一定可以同时安排用2分钟和4分钟过河的牛;至少需要10分钟四头牛都能赶过河。

50道经典小学奥数题(含解题思路)

50道经典小学奥数题(含解题思路)
18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
解题思路:
由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
解题思路:
根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解题思路:
根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
答题:
解:乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
答题:
解:已修的天数:
(720×3-1200)÷80=960÷80=12(天)
公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。

小学80道奥数题(附答案)

小学80道奥数题(附答案)

小学奥数题80道一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学经典奥数题
1. 最少要倒几次水:有大、中、小三个瓶子,最多分别可以装入水1000 克、700 克和300克。

现在大瓶中装满水,希望通过水在三个瓶子间的流动使得中瓶和小瓶上标上装100 克水的刻度线。

问最少要倒几次水?
答案: 6 次。

详解:我们首先观察700 和300 这两个数之间的关系。

怎么样可以凑出一个100 来呢?700-300=400,400-300=100,这就是说,把中瓶装满水,倒出2 次300 克就是100 克水了。

然后把小瓶中的水倒掉,把中瓶的100 克水倒入小瓶中就可以了。

所以,一共需要倒 6 次水:
①把大瓶中的水倒入中瓶,倒满为止;
②把中瓶中的水倒入小瓶,倒满为止;
③把小瓶中的水倒入大瓶,倒满为止;
④把中瓶中的水倒入小瓶,倒满为止,此时,中瓶中刚好有水700-300=100 克,此时中瓶标上100 克的刻度线。

⑤把小瓶中的水倒入大瓶,倒空为止;
⑥最后把中瓶里的100 克水倒入小瓶中即可。

2. 三个不同的数:已知A、。

、□是三个不同的数,并且
△+△+△=O+O
O+O+O+O=□+□+□
△+O +O+□=60,
那么△ +O+□等于多少?
答案:45。

解析:根据等式一、二可知
(O +O)+( O+O+O+O)=( △ +△ +△)+( □ +□)等式变形后有: 6 倍的O =3 倍的(△+□)。

从而有2倍的O =△ +□,
由第三个等式得
△+O+O+□=O+O+O+O=60。

可求得O =15,
所以有△ +O+□ =60 - O =60-15=45。

3. 最短时间完成:甲、乙、丙3 名车工准备在同样效率的3 个车床上出车7 个零件,加工
各零件所需要的时间分别为4、5、6、6、8、9、9 分钟,三人同时开始工作,问最少经过多
少分钟可车完全部零件?
答案:17 分钟。

分析:这道题问的是最少经过多少分钟, 那我们当然不能随随便便地安排3名工人的工作。

最好的情况肯定是能找出一个合理的安排,使得 3 名工人刚好能同时完成各自的工作, 以达到节省时间的目的。

即使没有这种最好的情况, 我们也应该注意, 在安排3名工人工作的时候,要让某两名工人
完成工作的时间之差尽量的小,不至于浪费太多的时间。

详解我们先计算一下如果 1 名工人车这7 个零件要花多少时间:4+5+6+6+8+9+9=47 分钟。

如果能将这些工作平均分给 3 名工人的话,每人所花的时间就是:
47 - 3=15 •••••,•215+1=16 分钟。

那么下面就来安排一下,最好是让每名工人的工作时间都是
16分钟。

因为后面3个零件分别要用8、9、9分钟,任两个加在一起都超过16分钟,所以每人加工1个。

剩下的4个零件要分给3个人。

根据抽屉原理,至少有1名工人要加工2个零件,至少要花
4+5=9分钟。

再与前面的合起来看,说明至少有1名工人要花9+8=17分钟。

由此可见,不存在1种合理安排,使每1名工人的工作时间不超过16分钟。

但实际上,我们很容易找到1种安排,使每1名工人的工作时间不大于17分钟。

比如:甲做第1、2、5个零件乙做第3、6个零件;丙做第4、7个零件。

此时除甲要用17分钟外,乙和丙都只用了15分钟。

所以最少要经过17分钟才能车完全部的零件。

4. 关于足球的颜色:比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,
白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等。

缝制的方法是:每块
黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起。

如果一个足球表面上
共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?
答案与解析:①黑色皮子的总边数是多少?5X 12=60条)
②白色皮子的总边数是多少:60 X 2=12(条)
③白色皮子的块数有多少:120十6=2(块)
答案:20 块
5. 最小公倍数:3个连续自然数的最小公倍数是360,则这3个数是__________ .
答案:8、9、10.
答案与解析:【修订版】因为3个连续自然数中,任意两个自然数的最大公约数要么是
1 ,要么是2。

所以这三个数的最小公倍数如果不是这三个数的乘积,就是这三个数乘积的2倍。

因此所求的3个数的乘积为360 或720.注意到:
6X 7X 8<360<7 X,8729=8 X 9X,10
所以这 3 个数是8、9、10。

6. 第一次应取几个棋子:有1996 个棋子,两人轮流取子,每次允许取其中的2个、4个或8
个,谁最后取完棋子,就算获胜。

那么先取的人为保证获胜,第一次应取几个棋子?
答案: 4 个。

分析:本题我们需要去找 “必胜数 ”。

因为棋子的总数是偶数,并且每次取的个数也是偶 数,所以每次剩下的棋子的个数也一定是偶数。

如果先取的人取到某一次后, 还剩下 2 个、4 个或者 8 个棋子的话, 无疑是别人获胜了。

那如果恰好只剩下 6 个呢?无论别人怎么取,都可以保证自己获胜。

看来
6 是一个必胜数。

我们继续往上找,不难发现,凡是 6 的倍数就一定是必胜数。

1996 - 6=332 (4)
所以想保证获胜,先取的人应该先取 4 个棋子。

详解先取的人先取 4 个棋子。

如果后取的人取 2 个或者 8 个棋子的话, 他就取 4 个棋子 ; 如果后取的人取 4 个棋子的话, 他就取 2 个或者 8 个棋子。

这样就能保证在自己取完后, 棋 子的个数是 6 的倍数,确保了自己的获胜。

7. 七盏灯:标有 A 、B 、C 、D 、E 、F 、G 记号的七盏灯顺次排成一行,每盏灯安装着一个开 关,现在A 、C 、D 、G 四盏灯亮着,其余三盏灯是灭的。

小方先拉一下 A 的开关,然后拉B 、
C ••…直到G 的开关各一次,接下去再按 A 到G 的顺序拉动开关,并依此循环下去。

他拉动 了 1990 次后,亮着的灯是哪几盏 ?
答案: B 、 C 、 D 、 G
解析:小方循环地从 A 到G 拉动开关,一共拉了 1990次。

由于每一个循环拉动了
7次 开关,1990- 7=284……2故一共循环284次。

然后又拉了 A 和B 的开关一次。

每次循环中 A 到G 的开关各被拉动一次,因此 A 和B 的开关被拉动248+1=285次,C 到G 的开关被拉动
284次。

A 和B 的状态会改变,而 C 到G 的状态不变,开始时亮着的灯为
A 、C 、D 、G ,故 最后A 变灭而
B 变亮,
C 到G 的状态不变,亮着的灯为 B 、C 、
D 、Go
8. 有关 24 个数:有 24 个整数
答案: 134。

详解:粗略看一下,发现每个数字的百位所有数字均大于 100。

再仔细观察一下数字的 百位和个位。

首先,百位、十位分别为 1和0的有 3个数,百位、十位都为 1的有 5个数, 百位、十位分别为 1 和 2的有 2个数。

至此我们已经找到了 10个数字, 下面再看一下百位、 十位分别为 1 和 3112、 106、 132、 118、 107、 102、 189、 153、 142、 134、 116、 254、 168、 119、 126、 445、 135、 129、 113、 251 、 342、 901 、 710、 535。

问:当将这些整数从小到大排列起来时,第
12个数是多少 ?
的,它们是132、134、135。

因此,第12个数应该是134。

相关文档
最新文档