《图形的旋转》公开课教学设计【部编北师大版八年级数学下册】
北师大版八年级下册数学第三章 图形的平移与旋转第2节《图形的旋转(1)》教学设计
第三章图形的平移与旋转2.图形的旋转(一)一、学生起点分析学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。
但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。
二、教学任务分析图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。
教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。
因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。
教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.三、教学过程设计第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。
北师大版八年级数学下册《 2. 图形的旋转 图形的旋转作图》公开课教案_12
第三章图形的平移与旋转2.图形的旋转(二)一、教材分析:“图形的旋转”是义务教育教科书北师大版(2013)八年级数学下册第三章图形的平移与旋转的第二节。
图形的旋转是图形变换的基本形式之一,是“义务教育阶段数学课程标准”中图形变换的一个重要组成部分,学习旋转和旋转作图,对发展学生的空间观念是一个很好的提升,是后续学习中心对称图形的基础。
利用旋转研究平行四边形性质、圆的性质的方式之一,因此本节内容在教材中起着承上启下的作用。
学习旋转作图,学习过程中学生就会经历观察、分析、画图和等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念。
旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。
本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形旋转问题。
二、学生起点分析学生此前已经学习了轴对称、平移,积累了一定的活动经验,基于学生已有的旋转知识、生活经验,并且已经了解了旋转的特征。
教材编者将旋转与旋转作图如此安排,目的是力求让学生从动态的角度观察图形、分析解决,画图动手操作,培养学生的能力。
由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了旋转特征,因此,旋转作图中的相对复杂一点图形——三角形的旋转就成了本节课的难点所在。
三、教学目标1.简单平面图形旋转后的图形的作法,能够按要求作出简单平面图形旋转后的图形.2.确定一个三角形旋转后的位置的条件,3.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念.教学重点:作简单平面图形旋转后的图形及步骤的总结.教学难点:以三角形外一点为旋转中心作旋转三角形及步骤的总结.四、教学过程设计第一环节回顾旧知师:在前面我们学习了旋转,也了解了旋转的特征,今天我们来学习如何作图形的旋转。
在学习新课之前,我们先来回顾已知。
北师大版八年级数学下册第三单元《图形的旋转(1)》课件
旋转方向
典型例题
例1:下列运动属于旋转的是( D ) A.温度计中,液柱的上升或下降 B.把一个图形沿某直线对折 C.直升机升空的过程 D.钟表钟摆的摆动
典型例题
例2:如图所示,△ABC是直角三角形,延长AB到D, 使BD=BC,在BC上取BE=AB,连接DE.△ABC 旋转后能与△EBD重合,那么:旋转中心是__点__B__; 旋转的方向是__顺__时_针___;旋转的角度是___9_0_°___; AC的对应边是____E_D___; ∠A的对应角是__∠__B_E_D__; 点C的对应点是____点_D___.
课堂小结
定义
三要素:旋转中心,旋转 方向和旋转角度
旋转 性质
① 旋转前后的图形全等; ② 对应点到旋转中心的距离
相等; ③ 对应点与旋转中心所连线
段的夹角等于旋转角.
知识要点
旋转的性质
1、旋转不改变图形的大小和形状.
2、对应线段相等,对应角相等.
3、对应点到旋转中心的距离相等.
4、任意一组对应点与旋转中心的连线所成的角都等于旋转角.
①△ABC≌△A'B'C'
②AO=A'O,BO=B'O,CO=C'O
③∠AOA'=∠BOB'=∠COC'
典型例题
例4:如图所示,(1)~(4)的四个三角形中,哪个 不能由△ABC经过平移或旋转得到?
在AB上,则旋转角度为( B )
A.30°
B.60°
C.45°
D.90°
60°
当堂练习
变式: 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,
AB=6,将Rt△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰
北师大版初二数学下册图形的平移与旋转第4节《简单的图案设计》教学设计
第三章图形的平移与旋转4.简单的图案设计一学生起点分析学生的知识技能基础:在七年级(下)和本章前面几节课中,已学习了轴对称、平移、旋转等概念,学生已充分理解了各种变换的基本性质,具备了分析、设计图案的基本技能。
学生活动经验基础:在学习了全等图形以后,学生就已经学会了利用全等变换设计简单的无缝隙拼接图案,初步积累了一定的图形变换的数学活动经验。
本节课意在通过对漂亮图案的欣赏、分析,使学生逐步领略图案设计的奇妙,逐步掌握一些运用轴对称、平移和旋转的组合进行简单的图案设计技能。
二学习任务分析(一)知识与技能:1.了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。
2.认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
(二)过程与方法经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识.(三)情感、态度与价值观1.经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识.2.通过学生之间的交流、讨论、培养学生的合作精神.教学重点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.教学难点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.三教学过程设计本节课设计了六个教学环节:第一环节:复习旧知,引入新课;第二环节:探究新知;第三环节:合作交流,解决问题;第四环节:练习与提高;第五环节:课堂小结;第六环节:布置作业第一环节复习旧知,引入新课活动内容:复习全等变换中所学的图案设计方法。
提问:1.我们已经具备了简单图案设计的基本知识与技能:用最基本的几何元素——点、线设计与制作图案;用最简单的几何图形——三角形、矩形设计、制作图案;割补、无缝隙拼接。
2.下面的图案是怎样设计出来的?活动目的:在学生熟悉的问题中,复习简单图案设计的基本知识与技能;创设问题情境,激发兴趣,调动学生的学习积极性,让学生充分感知轴对称、平移、旋转变换实际上就是所学过的全等变换,培养学生善于观察、善于总结、乐于探索研究的学习品质。
初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案
第三章 图形的平移与旋转2.图形的旋转(二)本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。
课前热身:1. 旋转的定义: 这个定点称为_____,转动的角称为____.旋转不改变图形的________.2.旋转的基本性质:对应点到旋转中心的距离对应点与旋转中心所连线段的夹角等于旋转前、后的图形图形的旋转是由 和旋转方向和旋转角度决定(注意:请准备好圆规、三角板、量角器和铅笔)3.关于点的旋转(1)点A 绕点O 逆时针旋转60° OA 4.关于线段的旋转(1)画出线段AB 绕着端点A 顺时针旋转60度后的线段(2)画出线段AB 绕着端点O 顺时针旋转90度后的线段 讲授新知:关于三角形的旋转类型一:已知旋转中心与旋转角作旋转后的图形例1.试着画△ABC 绕O 点逆时针旋转60°后所得的三角形.变式.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形A B B A O总结:“旋转”作图的步骤:一连:连接已知点与旋转中心二定:确定旋转方向三量:测量旋转角度四截:在旋转角的另一条边上,以旋转中心为一端点截取等于对应线段长度的线段五画:顺次连接所得的点,从而画出旋转得到的图形例2(格点问题)如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB 的三个顶点O(0,0),A(4,1),B(4,4)均在格点上画出△OAB绕原点O顺时针旋转90°后得到的△OA1B1,并写出点A1的坐标变式(坐标系中的旋转)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(-2,5)的对应点A′的坐标是________.类型二:已知旋转后的图形,反过来寻找旋转中心和旋转角的位置例1.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)变式:如图,四边形ABCD和四边形CDFE是边长相等的两个正方形,其中A、D、F 和B、C、E各成一直线,将正方形ABCD绕着一点旋转一定的角度后与正方形CDFE重合,这样的旋转中心共有多少个?确定旋转中心与旋转角的方法:在图形的旋转过程中,判断谁是旋转中心,要看旋转中心是在图形上还是不在图形上;若在图形上,哪一点在旋转过程中位置没有改变,这一点就是旋转中心;若不在图形上,对应点连线的垂直平分线的交点就是旋转中心,旋转角等于对应点与旋转中心所连线段的夹角.随堂练习:1.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心() A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点B C.点C D.点D课堂小结课后作业:请完成《英才课堂》59~60页1~10题必做,11、12题选做。
最新北师大版初中八年级数学下册第三章复习公开课教学设计
第三章图形的平移与旋转一、学习任务分析(一)知识与技能1.平移是否改变图形的位置、形状和大小?旋转呢?请举例说明.2.平移、旋转各有哪些基本性质?请举例说明.3.在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有怎样的关系?请举例说明.4.两个成中心对称的图形有哪些特征?中心对称图形有哪些特征?5.你能你利用一次平移和一次旋转设计一个图案吗?你想表达什么含义?6.梳理本章内容,用适合的方式呈现本章知识结构,并与同伴交流.(二)过程与方法经历构建本章知识的网络图,培养梳理知识的能力,核心知识的理解是关键。
(三)情感、态度与价值观1.经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识.2.通过学生之间的交流、讨论、培养学生的合作精神.教学重点:理解平移、旋转与中心对称的概念和性质.掌握坐标系中平移、对称的坐标特征。
教学难点:灵活运用平移、旋转与中心对称的概念和性质解决相关图形问题。
二、教学过程设计教学过程分为以下几个环节:回顾知识、构建网络图、巩固练习、总结归纳。
(一)回顾知识根据以下问题,回顾本章知识。
1.平移是否改变图形的位置、形状和大小?旋转呢?请举例说明.2.平移、旋转各有哪些基本性质?请举例说明.3.在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有怎样的关系?请举例说明.4.两个成中心对称的图形有哪些特性?中心对称图形有哪些特性?知识点归纳:(1)平移平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
平移的性质:平移不改变图形的形状和大小;图形经过平移,连接各组对应点所得的线段互相平行且相等。
(2)旋转旋转的概念:把一个图形绕一个定点转动一定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角。
旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等。
北师大版数学八年级下册第三章《图形的旋转 1》公开课课件
图案欣赏
E
O
知识点归纳
“四、三、五”
1. 旋转的定义:“四要素”
一个图形、一个定点、一个方向、一个角度.
2. 旋转的性质:“三特点” 对应点与旋转中心的连线所成的角都是旋转角;
对应点到旋转中心的距离相等;
旋转不改变图形的形状和大小。
3. 旋转图形的形成描述:“五说明”
基本图形、旋转中心、方向、次数、旋转角.
“这个图案可以看成是
绕点 按 时针
方向旋转 次,分别旋转
前后的所
有图形共同组成的。”
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月29日星期二2022/3/292022/3/292022/3/29 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/292022/3/292022/3/293/29/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/292022/3/29March 29, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
谢谢观赏
Байду номын сангаасYou made my day!
我们,还在路上……
• 你能否观察发现旋转的性质?
1. 经过旋转,图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度。
2. 旋转图形的任意一对对应点与旋转中心的连 线所成的角都是旋转角。
3. 旋转图形的任意一对对应点到旋转中心的距 离相等。
《图形的旋转》教学设计(通用16篇)
《图形的旋转》教学设计(通用16篇)《图形的旋转》教学设计篇1教学内容:北师大版数学试验教材四班级上册第四单元"图形的变换"第一课时。
教学目标:1、通过实例观看,了解一个简洁的图形经过旋转制作简单图形的过程。
2、能在方格纸上将简洁图形旋转90°。
教学重难点:能在方格纸上将简洁图形旋转90°一、创设情境用数学书按老师的指令做平移或旋转运动。
师:大家做得这么好,老师请你们观赏几幅图案。
(课件出示)想知道它们是怎么设计出来的吗?(老师演示)请你们认真观看,你发觉了什么?(它们都是由简洁的图形通过旋转得到的。
今日我们就来讨论图形的旋转。
(出示课题:图形的旋转)二、探究学习1、活动一:课件出示转换前后的两幅图。
先让同学观看图a是如何变换成图b的,再让同学摆一摆,说一说。
结合课件和实物展台演示。
2、活动二:小组同学合作,利用两个三角形设计一个图形,然后利用旋转的学问进行变换,并说说它的变换过程。
强调绕哪一个点旋转的。
(板书:旋转点不动大小不变顺时针或逆时针)3、选择:教材55页说一说第1题。
操作并利用课件加以演示。
4、活动三:(教材54页风车)课件出示。
用手中的学具你能变换出这个图形吗?小组共同探究。
边打操作边说说你们是怎样做的?强调哪个图形绕哪一个点旋转,如何旋转,旋转多少度。
观看感悟,发觉规律。
师:从图形a旋转到图形b,图形b旋转到图形c,图形c旋转到图形d的过程中,你发觉了什么?(老师依据同学的回答板书:大小不变、点o是固定的,顺时针方向、旋转90度)5、活动四:教材55页说一说第2题。
把手中的三角形与方格纸上的三角形重合起来,接着以这个三角形的一个顶点o为中心进行旋转(旋转的角度是90度),最终在小组里面说一说从图形1到图形2,从图形2到图形4等旋转的角度。
师:在我们的生活中,有很多图案都是这样旋转得来的,你们能依据这个方法或用自己喜爱的方法来设6、活动五:请同学们自己剪一个任意的三角形,接着一边旋转,一边把旋转后所得的图形描绘下来,让孩子们自己去制造,老师作适当的指导。
《10.3.1图形的旋转》数学教案
《10.3.1图形的旋转》数学教案
标题:《10.3.1图形的旋转》数学教案
一、教学目标:
1. 理解图形旋转的概念,掌握旋转的性质。
2. 能够通过实际操作,熟练掌握图形旋转的方法。
3. 培养学生的空间想象能力和动手能力。
二、教学重点与难点:
重点:理解并掌握图形旋转的概念和性质。
难点:通过实际操作,熟练掌握图形旋转的方法。
三、教学过程:
1. 导入新课
以生活中的实例引入旋转概念,如风车的转动、陀螺的旋转等。
2. 新课讲解
(1) 介绍旋转的基本概念:定义、元素、基本性质等。
(2) 举例说明,让学生理解和记忆旋转的基本概念和性质。
(3) 详细解释旋转中心、旋转角度和旋转方向三个要素对图形旋转的影响。
3. 实践操作
(1) 教师演示如何使用工具(如直尺、圆规)进行图形的旋转操作。
(2) 学生模仿教师的操作,进行图形的旋转练习。
4. 巩固提高
(1) 设计一些简单的习题,让学生在课堂上完成,检查他们是否掌握了图形旋转的方法。
(2) 对于错误或不准确的答案,教师应及时给予纠正和指导。
5. 小结
总结本节课学习的内容,强调图形旋转的重要性和应用。
6. 作业布置
布置一些相关的课后作业,以便学生巩固所学知识。
四、教学反思:
对本次教学活动的效果进行反思和评估,包括教学方法、教学内容、学生反馈等方面,以便于下次教学时进行改进。
《图形的旋转》教案设计
《图形的旋转》教案设计《图形的旋转》教案设计「篇一」【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。
【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。
2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。
3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。
【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。
【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。
轴对称是图形变换的一种方法。
2、学生对于旋转的度数的把握。
【教学设计】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。
学生在自己的方格纸上操作交流,然后请几位学生展示。
师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。
师:同学们的交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。
(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。
下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。
如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。
(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。
北师大版数学八下3.2图形的旋转(教案)
4.旋转在实际应用中的应用:通过实例分析,使学生了解旋转在现实生活中的应用,提高学生解决问题的能力。
5.练习与巩固:设计不同难度的练习题,帮助学生巩固所学知识,提高解题技巧。
二、核心素养目标
1.培养学生的空间观念:通过图形旋转的学习,使学生能够更好地观察和认识几何图形在空间中的位置关系,提高空间想象能力。
此外,课堂总结环节,我感觉到学生们对于今天的学习内容有了较好的掌握,但仍有个别学生对某些知识点存在疑惑。我会在课后及时跟进,确保每位学生都能理解并掌握图形旋转的相关知识。
举例:在讲解旋转中心时,可以用一个具体的图形,如一个矩形,围绕不同的点进行旋转,让学生观察并理解旋转中心的变化对图形旋转效果的影响。在处理旋转角度的难点时,可以通过制作旋转模型或者使用教学软件,让学生直观地看到不同角度旋转的效果,从而加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,玩转盘游戏时,转盘的旋转;或者是自行车的轮子转动。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
-确定旋转角度:学生可能在确定旋转角度时感到困惑,特别是在非整数角度的旋转时。教师应提供直观的工具,如量角器,帮助学生准确测量和确定旋转角度。
-旋转作图的准确性:在实际作图过程中,学生可能会遇到作图不准确的问题,如旋转后的图形位置和角度不正确。教师需要指导学生如何通过逐步调整和校准来提高作图的准确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
北师大版数学八年级下册3.2《图形的旋转》 课件(共21张PPT)
(1)上面情景中的运动现象,有什么共 同的特征? (2)在运动过程中,摩天轮的座椅、钟 表的指针,风车的风叶其形状、大小、位 置是否发生变化呢?
“旋转”的定义:
在平面内,将一个图形绕( 一个定点 )按 ( 某个方向 )转动( 一个角度 ),这样的图形运
动称为旋转。
这个定点称为_旋__转___中__心___ 转动的角称为__旋__转__角____
总结归纳
“旋转”的基本性质:
(1)旋转不改变图形的_形__状__和___大__小___; (2)对应线段_相__等____,对应角_相__等___; (3)对应点到旋转中心的距离_相___等___;
(4)任意一对对应点与旋转中心的连线所成的角
都是__旋__转___角__。
练习3
下列(1)-(4)的四个三角形中,哪个不能由△ABC经过平移 或旋转得到?
如图,ABC是等边三角形,D是BC上一点, ABD经过旋转后到达 ACE的位置。
(1)旋转中心是哪一点?
A
(2)旋转了多少度?
(3)如果M是AB的中点,那么经过
M.
上述旋转后,点M转到了什么位置4)连接DE,△ADE是什么三角形?
课堂小结
1、旋转的定义: “三要素” 一个定点 某个方向 一个角度
作业
1、基础作业:
课本P77习题3.4
2、提高作业:
学案练习题1、2
△ADE绕点A按_顺__时__针__方向旋转_9_0__度旋转到△ABE’
逆时针
270
思考:图形的旋转是由什么决定的?
旋转中心
旋转方向 旋转角度
三要素
△ABC绕点O按顺时针方向旋转一个
角度,得到△DEF。
H
H’
北师大初中八年级数学下册《图形的旋转》教案
图形的旋转教学目标:1.旋转的定义.2.旋转的基本性质.3.通过具体实例认识旋转,理解旋转的基本涵义.4.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.5.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.6.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.教学重点旋转的基本性质.教学难点探索旋转的基本性质.教学过程Ⅰ.巧设情景问题,引入课题[师]日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景).[生乙]每个物体的转动都是向同一个方向转动.[生丙]钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置有所变化.[师]同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.Ⅱ.讲授新课[师]在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点...同时都按相同的方式转动相同的角度...............在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小........和形状...的特征.好,了解了旋转的基本概念后,我们来看一钟表的指针的旋转情况(出示投影片§3.3 B),大家分组讨论.议一议:如下图所示,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)AO与DO的长有什么关系?BO与EO呢?(4)∠AOD与∠BOE有什么大小关系?[生乙]旋转角还可以是∠BOE.[生丙](2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.[生丁](3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.[生戊](4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.[生己](4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.[师]同学们讨论得非常精彩,也合乎逻辑,看上图,四边形DOEF是由四边形AOBC 绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?[生甲]因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.[生乙]因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.[师]同学们总结得很好,由此我们得到了旋转的基本性质(出示投影片§3.3 C)[师]大家可以画图表示;有的同学带表的话可以观察观察.[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.解:(1)它的旋转中心是钟表的轴心.(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为×20= 120°.[师]同学们通过熟悉的钟表,了解了旋转性质的应用.接下来我们拿出剪刀、白纸和图钉来做一做(出示投影片§3.3 E)(1)剪出两个边长相等的正方形纸片.(2)按下图所示用图钉钉制好.(3)这个图案可以看做是哪个“基本图案”通过旋转得到的?过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.60360。
《图形的旋转(一)》教案(公开课获奖)北师大版小学数学教学设计
第三单元图形的运动第1课时图形的旋转(一)教学目标:1、通过观察实例,了解一个简单图形经过旋转制作复杂图形的过程。
2、借助实例及操作活动,掌握在方格纸上将简单图形旋转的方法。
3、通过观察、合作讨论及小组交流认识体会图形平移或旋转的变化过程,培养合作、概括能力。
教学流程一、引入新课1、创设情境,打开风扇让学生观察其转动;演示体操里面的体转运动等提问学生:身体在做什么运动等,提炼出“旋转”一词。
由此引申到图形的若发生旋转会产生什么样的新图形?板书:图形的旋转2、多媒体演示美丽图案(一幅香港特别行政区区旗-紫荆花),让学生思考这些美丽的图案怎么设计的?激发学生探究兴趣3、小组前后桌讨论,点明其中许多图案是由简单的图形经过旋转得来的。
二、探索新课1、(多媒体展示图案)小组展开讨论,这个美丽的图案可以怎么设计出来?2、多媒体展示其旋转过程3、每一次旋转过程都提问其旋转的角度,位置方,向(补充顺时针逆时针的方向)4、提问从图形A-B-C-D,过程,你发现了什么?5、根据学生回答板书:大小不变点O(中心点)不变顺时针旋转90度。
6、提问:如果图形A是逆时针旋转90度?你能自己画出来吗?给时间让学生动手画图,教师巡视,展示部分学生成果引导学生思考刚才图形旋转过程,有哪几方面变化哪几方面不变(中心点旋转方向旋转角度)三、课堂巩固1、多媒体展示说一说1、2小题。
2、提问学生,让其说说旋转中心点,方向角度(注意学生回答方向相反,及时指出其旋转角度)3、多媒体展示课本试一试。
4、前后桌讨论并在纸上画出方块的旋转巡视并反馈结果让学生说说图形A如何通过旋转得到图形B。
5、让学生动手实践第2小题,在方格纸上画出图形绕O点按一定方向旋转得到新的图形并在展示台展示。
四、课堂小结、布置作业1、让学生说说本节课学到了什么知识?2、让学生制作一幅由简单图形旋转得到的新图形。
3、课本练习五。
本资源的设计初衷,是为全体学生的共同提高。
作为教师要充分保护好孩子的自信心,只有孩子们有了自信,才有可能持续保持对某些事物的兴趣和热情。
《图形的旋转》公开课优秀教案
师:接下来我们看另一张图,请看题,这道题中,你能找出旋转中心、旋转方向和旋转角度?
师:请同学们按照探究要求,思考这道题的画法,并想一想先画那条边比较方便。
生展示,说一说,你先画哪条线,再画哪条线,最后画哪条线?
板书:AB→AC→B′C′
AC→AB→B′C′
师:还有别的画法吗?
课件展示。
1.明确旋转的三要素 :旋转中心、旋转方向、旋转角度。
题中旋转的中心是指“绕点A”;旋转方向是指“顺时针”;旋转角度是指“90°”。
2. 从图中与旋转中心连接的线入手。
图中与旋转中心点A,连接的线段有AB、AC两条。不管先旋转哪条线段,最终得到的图形都是一样的。
下面,我们先把线段AB,绕点A,顺时针,旋转90°,得到AB’;再把AC,绕点A,顺时针,旋转90°,得到AC’。
4.画一画
师:请同学们把小旗收起来,你们现在能把小旗画出来吗?请同学边画边想,你可以先画什么,再画什么?
5.说一说
生展示,说一说,你先画什么,再画什么?(电脑展示画的过程)
你能说一说,为什么你会先画旗杆,再画旗面呢?(因为比较方便)
(为什么先画旗杆,再画旗面会比较容易画出旋转后的图形呢?我们一起来看一看,先画旗杆,就是把旗杆看成一条线段,线段绕点M顺时针旋转90°。然后,再对应旗面的位置画出旗面。这样,我们把图形的旋转转化成为线段的旋转,画图时,会比较方便。)
3.画出其余线段。
线段BC旋转后对应的线段是B’C’,连接即可。
4.对应旋转要求,把整个图形进行空间想象移动。对照旋转要求想一想。
综上所述,图形的旋转有以下4个基本步骤:
1.明确图形的旋转中心、旋转方向和旋转角度。
2.从图中与旋转中心连接的线入手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的旋转》教学设计
教学目标
1.通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质。
2.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。
3.引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学。
教学重难点
【教学重点】
类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.
【教学难点】
探索旋转的性质,特别是,对应点到旋转中心的距离相等。
课前准备
教师准备
课件、多媒体;
学生准备;
练习本;
教学过程
第一环节创设情境,引入新知
演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。
向学生展示有关的图片:
(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)
(2)大风车的转动;
(3)飞速转动的电风扇叶片;
(4)汽车上的括水器;
(5)由平面图形转动而产生的奇妙图案。
第二环节 探索新知,形成概念
1.建立旋转的概念
(1) 试一试,请同学们尝试用自己的语言来描述以下旋转。
问题:单摆上小球的转动由位置A 转到B ,它绕着哪一个点转动?沿着什么方向(顺时针或
逆时针)?转动了多少角度?
抽象出点的旋转
A
B
(图1)
O
抽象出线的旋转
·
O A
B
C
D
(图2)
图1:在同一平面内,点A绕着定点O旋转某一角度得到点B;
图2:在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;
图3:在同一平面内,三角形ABC绕着定点O旋转某一角度得到三角形DEF。
观察了上面图形的运动,引导学生归纳图形旋转的概念;
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation)。
点O 叫做旋转中心,转动的角叫做旋转角。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
(2)情景问题:①请同学们观察图3,点A,线段AB,∠ABC分别转到了什么位置?
②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度。
设计意图:点明图形旋转中对应点、对应线段及对应角的概念;让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。
2.应用旋转的概念解决问题
这一环节让学生进行问题的研究与解答,培养应用数学知识的意识及解决数学问题的能力。
(1)如图,△ABO绕点O旋转得到△CDO,则:点B的对应点是点_____;
线段OB的对应线段是线段______;
线段AB的对应线段是线段______;
∠A的对应角是______;
C
A
B
O D
抽象出三角形的旋转
·
O
A
B
C
F
D
E
(图3)
∠B 的对应角是______; 旋转中心是点______; 旋转的角是 ______ 。
设计意图:
① 及时巩固新知,使每个学生都有收获; ② 感受成功的喜悦,肯定探索活动的意义。
(2) 如图,如果正方形CDEF 与正方形ABCD 是一边重合的两个正方形,那么正
方形CDEF 能否看成是正方形ABCD 旋转得到?如果能,请指出旋转中心、旋转方向、旋转角度及对应点。
(3) 如图,香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由其中的
一瓣经过几次旋转得到的?旋转角∠AOB 多少度?你知道∠COD 等于多少度吗?
设计意图:加深对旋转概念的理解,及时巩固新知识,对于第2题要注重引导学生多角度分析解决,第3题求∠AOB 的度数学生可以根据五分周角容易得到,而学生在求∠COD 的度数时,更多的是凭数学直觉或猜测。
由此,可以比较自然地引导学生通过实验操作,利用度量等方法去探究旋转的有关性质。
D
C
A
B
E
F
·
· A B
O
D
C
第三环节 实践操作,再探新知
做一做:
如图,在硬纸板上,挖出一个三角形ABC ,再挖一个小洞O 作为旋转中心,硬纸板下面放一张白纸。
先在纸上描出这个挖掉的三角形图案(△ABC ),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△DEF ),移开硬纸板。
问题:请指出旋转中心和各对应点,哪一个角是旋转角?
1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么? 2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?
量一量线段OA 与线段OD 的关系怎样(这里包括数量关系和位置关系),线段OB 和OE ,OC 和OF 呢?AB 与DE 呢?
3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角? 探索得出下列性质: 1. 旋转前后的图形全等; 2. 对应点到旋转中心的距离相等;
3. 对应点与旋转中心连线段的夹角等于旋转角。
第四环节 巩固新知,形成技能
1.如图,如果把钟表的指针看做四边形AOBC ,它绕O 点旋转得到四边形DOEF . 在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A ,B 分别移动到什么位置? (3)旋转角是什么?
(4)AO 与DO 的长有什么关系?BO 与EO 呢? (5)∠AOD 与∠BOE 有什么大小关系?
·
O
A
B
C
F
D
E
A
B D E
C
F
2.如图,正方形ABCD 中,E 是AD 上一点,将△CDE 逆时针旋转后得到△CBM .如连接EM ,那么△CEM 是怎样的三角形?
3.如图:P 是等边∆ABC 内的一点,把∆ABP 通过旋转分别得到∆BQC 和∆ACR ,
(1)指出旋转中心、旋转方向和旋转角度? (2) ∆ACR 是否可以直接通过把∆BQC 旋转得到? 目的是让学生通过观察图形的特点,发现图形的旋转关系,巩固旋转的性质。
(2) 若P A =5,PC =4,PB =3,则△PQC 是什么三角形?
第五环节 回顾反思,深化提高
引导学生从以下几个方面进行小结: ⑴这节课你学到了什么? ⑵对自己的学习情况进行评价。
第六环节 分层作业,促进发展
A 类:课本习题3.4第1,2,3题;观察你周围的生活实际,再寻找几个利用旋转的例子;选做 试一试的第2题。
B 类:课本习题3 .4第2题;试一试的第2题;在网上收集一些用旋转制作的漂亮图案,再试着用今天学到的旋转知识自己设计一个漂亮的图案。
C 类:课本习题3 .4第2题;试一试的第2题;用学过的有关对称、平移、旋转知识设计一个漂亮的班徽,并要求用简练的语言说明所设计班徽的含义。
C
A B
D E
M
A
R
P
B
Q
C
教学反思
本设计力图:以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。
具体设计中突出了以下构想:
(1)创设情境,引人入胜
首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为
新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。
(2)过程凸现,紧扣重点
旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出
概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力,引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。
(3)动态显现,化难为易
教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开
了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。
(4)例子展现,多方渗透
为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,
培养学生的发散思维,也增强学生用数学的意识。