函数恒成立存在性问题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数恒成立存在性问题

1

()f x >恒成立⇒()max a f x >

;()()min a f x a f x ≤⇒≤恒成立

2

()f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立

3

()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨

≤⎪⎩在

上恒成立在上恒成立

A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,

若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .

4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则

()()x g x f min min ≥

5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则

()()x g x f max max ≤

6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥

7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤

8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;

9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;

例 题 讲 解:

1、已知函数12)(2+-=ax x x f ,x

a

x g =

)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;

2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;

2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在

]1,4

1

[∈x 恒成立,求实数b 的取值范围.

3、已知两函数2

)(x x f =,m x g x

-⎪⎭

⎝⎛=21)(,对任意[

]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,

的取值范围为

(已知某个参数的范围,整理成关于这个参数的函数)

1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

2、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,

(Ⅰ)求a 的值;

若[]2

()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;

1、当)1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .

) x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________

()2

22f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围。

D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上

max f x A >;

若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的

()min f

x B <.

1、存在实数x ,使得不等式2

313x x a a ++-≤-有解,则实数a 的取值范围为______。

2、已知函数()

()2

1ln 202

f x x ax x a =--≠存在单调递减区间,求a 的取值范围

以下充要条件应细心思考,甄别差异,恰当使用,等价

课后作业:

1、设

1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( )

(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3}

2、若任意满足05030x y x y y -≤⎧⎪

+-≥⎨⎪-≤⎩

的实数,x y ,不等式222()()a x y x y +≤+恒成立,则实数a 的最大值

是 ___ .

3、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是

4、不等式ax ≤[]0,3x ∈内恒成立,求实数a 的取值范围。

5、已知两函数()2

728f x x x c =--,()322440g x x x x =+-。

(1)对任意[]3,3x ∈-,都有)成()()f x g x ≤立,求实数c 的取值范围;

(2)存在[]3,3x ∈-, 使成立()()f x g x ≤,求实数c 的取值范围; (3)对任意[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围; (4)存在[]12,3,3x x ∈-,都有()()1

2

f x

g x ≤,求实数c 的取值范围;

6、设函数322

1()23(01,)3

f x x ax a x b a b R =-+-+<<∈.

(Ⅰ)求函数()f x 的单调区间和极值;

(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤成立,求a 的取值范围。 7、已知A 、B 、C 是直线 上的三点,向量OA →,OB →,OC →满足:()[]()01x ln 1f 2y =⋅++⋅'+-. (1)求函数y =f(x)的表达式; (2)若x >0,证明:f(x)>2x x +2; (3)若不等式()3bm 2m x f x 2

1222--+≤时,[]1,1x -∈及[]1,1b -∈都恒成立,求实数m 的取

值范围.

8、设()x ln 2x q

px x f --=,且()2e

p qe e f --=(e 为自然对数的底数)

(I)求 p 与 q 的关系; (II)若()x f 在其定义域内为单调函数,求 p 的取值范围; (III)设()x

e

2x g =,若在[]e ,1上至少存在一点0x ,使得()()00x g x f >成立, 求实数 p 的取值范围.

2)思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.

简解:(1)由1

2012232

++<⇒>-+-x x

x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即

.对1

2)(23++=x x

x x ϕ求导,0)12(12)(2

224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数, 2)1()(min ==ϕϕx ,所以a 的取值范围是2

0<

)(10x x

b +-≤或x b x a )10(2-+-≤;

0101)(≤-++⋅=b x a x a ϕ,]2,2

1[∈a 简解:方法1:对b x x a b x x g x h ++=

++=)()(求导,22))((1)(x

a x a x x a x h +-=-=',

相关文档
最新文档