山东省德州市庆云县七年级(上)期末数学试卷
德州市庆云县2019-2020学年七年级上期末数学试卷含答案解析
德州市庆云县2019-2020学年七年级上期末数学试卷含答案解析一、选择题(本题共小题,每小题3分,共36分)1.下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与2.若a>0,b<0,则b,b+a,b﹣a中最大的一个数是()A.a B.b+a C.b﹣a D.不能确定3.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2 B.m=﹣1,n=2 C.m=﹣2,n=2 D.m=2,n=﹣14.海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×1075.下列说法中,正确的是()A.2不是单项式B.﹣ab2的系数是﹣1,次数是3C.6πx3的系数是6 D.﹣的系数是﹣26.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A.祝B.考C.试D.顺7.某书上有一道解方程的题: +1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7 B.5 C.2 D.﹣28.如图是由5个大小相同的小正方体摆成的立体图形,从它的上面看的平面图形是()A.B.C.D.9.下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条10.小马虎在计算16﹣x时,不慎将“﹣”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A.15 B.13 C.7 D.﹣111.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+1812.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()A.105元B.106元C.108元D.118元二、填空题(本题共5小题,每小题4分,共20分)13.计算:①33°52′+21°54′=;②36°27′×3=.14.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于.15.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.16.在有理数范围内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为x=.17.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=;②[﹣7.9]=.三、解答题(本题共7小题,共64分)18.计算及解方程:(1)化简:(5a2﹣ab)﹣2(3a2﹣ab)(2)解方程:﹣=1(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.19.如图,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.20.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?21.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=a°,求∠DOE的度数;(3)图中是否有互余的角?若有请写出所有互余的角.22.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面; B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.-学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A错误;B、都是﹣3,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、互为倒数,故D错误;故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.若a>0,b<0,则b,b+a,b﹣a中最大的一个数是()A.a B.b+a C.b﹣a D.不能确定【考点】有理数大小比较.【专题】推理填空题.【分析】根据有理数的加减法,有理数的大小比较,可得答案.【解答】解:∵a>0,b<0,∴a>a+b,b﹣a<b<0.故A正确;故选:A.【点评】本题考查了有理数大小比较,利用有理数的加减法得出a>a+b,b﹣a<b<0是解题关键.3.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2 B.m=﹣1,n=2 C.m=﹣2,n=2 D.m=2,n=﹣1【考点】同类项.【分析】本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.【解答】解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.【点评】同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.4.海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2897000用科学记数法表示为:2.897×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列说法中,正确的是()A.2不是单项式B.﹣ab2的系数是﹣1,次数是3C.6πx3的系数是6 D.﹣的系数是﹣2【考点】单项式.【分析】直接利用单项式的次数与系数的概念分别判断得出即可.【解答】解:A、2是单项式,故此选项错误;B、﹣ab2的系数是﹣1,次数是3,正确;C、6πx3的系数是6π,故此选项错误;D、﹣的系数是﹣,故此选项错误;故选:B.【点评】此题主要考查了单项式,正确把握相关概念是解题关键.6.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A.祝B.考C.试D.顺【考点】专题:正方体相对两个面上的文字.【分析】用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“考”与面“利”相对,“顺”与“祝”相对,“试”与空白面相对.故选C.【点评】本题考查了正方体展开图的知识,注意正方体的空间图形,从相对面入手,分析及解答问题.7.某书上有一道解方程的题: +1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7 B.5 C.2 D.﹣2【考点】解一元一次方程.【专题】计算题.【分析】已知方程的解x=﹣2,把x=﹣2代入未知方程,就可以求出被油墨盖住的地方了.【解答】解:把x=﹣2代入+1=x得: +1=﹣2,解这个方程得:□=5.故选B.【点评】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程.8.如图是由5个大小相同的小正方体摆成的立体图形,从它的上面看的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看下层是一个小正方形,上层是三个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.9.下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条【考点】比较线段的长短;直线的性质:两点确定一条直线;两点间的距离.【专题】推理填空题.【分析】根据直线可以无限延伸,没有长度、两点之间线段最短的知识即可判断各选项.【解答】解:A、直线没长度,故本选项错误;B、若AB=6,BC=2,不能确定C在不在直线AB上,那么AC=不一定为8或4,故本选项错误;C、河道改直可以缩短航程,是因为“两点之间线段最短”,故本选项错误;D、在直线AB上任取4点,以这4点为端点的线段共有6条,故本选项正确.故选:D.【点评】本题考查直线与线段的知识,属于基础题,注意掌握线段与直线的一些基本特点.10.小马虎在计算16﹣x时,不慎将“﹣”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A.15 B.13 C.7 D.﹣1【考点】解一元一次方程.【专题】计算题.【分析】由错误的结果求出x的值,代入原式计算即可得到正确结果.【解答】解:根据题意得:16+x=17,解得:x=3,则原式=16﹣x=16﹣1=15,故选A【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.11.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+18【考点】解一元一次方程.【专题】计算题.【分析】根据移项的法则可对A进行判断;根据等式性质把﹣3x=2两边除以﹣3可对B进行判断;根据去括号法则可对C进行判断;根据等式性质可对D进行判断.【解答】解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,故选项错误;B、﹣3x=2变形得x=﹣,故选项错误;C、3(x﹣1)=2(x+3)去括号得3x﹣3=2x+6,故选项错误;D、x﹣1=x+3变形得4x﹣6=3x+18,故选项正确.故选:D.【点评】本题考查了解一元一次方程:先去分母或括号,再移项、合并同类项,然后把未知数的系数化为1即可得到原方程的解.12.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()A.105元B.106元C.108元D.118元【考点】一元一次方程的应用.【专题】销售问题.【分析】设进价为x,则依题意:标价的9折出售,仍可获利10%,可列方程解得答案.【解答】解:设进价为x,则依题意可列方程:132×90%﹣x=10%•x,解得:x=108元;故选C.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.二、填空题(本题共5小题,每小题4分,共20分)13.计算:①33°52′+21°54′=55°46′;②36°27′×3=109°21′.【考点】度分秒的换算.【分析】①利用度加度,分加分,再进位即可;②利用度和分分别乘以3,再进位.【解答】解:①33°52′+21°54′=54°106′=55°46′;②36°27′×3=108°81′=109°21′;故答案为:55°46′;109°21′.【点评】此题主要考查了度分秒的计算,关键是掌握在进行度、分、秒的运算时也应注意借位和进位的方法.14.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于﹣3.【考点】一元一次方程的定义;含绝对值符号的一元一次方程.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【解答】解:根据一元一次方程的特点可得,解得a=﹣3.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.15.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=40°.【考点】余角和补角.【专题】计算题.【分析】可先设这个角为∠α,则根据题意可得关于∠α的方程,解即可.【解答】解:设这个角为∠α,依题意,得180°﹣∠α+10°=3(90°﹣∠α)解得∠α=40°.故答案为40.【点评】此题考查的是角的性质的灵活运用,根据两角互余和为90°,互补和为180°列出方程求解即得出答案.16.在有理数范围内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为x=.【考点】解一元一次方程.【专题】新定义.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:根据题中的新定义得:3△4=12+1=13,代入方程(3△4)△x=2,得:13△x=2,即13x+1=2,解得:x=.故答案为:.【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.17.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=8;②[﹣7.9]=﹣8.【考点】有理数大小比较.【专题】新定义.【分析】根据规定[x]表示不大于x的最大整数,可得答案.【解答】解:①[8.9]=8;②[﹣7.9]=﹣8;故答案为:8,﹣8.【点评】本题考查了有理数大小比较,利用[x]表示不大于x的最大整数是解题关键.三、解答题(本题共7小题,共64分)18.计算及解方程:(1)化简:(5a2﹣ab)﹣2(3a2﹣ab)(2)解方程:﹣=1(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=5a2﹣ab﹣6a2+ab=﹣a2;(2)去分母得:2(x﹣1)﹣(3x﹣1)=4,去括号得:2x﹣2﹣3x+1=4,移项合并得:﹣x=5,解得:x=﹣5;(3)原式=3x2y﹣2xy+2xy﹣3x2y﹣xy=﹣xy,当x=3,y=﹣时,原式=1.【点评】此题考查了整式的加减﹣化简求值,整式的加减,以及解一元一次方程,熟练掌握运算法则是解本题的关键.19.如图,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.【考点】直线、射线、线段.【分析】(1)连接A、B即可;(2)以D为顶点,画射线BD、DC;(3)画直线AD、BC,两线的交点就是P的位置.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握直线是向两方无限延伸的,射线是向一方无限延伸的,线段不能向任何一方无限延伸.20.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【考点】一元一次方程的应用.【专题】应用题.【分析】设x张制盒身,则可用(150﹣x)张制盒底,那么盒身有16x个,盒底有43(150﹣x)个,然后根据一个盒身与两个盒底配成一套罐头盒就可以列出方程,解方程就可以解决问题.【解答】解:设x张制盒身,则可用(150﹣x)张制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=a°,求∠DOE的度数;(3)图中是否有互余的角?若有请写出所有互余的角.【考点】余角和补角;角平分线的定义.【分析】(1)OD平分∠AOC,OE平分∠BOC,得出∠DOE=(∠BOC+∠COA),代入数据求得问题;(2)利用(1)的结论,把∠BOC=a°,代入数据求得问题;(3)根据(1)(2)找出互余的角即可.【解答】解:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=∠AOC,∠COE=∠BOC∴∠DOE=∠DOC+∠COE=(∠BOC+∠COA)=×(62°+180°﹣62°)=90°;(2)∠DOE═(∠BOC+∠COA)=×(a°+180°﹣a°)=90°;(3)∠DOA与∠COE互余;∠DOA与∠BOE互余;∠DOC与∠COE互余;∠DOC与∠BOE互余.【点评】此题考查角平分线的意义以及余角的意义.22.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【考点】一元一次方程的应用.【专题】图表型.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面; B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】一元一次方程的应用;列代数式;分式方程的应用.【专题】应用题.【分析】(1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.【解答】解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为: =30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用以及分式方程的应用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠AON=∠CON,即可得出OM平分∠BOC;(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC;(2)15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=23.3秒;如图:【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
德州市庆云县2020—2021学年七年级上期末数学试卷含答案解析
德州市庆云县2020—2021学年七年级上期末数学试卷含答案解析一、选择题(本题共小题,每小题3分,共36分)1.下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与2.若a>0,b<0,则b,b+a,b﹣a中最大的一个数是()A.a B.b+a C.b﹣a D.不能确定3.假如单项式x2y m+2与x n y的和仍旧是一个单项式,则m、n的值是()A.m=2,n=2 B.m=﹣1,n=2 C.m=﹣2,n=2 D.m=2,n=﹣14.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106 B.28.94×105 C.2.897×108 D.0.2897×1075.下列说法中,正确的是()A.2不是单项式B.﹣ab2的系数是﹣1,次数是3C.6πx3的系数是6 D.﹣的系数是﹣26.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A.祝B.考C.试D.顺7.某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知那个方程的解是x=﹣2,那么□处应该是数字()A.7 B.5 C.2 D.﹣28.如图是由5个大小相同的小正方体摆成的立体图形,从它的上面看的平面图形是()A.B.C.D.9.下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直能够缩短航程,是因为“通过两点有一条直线,同时只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条10.小马虎在运算16﹣x时,不慎将“﹣”看成了“+”,运算的结果是17,那么正确的运算结果应该是()A.15 B.13 C.7 D.﹣111.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+1812.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()A.105元B.106元C.108元D.118元二、填空题(本题共5小题,每小题4分,共20分)13.运算:①33°52′+21°54′=;②36°27′×3=.14.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于.15.一个角的补角加上10°后,等于那个角的余角的3倍,则那个角=°.16.在有理数范畴内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为x=.17.关于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=;②[﹣7.9]=.三、解答题(本题共7小题,共64分)18.运算及解方程:(1)化简:(5a2﹣ab)﹣2(3a2﹣ab)(2)解方程:﹣=1(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.19.如图,已知四个点A、B、C、D,依照下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.20.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,能够正好制成整套罐头盒?21.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=a°,求∠DOE的度数;(3)图中是否有互余的角?若有请写出所有互余的角.22.情形:试依照图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,要求出小红购买跳绳的根数;若没有请说明理由.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,通过t秒后,OM 恰好平分∠BOC.①求t的值;②现在ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么通过多长时刻OC平分∠MON?请说明理由;(3)在(2)问的基础上,通过多长时刻OC平分∠MOB?请画图并说明理由.2020-2021学年山东省德州市庆云县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与【考点】相反数.【分析】依照只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A错误;B、差不多上﹣3,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、互为倒数,故D错误;故选:C.【点评】本题考查了相反数,在一个数的前面加上负号确实是那个数的相反数.2.若a>0,b<0,则b,b+a,b﹣a中最大的一个数是()A.a B.b+a C.b﹣a D.不能确定【考点】有理数大小比较.【专题】推理填空题.【分析】依照有理数的加减法,有理数的大小比较,可得答案.【解答】解:∵a>0,b<0,∴a>a+b,b﹣a<b<0.故A正确;故选:A.【点评】本题考查了有理数大小比较,利用有理数的加减法得出a>a+b,b﹣a<b<0是解题关键.3.假如单项式x2y m+2与x n y的和仍旧是一个单项式,则m、n的值是()A.m=2,n=2 B.m=﹣1,n=2 C.m=﹣2,n=2 D.m=2,n=﹣1【考点】同类项.【分析】本题考查同类项的定义,单项式x2y m+2与x n y的和仍旧是一个单项式,意思是x2y m+2与x n y 是同类项,依照同类项中相同字母的指数相同得出.【解答】解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.【点评】同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.4.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106 B.28.94×105 C.2.897×108 D.0.2897×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2897000用科学记数法表示为:2.897×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列说法中,正确的是()A.2不是单项式B.﹣ab2的系数是﹣1,次数是3C.6πx3的系数是6 D.﹣的系数是﹣2【考点】单项式.【分析】直截了当利用单项式的次数与系数的概念分别判定得出即可.【解答】解:A、2是单项式,故此选项错误;B、﹣ab2的系数是﹣1,次数是3,正确;C、6πx3的系数是6π,故此选项错误;D、﹣的系数是﹣,故此选项错误;故选:B.【点评】此题要紧考查了单项式,正确把握相关概念是解题关键.6.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A.祝B.考C.试D.顺【考点】专题:正方体相对两个面上的文字.【分析】用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“考”与面“利”相对,“顺”与“祝”相对,“试”与空白面相对.故选C.【点评】本题考查了正方体展开图的知识,注意正方体的空间图形,从相对面入手,分析及解答问题.7.某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知那个方程的解是x=﹣2,那么□处应该是数字()A.7 B.5 C.2 D.﹣2【考点】解一元一次方程.【专题】运算题.【分析】已知方程的解x=﹣2,把x=﹣2代入未知方程,就能够求出被油墨盖住的地点了.【解答】解:把x=﹣2代入+1=x得:+1=﹣2,解那个方程得:□=5.故选B.【点评】利用方程的解的定义,求方程中另一个字母的解,此题要紧考查解方程.8.如图是由5个大小相同的小正方体摆成的立体图形,从它的上面看的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】依照从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看下层是一个小正方形,上层是三个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.9.下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直能够缩短航程,是因为“通过两点有一条直线,同时只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条【考点】比较线段的长短;直线的性质:两点确定一条直线;两点间的距离.【专题】推理填空题.【分析】依照直线能够无限延伸,没有长度、两点之间线段最短的知识即可判定各选项.【解答】解:A、直线没长度,故本选项错误;B、若AB=6,BC=2,不能确定C在不在直线AB上,那么AC=不一定为8或4,故本选项错误;C、河道改直能够缩短航程,是因为“两点之间线段最短”,故本选项错误;D、在直线AB上任取4点,以这4点为端点的线段共有6条,故本选项正确.故选:D.【点评】本题考查直线与线段的知识,属于基础题,注意把握线段与直线的一些差不多特点.10.小马虎在运算16﹣x时,不慎将“﹣”看成了“+”,运算的结果是17,那么正确的运算结果应该是()A.15 B.13 C.7 D.﹣1【考点】解一元一次方程.【专题】运算题.【分析】由错误的结果求出x的值,代入原式运算即可得到正确结果.【解答】解:依照题意得:16+x=17,解得:x=3,则原式=16﹣x=16﹣1=15,故选A【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.11.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+18【考点】解一元一次方程.【专题】运算题.【分析】依照移项的法则可对A进行判定;依照等式性质把﹣3x=2两边除以﹣3可对B进行判定;依照去括号法则可对C进行判定;依照等式性质可对D进行判定.【解答】解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,故选项错误;B、﹣3x=2变形得x=﹣,故选项错误;C、3(x﹣1)=2(x+3)去括号得3x﹣3=2x+6,故选项错误;D、x﹣1=x+3变形得4x﹣6=3x+18,故选项正确.故选:D.【点评】本题考查了解一元一次方程:先去分母或括号,再移项、合并同类项,然后把未知数的系数化为1即可得到原方程的解.12.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()A.105元B.106元C.108元D.118元【考点】一元一次方程的应用.【专题】销售问题.【分析】设进价为x,则依题意:标价的9折出售,仍可获利10%,可列方程解得答案.【解答】解:设进价为x,则依题意可列方程:132×90%﹣x=10%•x,解得:x=108元;故选C.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,依照等量关系列出方程解答.二、填空题(本题共5小题,每小题4分,共20分)13.运算:①33°52′+21°54′=55°46′;②36°27′×3=109°21′.【考点】度分秒的换算.【分析】①利用度加度,分加分,再进位即可;②利用度和分分别乘以3,再进位.【解答】解:①33°52′+21°54′=54°106′=55°46′;②36°27′×3=108°81′=109°21′;故答案为:55°46′;109°21′.【点评】此题要紧考查了度分秒的运算,关键是把握在进行度、分、秒的运算时也应注意借位和进位的方法.14.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于﹣3.【考点】一元一次方程的定义;含绝对值符号的一元一次方程.【专题】运算题.【分析】若一个整式方程通过化简变形后,只含有一个未知数,同时未知数的次数差不多上1,系数不为0,则那个方程是一元一次方程.【解答】解:依照一元一次方程的特点可得,解得a=﹣3.【点评】解题的关键是依照一元一次方程的未知数x的次数是1那个条件,此类题目应严格按照定义解答.15.一个角的补角加上10°后,等于那个角的余角的3倍,则那个角=40°.【考点】余角和补角.【专题】运算题.【分析】可先设那个角为∠α,则依照题意可得关于∠α的方程,解即可.【解答】解:设那个角为∠α,依题意,得180°﹣∠α+10°=3(90°﹣∠α)解得∠α=40°.故答案为40.【点评】此题考查的是角的性质的灵活运用,依照两角互余和为90°,互补和为180°列出方程求解即得出答案.16.在有理数范畴内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为x=.【考点】解一元一次方程.【专题】新定义.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:依照题中的新定义得:3△4=12+1=13,代入方程(3△4)△x=2,得:13△x=2,即13x+1=2,解得:x=.故答案为:.【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.17.关于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=8;②[﹣7.9]=﹣8.【考点】有理数大小比较.【专题】新定义.【分析】依照规定[x]表示不大于x的最大整数,可得答案.【解答】解:①[8.9]=8;②[﹣7.9]=﹣8;故答案为:8,﹣8.【点评】本题考查了有理数大小比较,利用[x]表示不大于x的最大整数是解题关键.三、解答题(本题共7小题,共64分)18.运算及解方程:(1)化简:(5a2﹣ab)﹣2(3a2﹣ab)(2)解方程:﹣=1(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】运算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去括号合并得到最简结果,把x与y的值代入运算即可求出值.【解答】解:(1)原式=5a2﹣ab﹣6a2+ab=﹣a2;(2)去分母得:2(x﹣1)﹣(3x﹣1)=4,去括号得:2x﹣2﹣3x+1=4,移项合并得:﹣x=5,解得:x=﹣5;(3)原式=3x2y﹣2xy+2xy﹣3x2y﹣xy=﹣xy,当x=3,y=﹣时,原式=1.【点评】此题考查了整式的加减﹣化简求值,整式的加减,以及解一元一次方程,熟练把握运算法则是解本题的关键.19.如图,已知四个点A、B、C、D,依照下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.【考点】直线、射线、线段.【分析】(1)连接A、B即可;(2)以D为顶点,画射线BD、DC;(3)画直线AD、BC,两线的交点确实是P的位置.【解答】解:如图所示:.【点评】此题要紧考查了直线、射线和线段,关键是把握直线是向两方无限延伸的,射线是向一方无限延伸的,线段不能向任何一方无限延伸.20.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,能够正好制成整套罐头盒?【考点】一元一次方程的应用.【专题】应用题.【分析】设x张制盒身,则可用(150﹣x)张制盒底,那么盒身有16x个,盒底有43(150﹣x)个,然后依照一个盒身与两个盒底配成一套罐头盒就能够列出方程,解方程就能够解决问题.【解答】解:设x张制盒身,则可用(150﹣x)张制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86张制盒身,64张制盒底,能够正好制成整套罐头盒.【点评】解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=a°,求∠DOE的度数;(3)图中是否有互余的角?若有请写出所有互余的角.【考点】余角和补角;角平分线的定义.【分析】(1)OD平分∠AOC,OE平分∠BOC,得出∠DOE=(∠BOC+∠COA),代入数据求得问题;(2)利用(1)的结论,把∠BOC=a°,代入数据求得问题;(3)依照(1)(2)找出互余的角即可.【解答】解:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=∠AOC,∠COE=∠BOC∴∠DOE=∠DOC+∠COE=(∠BOC+∠COA)=×(62°+180°﹣62°)=90°;(2)∠DOE═(∠BOC+∠COA)=×(a°+180°﹣a°)=90°;(3)∠DOA与∠COE互余;∠DOA与∠BOE互余;∠DOC与∠COE互余;∠DOC与∠BOE互余.【点评】此题考查角平分线的意义以及余角的意义.22.情形:试依照图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,要求出小红购买跳绳的根数;若没有请说明理由.【考点】一元一次方程的应用.【专题】图表型.【分析】(1)依照总价=单价×数量,现价=原价×0.8,列式运算即可求解;(2)设小红购买跳绳x根,依照等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系列出方程,再求解.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】一元一次方程的应用;列代数式;分式方程的应用.【专题】应用题.【分析】(1)由x张用A方法,就有(19﹣x)张用B方法,就能够分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就能够求出结论.【解答】解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用以及分式方程的应用,解答时依照裁剪出的侧面和底面个数相等建立方程是关键.24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,通过t秒后,OM 恰好平分∠BOC.①求t的值;②现在ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么通过多长时刻OC平分∠MON?请说明理由;(3)在(2)问的基础上,通过多长时刻OC平分∠MOB?请画图并说明理由.【考点】角的运算;角平分线的定义.【分析】(1)依照图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再依照∠AON=∠CON,即可得出OM平分∠BOC;(2)依照图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再依照转动速度从而得出答案;(3)分别依照转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC;(2)15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=23.3秒;如图:【点评】此题考查了角的运算,关键是应该认真审题并认真观看图形,找到各个量之间的关系求出角的度数是解题的关键.。
山东省德州市庆云县2023-2024学年七年级上学期期末数学试题(含答案)
七年级数学试题(时间:120分钟满分:150分)2024年1月一、选择题(本大题共12个小题,在每小题所给出的四个选项中,只有一项是正确的;每小题选对得4分,选错、不选或选出的答案超过一个,均计0分)1.的相反数是( )A .B .5C .D.2.下列各式计算正确的是( )A .B .C .D .3.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930000万元,这一数据用科学记数法表示为( )A .万元B .万元C .万元D .万元4.在有理数,,中,负数的个数有( )A .1个B .2个C .3个D .0个5.如图所示的图形经过折叠,不能围成一个正方体的是()A .B .C .D .6.下列叙述正确的是( )A .射线CD 可表示为射线DCB .线段AB 可表示为线段BAC .直线可以比较长短D .射线可以比较长短7.如图,一副三角尺按不同的位置摆放,摆放位置中的图形个数是()A .1B .2C .3D .48.“腹有诗书气自华,最是书香能放远。
”为鼓励和推广全民阅读活动,某书店开展促销活动,促销方法是将原价为x 元的一批图书以元的价格出售,则下列说法中能正确表达这批图书的促销方法的是()5-5-15-15266a a a+=253a b ab-+=222352ab b a ab -=-22422m n mn mn-=69.310⨯59.310⨯49310⨯60.9310⨯3-3-()23-αβ∠=∠()0.815x -A .在原价的基础上打8折后再减去15元B .在原价的基础上打2折后再减去12元C .在原价的基础上减去15元后再打8折D .在原价的基础上减去12元后再打89.已知线段,,且A ,B ,C 三点在同一直线上,则线段AC 的长度为()A .1cmB .1cm 或9cmC .2cm 或8cmD .9cm10.某工厂用硬纸生产圆柱形茶叶筒,已知该工厂有44名工人,每名工人每小时可以制作筒身50个或制作筒底120个,要求一个简身配两个筒底,设应该分配x 名工人制作筒身,其它工人制作筒底,使每小时制作出的筒身与筒底刚好配套,则可列方程为( )A .B .C .D .11.如图所示,将一张长方形纸片斜折过去,使顶点A 落在处,BC 为折痕,然后再把BE 折过去,使之与重合,折痕为BD ,若,则求的度数( )A .29°B .32°C .58°D .64°12.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A .2021B .2020C .6051D .6068二、填空题(本大题共6个小题,请将正确答案填在相应的横线上;每小题填对得4分,错填、不填,均计0分)13.若单项式与是同类项,则______.14.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是______.5cm AB =4cm BC =2120(44)50x x ⨯-=250(44)120x x ⨯-=120(44)250x x-=⨯120(44)50x x-=A 'BA '58ABC ∠=︒E BD '∠34ma b -15n ab +m n -=15.有理数a ,b ,c在数轴上的位置如图所示,且.化简______.16.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是______元17.如果方程与关于x 的方程的解相等,则k 的值为______.18.一列数,其中则,则______三、解答题(本大题有7个小题,共78分;解答要写出必要的文字说明、证明过程或演算步骤.)19.计算:(满分10分,每小题5分)(1)(2)20.计算:(满分12分,每小题6分)(1)解方程:(2)先化简再求值:;其中,.21.(满分8分)如图,在平面内有A ,B ,C 三点.(1)画出直线AB ,射线CB ,线段AC ;(2)在线段AC 取一点D ,数数看,此时图中共有多少条线段?22.(满分12分)某次篮球联赛部分积分如下:根据表格提供的信息解答下列问题:队名比赛场次胜场负场积分A 1410424B 147721C1441018(1)求出胜一场、负一场各积多少分?a b >a b b c a -++-26x -=-523x k -=123,,,,n a a a a 1231221111,,,,111n n a a a a a a a -=-===--- 2020a =12(18)(5)6--+--320191|3|(64)(1)2⎛⎫---+÷-+- ⎪⎝⎭21321124x x x +--=-()()22372427x xy x xy -+--++2x =-1y =(2)某队的胜场总积分能等于负场总积分吗?若能,试求出胜场数和负场数:若不能,请说明理由.23.计算:(满分10分)(1)一出租车司机一天下午以希望小学为出发地在东西方向营运,向东走为山,向西走为负,行车里程(单位:km )依先后次序记录如下:.若每千米收费2.8元;求司机这个下午的营业额。
德州市人教版七年级上册数学期末试卷及答案百度文库
德州市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒3.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cm B .3cmC .3cm 或 7cmD .7cm 或 9cm4.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .75.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm6.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120207.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .18.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 11.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣412.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.15030'的补角是______.18.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.19.数字9 600 000用科学记数法表示为 .20.当x= 时,多项式3(2-x )和2(3+x )的值相等.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 22.当12点20分时,钟表上时针和分针所成的角度是___________.23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.26.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
德州市人教版七年级上册数学期末试卷及答案百度文库
德州市人教版七年级上册数学期末试卷及答案百度文库一、选择题 1.4 =( )A .1B .2C .3D .42.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个C .3个D .4个5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cm B .3cm C .3cm 或 7cm D .7cm 或 9cm 6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣17.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .2二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.15.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………16.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.17.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.五边形从某一个顶点出发可以引_____条对角线. 22.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 23.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.24.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.三、解答题25.计算 (1)32527- (2)()3335+-26.已知x ay b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____.27.如图,已知数轴上点A 表示的数为﹣1,点B 表示的数为3,点P 为数轴上一动点. (1)点A 到原点O 的距离为 个单位长度;点B 到原点O 的距离为 个单位长度;线段AB 的长度为 个单位长度;(2)若点P 到点A 、点B 的距离相等,则点P 表示的数为 ;(3)数轴上是否存在点P ,使得PA +PB 的和为6个单位长度?若存在,请求出PA 的长;若不存在,请说明理由?(4)点P 从点A 出发,以每分钟1个单位长度的速度向左运动,同时点Q 从点B 出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P 与点Q 重合?28.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;商场优惠方案甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?29.计算:|﹣2|+(﹣1)2019+19×(﹣3)230.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.四、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.4.C解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)中,无理数有35-、π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cmM 是线段AC 的中点, ∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.7.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.8.A解析:A 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.考点:几何体的展开图.9.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0.故选:C .10.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.11.D解析:D 【解析】 【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可. 【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D . 【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.A解析:A 【解析】 【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案. 【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50, 解得:t=2;(2)当两车相遇后,两车又相距50千米时, 根据题意,得120t+80t=450+50, 解得t=2.5.综上,t 的值为2或2.5,故选A. 【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.二、填空题13.两点确定一条直线. 【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线. 【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.14.-1; 【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.解析:-1; 【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.【解析】 【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n , 解析:83n -【解析】 【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解. 【详解】解:由题知:右上和右下两个数的和等于中间的数, ∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.16.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键17.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 18.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 19.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.20.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.21.2【解析】【分析】从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.22.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.23.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.24.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x=-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解三、解答题25.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】=5-3=2;(2)==【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键. 26.【解析】【详解】解:∵x ay b=⎧⎨=⎩是方程组2025x yx y-=⎧⎨+=⎩的解,∴2025a ba b-=⎧⎨+=⎩①②,①+②得,3a﹣b=5.故答案为5.27.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】【分析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.28.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元);乙商场实际付款:290﹣2×50+270﹣2×50=360(元);故答案为:336,360;(2)设这条裤子的标价是x元,由题意得:(380+x)×60%=380﹣3×50+x﹣3×50,解得:x=370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.29.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】解:原式1 2199=-+⨯11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.30.(1)45°;(2)∠MON=12α.(3)∠MON=12α【解析】【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=12α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=12α+30°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(12α+30°)﹣30°=12α.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠AON=∠AOC﹣∠NOC=α+β﹣12β=α+12β.∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.考点:角的计算;角平分线的定义.四、压轴题31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)13-;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C表示的数为a,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-3+2t=1-t,解得:t=43,∴41 3233 -+⨯=-,∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.。
德州市人教版七年级上册数学期末考试试卷及答案
德州市人教版七年级上册数学期末考试试卷及答案一、选择题1.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯ C .41.0410-⨯ D .51.0410-⨯ 2.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+63.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个4.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .75.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠26.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱7.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105 C .3.31×106 D .3.31×107 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣49.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 10.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定 11.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 14.化简:2xy xy +=__________.15.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.16.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.17.如果向东走60m 记为60m +,那么向西走80m 应记为______m.18.15030'的补角是______.19.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 20.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.21.﹣225ab π是_____次单项式,系数是_____.22.4是_____的算术平方根. 23.用度、分、秒表示24.29°=_____.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.28.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?29.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.30.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数31.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.32.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000104=1.04×10−4. 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3,【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.3.D解析:D 【解析】 【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断 【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确 ③若x=y,则有-225x ax a =⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确④方程组解得25-15x ay a =⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确 则正确的选项有四个 故选D 【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键4.D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.5.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6.A解析:A试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.7.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.10.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6或6.故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题13.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键14..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.15.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.16.3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把12x y =⎧⎨=⎩代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,则a +b =3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.17.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 18.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.19.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.20.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′ 解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 27.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.29.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.30.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.31.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.32.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).。
2025届山东省德州庆云县联考数学七上期末检测试题含解析
2025届山东省德州庆云县联考数学七上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,CD ∥AB ,点O 在AB 上,OE 平分∠BOD ,OF ⊥OE , ∠ D=110,则∠AOF 的度数是( )A .20B .25C .30D .352.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x 天完成,则符合题意的是( )A .151513040x -+=B .151513040x ++= C .1513040x x ++= D .1513040x x -+= 3.多项式x |m|y ﹣(m ﹣3)xy+7是关于x 、y 的四次三项式,则m 的值是( )A .3或﹣3B .﹣3C .4或﹣4D .34.拒绝“餐桌浪费”,刻不容缓.每入一日三餐少浪费粒米,全国年就可节省3150万斤,可供9万人吃年,数据“3150万”用科学记数法表示为( )A .80.31510⨯B .73.1510⨯C .631.510⨯D .33.1510⨯5.在下列说法中:①方程311142x x ++-=的解为5x =;②方程()3126x --=的解为2x =-;③方程253164y y ---=的解为3y =;④方程()()62520412x x -+=-的解为7x =.正确的有( )A .1个B .2个C .3个D .4个6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4 B .6 C .7 D .107.已知∠A=25.12°,∠B=25°12′,∠C=1528′,那么它们的大小关系为( ) A .C B A ∠>∠>∠B .A BC >>∠∠∠ C .B A C ∠>∠>∠D .C A B ∠>∠>∠8.如图所示,把一根绳子对折成线段AB ,然后从P 处将绳子剪断,如果AP 是PB 的一半,且剪断后的各段绳子中最长的一段为40cm ,则绳子的原长为( )A .60cmB .80cmC .120cmD .60cm 或120cm9.据统计,自开展精准扶贫工作五年以来,湖南省减贫5510000人,贫困发生率由13.43%下降到3.86%,2695个贫困村出列,14个贫困县摘帽.将5510000用科学记数法表示是( )A .70.55110⨯B .65.5110⨯C .75.5110⨯D .455110⨯10.下列说法中,确定的是( )A .如果ac bc =,那么a b =B .如果a b c c =,那么a b =C .如果22a b =,那么a b =D .如果||||a b =,那么a b =二、填空题(本大题共有6小题,每小题3分,共18分)11.2017年1月10日,绿色和平发布了全国74个城市PM 2.5浓度年均值排名和相应的最大日均值,其中浙江省六个地区的浓度如下图所示(舟山的最大日均值条形图缺损)以下说法中错误的是______.①则六个地区中,最大日均值最高的是绍兴;②杭州的年均值大约是舟山的2倍;③舟山的最大日均值不一定低于丽水的最大日均值;④六个地区中,低于国家环境空气质量标准规定的年均值35微克每立方米的地区只有舟山.12.已知方程x -2y +3=8,则整式14-x +2y 的值为_________.13.m 、n 互为相反数,x 、y 互为倒数,则2015m +2015n -2016xy =____________14.已知2210a a +=,则代数式2241a a +-的值为________.15.如图,阳阳一家随旅游团去海南旅游,他把旅途费用支出情况制成了扇形统计图,若他们共花费人民币8600元,则在路费上用去____元.16.如图所示,两个三角形关于直线m 对称,则a =__________.三、解下列各题(本大题共8小题,共72分)17.(8分)以直线AB 上点O 为端点作射线OC ,使63BOC ∠=︒,若90DOE ∠=︒,将DOE ∠的顶点放在点O 处.(1)如图1,若将DOE ∠的边OD 放在射线OB 上,求COE ∠的度数?(2)如图2,将DOE ∠绕点O 按逆时针方向转动,使得OE 平分AOC ∠,说明射线OD 是BOC ∠的平分线.18.(8分)如图,已知AB ∥CD ,∠1=∠2,∠3=∠4,则AD ∥BE .完成下列推理过程:证明:∵AB ∥CD (已知)∴∠4= ( )∵∠3=∠4(已知)∴∠3= ( )∵∠1=∠2(已知)∴∠CAE +∠1=∠CAE +∠2即∠ =∠∴∠3=∴AD ∥BE ( )19.(8分)计算下列各题:(1)123(24)1238⎛⎫-⨯-- ⎪⎝⎭; (2)411(2)|9|3⎛⎫-+-÷--- ⎪⎝⎭. 20.(8分)如图1,点C 把线段AB 分成两条线段AC 和BC ,如果AC =2BC 时,则称点C 是线段AB 的内二倍分割点;如图2,如果BC =2AC 时,则称点C 是线段BA 的内二倍分割点.例如:如图3,数轴上,点A 、B 、C 、D 分别表示数-1、2、1、0,则点C 是线段AB 的内二倍分割点;点D 是线段BA 内二倍分割点.(1)如图4,M 、N 为数轴上两点,点M 所表示的数为-2,点N 所表示的数为1.MN 的内二倍分割点表示的数是 ;NM 的内二倍分割点表示的数是 .(2)数轴上,点A 所表示的数为-30,点B 所表示的数为2.点P 从点B 出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t (t >0)秒.①线段BP 的长为 ;(用含t 的式子表示)②求当t 为何值时,P 、A 、B 三个点中恰有一个点为其余两点的内二倍分割点.21.(8分)某市城市居民用电收费方式有以下两种:(甲)普通电价:全天 0.53元/度;(乙)峰谷电价:峰时(早 8:00﹣晚 21:00)0.56 元/度;谷时(晚 21:00﹣ 早 8:00)0.36元/度.估计小明家下月总用电量为 200 度.(1)若其中峰时电量为 50 度,则小明家按照哪种方式付电费比较合适?能省多 少元?(2)到下月付费时,小明发现那月总用电量为 200 度,用峰谷电费付费方式比 普通电价付费方式省了 14 元,求那月的峰时电量为多少度?A B C.22.(10分)作图题:如图,在平面内有不共线的3个点,,,(1)作射线BA,在线段BA的延长线上取一点E,使AE AB=;=;(2)作线段BC并延长BC到点F,使CF BC(3)连接AC,EF;(4)度量线段AC和EF的长度,直接写出二者之间的数量关系.23.(10分)我们经常运用“方程”的思想方法解决问题.已知∠1是∠2的余角,∠2是∠3的补角,若∠1+∠3=130°,求∠2的度数.可以进行如下的解题:(请完成以下解题过程)解:设∠2的度数为x,则∠1=°,∠3=°.根据“”可列方程为:.解方程,得x=.故:∠2的度数为°.24.(12分)等角转化;如图1,已知点A是BC外一点,连结AB、AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面的推理过程解:过点A作ED∥BC,∴∠B=∠EAB,∠C=()又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数(提示:过点C作CF∥AB);(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=80°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,点E在两条平行线AB与CD之间,求∠BED的度数.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据平行线的性质解答即可.【详解】解://CD AB ,180AOD D ∠∠∴+=,D 110∠=︒,70AOD ∠∴=,110DOB ∠∴=,OE BOD ∠平分,55DOE ∠∴=,OF OE ⊥,90FOE ∠∴=,905535DOF ∠∴=-=,703535AOF ∠∴=-=,故选D .【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.2、A【解析】乙15天的工作量为1540, 甲(x −15)天的工作量为1530x -, ∴可列方程为151513040x -+=, 故选A.点睛: 考查列一元一次方程;根据工作量得到等量关系是解决本题的关键;得到甲乙工作的天数是解决本题的易错点.3、B【解析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是1,所以可确定m 的值.【详解】∵多项式x |m|y-(m-1)x+7是关于x 的四次三项式,∴|m|=1,且-(m-1)≠0,∴m=-1.故选:B .【点睛】本题考查了与多项式有关的概念,解题的关键是理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.4、B【解析】根据科学计数法是将一个数改写成()10110na a ⨯≤<的形式,进行改写即可. 【详解】因为3150万=3150 0000,用科学计数法表示为73.1510⨯,故答案选B.【点睛】本题考查的是科学计数法的改写,能够掌握科学计数法的改写方式是解题的关键.5、A【分析】根据方程的解的概念逐一进行判断即可.【详解】解:①方程311142x x ++-=的解为5x =,所以①正确;②方程()3126x --=的解为2x =,所以②错误;③方程253164y y ---=的解为13y =所以③错误;方程()()62520412x x -+=-的解为710x =,所以④错误. 故应选A.【点睛】本题考查了一元一次方程的解的定义,正确理解方程解的定义是解题的关键.6、B【解析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时,n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.7、A【分析】根据度、分、秒的换算,把各角换算成相同单位,比较即可得答案.【详解】∠A=25.12°=25°7′12″,∠C=1528′=25°28′,∵25°28′>25°12′>25°7′12″,∴∠C>∠B>∠A,故选:A.【点睛】本题考查度、分、秒的换算,熟记角度相邻单位的进率是60是解题关键.8、D【分析】本题没有给出图形,在解题时,应考虑到绳子对折成线段AB时,A、B哪一点是绳子的连接点,再根据题意画出图形解答即可.【详解】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP:BP=1:2,剪断后的各段绳子中最长的一段为40cm,∴2AP=40cm,∴AP=20cm,∴PB=40cm,∴绳子的原长=2AB=2(AP+PB)=2×(20+40)=120cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP:BP=1:2,剪断后的各段绳子中最长的一段为40cm,∴2BP=40cm,∴BP=20cm,∴AP=10cm.∴绳子的原长=2AB=2(AP+BP)=2×(20+10)=60cm.故选:D.【点睛】本题考查了线段的和差和两点间的距离,解题中渗透了分类的数学思想,解题的关键是弄清绳子对折成线段AB时,A、B 哪一点是绳子的连接点.9、B【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 5.51a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到5的后面,所以 6.n =【详解】解:65510000 5.5110=⨯故选B .【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.10、B【分析】直接利用等式的性质,分别进行判断,即可得到答案.【详解】解:A 、如果ac bc =,当0c时,那么a b =不一定成立,故A 错误; B 、如果a b c c=,0c ≠,那么a b =一定成立,故B 正确; C 、如果22a b =,那么a b =或=-a b ,故C 错误;D 、如果||||a b =,那么a b =或=-a b ,故D 错误;故选:B.【点睛】本题考查了等式的性质,解题的关键是熟练掌握等式的性质进行一一判断.二、填空题(本大题共有6小题,每小题3分,共18分)11、①.【分析】认真读图,根据柱状图中的信息逐一判断.【详解】①这6个地区中,最大日均值最高的不一定是绍兴,还可能为舟山,错误;②杭州的年均值为66.1,舟山的年均值为32.1,故杭州年均值约是舟山的2倍,正确;③舟山的最大日均值不一定低于丽水的最大日均值,正确;④这6个地区中,低于国家环境空气质量标准规定的年均值35微克每立方米的地区只有舟山,正确.故答案为:①.【点睛】本题考查从柱状统计图中读出信息,认真读图,理解题意是解答关键.12、1【分析】根据已知求出x ﹣2y =5,整体代入即可得到结论.【详解】由x ﹣2y +3=8得:x ﹣2y =8﹣3=5,∴14-x +2y =14-(x -2y )=14-5=1.故答案为1.【点睛】本题考查了代数式求值.运用整体代入法是解答本题的关键.13、-2016【分析】利用相反数和倒数的定义求出m+n 和xy 的值,代入原式计算即可得到结果.【详解】根据题意得:m+n=0,xy=1原式=2015(m+n)-2016xy=0-2016×1=-2016 故答案:-2016【点睛】本题考查了相反数和互为倒数的性质,如果两个数互为相反数,它们的和是0,如果两个数互为倒数,它们的积是1.14、1.【分析】观察式子发现()22241221a a =a a +-+-,再将2210a a +=整体代入()2221a a +-中计算,即可得到结果. 【详解】2210a a +=()22241=221=2101=19a a a a +--⨯-∴+故答案为:1.【点睛】本题考查求代数式的值,需要利用整体代换法来解决问题.15、1【分析】根据购物部分的圆心角是90︒得到它占整体的25%,从而求出路费所占比例,再用这个比例乘以总花费,即可求出结果.【详解】解:∵购物部分的圆心角是90︒, ∴占整体的90100%25%360︒⨯=︒, ∴路费占整体的100%30%25%45%--=,∴在路费上用去860045%3870⨯=(元).故答案是:1.【点睛】本题考查扇形统计图,解题的关键是掌握扇形统计图的特点.16、30【分析】如图,根据轴对称的性质可得∠1=115°,根据三角形内角和定理求出a 的值即可.【详解】如图,∵两个三角形关于直线m 对称,∴∠1=115°,∴a =180°-35°-115°=30°,故答案为:30°【点睛】本题考查轴对称的性质,关于某直线对称的两个图形全等,对应边相等,对应角相等,对应点的连线被对称轴垂直平分;正确找出对应角是解题关键三、解下列各题(本大题共8小题,共72分)17、 (1)27COE ∠=︒;(2)详见解析.【分析】(1)代入∠BOE=∠COE+∠COB 求出即可;(2)求出∠AOE=∠COE ,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB ,即可得出答案.【详解】解:(1)因为90BOE COE COB ∠=∠+∠=︒,所以90COE COB ∠=︒-∠又因为63COB ∠=︒所以27COE ∠=︒;(2)因为OE 平分AOC ∠, 所以12COE AOE COA ∠=∠=∠, 因为90EOD ∠=︒,所以90AOE DOB ∠+∠=︒,90COE COD ∠+∠=︒,所以COD DOB ∠=∠,所以射线OD 是BOC ∠的平分线.【点睛】本题考查角平分线定义和角的计算,解题关键是能根据图形和已知求出各个角的度数.18、∠BAE ,两直线平行,同位角相等,∠BAE ,等量代换,BAE ,DAC ,∠DAC ,内错角相等,两直线平行【分析】根据平行线的性质得出∠4=∠BAE ,求出∠3=∠BAE ,根据∠1=∠2求出∠BAE =∠DAC ,求出∠3=∠DAC ,根据平行线的判定得出即可.【详解】证明:∵AB ∥CD (已知),∴∠4=∠BAE (两直线平行,同位角相等),∵∠3=∠4(已知)∴∠3=∠BAE (等量代换),∵∠1=∠2(已知)∴∠CAE +∠1=∠CAE +∠2,即∠BAE =∠DAC ,∴∠3=∠DAC∴AD ∥BE (内错角相等,两直线平行),故答案为:∠BAE ,两直线平行,同位角相等,∠BAE ,等量代换,BAE ,DAC ,∠DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.19、(1)37;(2)-4【分析】(1)利用乘法分配律展开计算即可;(2)先化简各项,再作加减法.【详解】解:(1)()123241238⎛⎫-⨯-- ⎪⎝⎭ =()()()153242424238⨯--⨯--⨯- =12409-++=37;(2)411(2)|9|3⎛⎫-+-÷--- ⎪⎝⎭=()(2)391-+-⨯--=619-+-=-4【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,注意运算律的运用.20、(1)4 ;1;(2)①线段BP的长为2t;②当t为253或503或752或15秒时,P、A、B中恰有一个点为其余两点的内二倍分割点.【分析】(1)根据内二倍分割点的定义,找到MN的三等分点表示的数即可;(2)①根据速度与路程的关系,可得BP=2t, ②分P为其余两点的内二倍分割点和A为其余两点的内二倍分割点两种情况,按照内二倍分割点的定义,列方程求解即可.【详解】解:(1)MN的内二倍分割点就是MN的三等分点且距N近,MN=9,则MN的内二倍分割点在N的左侧,距N点3个单位,所以,表示的数为4 ;同理,则NM的内二倍分割点在N的左侧,距N点6个单位,所以,表示的数为1;(2)①则线段BP的长为2t.②当P在线段AB上时,有以下两种情况:如果P是AB的内二倍分割点时,则AP=2BP,所以50-2t = 2×2t,解得t=253;如果P是BA的内二倍分割点时,则BP=2AP,所以2t=2(50-2t),解得t=503;当P在点A左侧时,有以下两种情况:如果A是BP的内二倍分割点时,则BA=2PA,所以50=2(2t-50)解得t=752;如果A是PB的内二倍分割点时,则PA=2BA,所以2t-50=2×50,解得t=15;综上所述:当t为253或503或752或15秒时,P、A、B中恰有一个点为其余两点的内二倍分割点.【点睛】本题考查了新定义内二倍分割点、速度与路程的关系和分类讨论的思想;准确理解定义,恰当的用速度与时间表示线段长,分类讨论,建立方程是解题的关键.21、(1)按峰谷电价付电费合算,能省24元;(2)1度【分析】(1)根据两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设那月的峰时电量为x度,根据用峰谷电价付费方式比普通电价付费方式省了14元,建立方程后求解即可.【详解】解:(1)按普通电价付费:200×0.53=106元,按峰谷电价付费:50×0.56+150×0.36=82元.所以按峰谷电价付电费合算,能省106-82=24元;(2)设那月的峰时电量为x度,根据题意得:0.53×200-[0.56x+0.36(200-x)]=14,解得x=1.答:那月的峰时电量为1度.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22、(1)见解析;(2)见解析;(3)见解析;(4)12 AC EF=【分析】(1)利用线段的定义和几何语言画出对应的几何图形;(2)利用线段的定义和几何语言画出对应的几何图形;(3)利用线段的定义和几何语言画出对应的几何图形;(4)度量长度后,写出数量关系即可.【详解】(1)如图,点E为所作;(2)如图,点F为所作;(3)如图,线段AC、EF为所作;(4)12 AC EF=【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23、(90﹣x);(180﹣x);∠1+∠3=2°;(90﹣x)+(180﹣x)=2;1;1.【分析】根据余角和补角的定义解答即可.【详解】设∠2的度数为x,则∠1=(90﹣x)°,∠3=(180﹣x)°.根据“∠1+∠3=2°”可列方程为:(90﹣x)+(180﹣x)=2.解方程,得x=1.故:∠2的度数为1°.【点睛】此题考查了余角和补角的意义,互为余角的两角的和为90︒,互为补角的两角之和为180︒.解此题的关键是能准确的找出角之间的数量关系.24、(1)∠DAC,两直线平行,内错角相等;(2)360°;(3)70°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB,根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,再利用角平分线的定义和等量代换即可求∠BED的度数.【详解】解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC(两直线平行,内错角相等);又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=80°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=40°,∴∠BED=∠BEF+∠DEF=30°+40°=70°.【点睛】本题主要考查平行线的性质和角平分线的定义,能够作出平行线是解题的关键.。
【精品】2017-2018年山东省德州市庆云县初一上学期数学期末试卷含解析答案
2017-2018学年山东省德州市庆云县七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A.桂林11.2℃B.广州13.5℃C.北京﹣4.8℃ D.南京3.4℃2.(4分)某市在今年4月份突遇大风,冰雹灾害性天气,造成直接经济损失5 000万元.5 000万元用科学记数法表示为()A.5000万元B.5×102万元C.5×103万元D.5×104万元3.(4分)如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是()A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短4.(4分)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c5.(4分)若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值为()A.﹣5 B.5 C.﹣7 D.76.(4分)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代表式a2015+2016b+c2017的值为()A.2015 B.2016 C.2017 D.07.(4分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化8.(4分)下列说法正确的是()A.射线AB与射线BA表示同一条射线B.连接两点的线段叫做这两点的距离C.平角是一条直线D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠39.(4分)如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160° D.180°10.(4分)某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x11.(4分)M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中,正确的是()A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向12.(4分)一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m 的取值是.14.(4分)若单项式2a x+2b2与﹣3ab y的和仍是一个单项式.则x y等于.15.(4分)若∠α补角是∠α余角的3倍,则∠α=.16.(4分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是.17.(4分)已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.18.(4分)如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒…,按此规律摆下去,第n个图案需要小棒根(用含有n的代数式表示).三、解答题(本大题共7小题,共计78分.解答题应写出必要的文字说明,证明过程或演算步骤)19.(10分)(1)计算:﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017(2)解方程:﹣1=.20.(7分)先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.21.(10分)如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有条.22.(10分)如图:四边形ABCD中,分别取AB,CD的延长线上一点E和F,连接EF,分别交BC,AD于点G和H,若∠1=∠2,∠3=∠4,求证:∠E=∠F.23.(14分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.24.(12分)某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销前购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.25.(15分)如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.2017-2018学年山东省德州市庆云县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A.桂林11.2℃B.广州13.5℃C.北京﹣4.8℃ D.南京3.4℃【解答】解:∵﹣4.8<3.4<11.2<13.5,∴平均温度最低的城市是北京,故选:C.2.(4分)某市在今年4月份突遇大风,冰雹灾害性天气,造成直接经济损失5 000万元.5 000万元用科学记数法表示为()A.5000万元B.5×102万元C.5×103万元D.5×104万元【解答】解:5 000=5×103(万元).故选:C.3.(4分)如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是()A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短【解答】答案:因为两点之间,线段最短,所以最短的路线是(1).故选:D.4.(4分)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.5.(4分)若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值为()A.﹣5 B.5 C.﹣7 D.7【解答】解:把x=3代入方程得:6﹣m=3﹣2,解得:m=5,故选:B.6.(4分)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代表式a2015+2016b+c2017的值为()A.2015 B.2016 C.2017 D.0【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2015+2016b+c2017=(﹣1)2015+2016×0+12017=0,故选:D.7.(4分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.8.(4分)下列说法正确的是()A.射线AB与射线BA表示同一条射线B.连接两点的线段叫做这两点的距离C.平角是一条直线D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3【解答】解:A、射线AB与射线BA表示不同的两条射线,故本选项错误;B、连接两点的线段的长度叫做这两点的距离,故本选项错误;C、平角的两条边在一条直线上,故本选项错误;D、若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3是正确的,故本选项正确.故选:D.9.(4分)如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160° D.180°【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.10.(4分)某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x【解答】解:由题意可得,12x×2=(42﹣x)×18,故选:C.11.(4分)M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中,正确的是()A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向【解答】解:船A在M的南偏西90°﹣30°=60°方向,故A、B选项错误;船B在M的北偏东90°﹣50°=40°方向,故C正确,D错误;故选:C.12.(4分)一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2【解答】解:根据分析其表面积=4×(1+2+3)+9=33m2,即涂上颜色的为33m2.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m 的取值是﹣1.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.14.(4分)若单项式2a x+2b2与﹣3ab y的和仍是一个单项式.则x y等于1.【解答】解:根据题意得:,解得:,则x y=(﹣1)2=1.15.(4分)若∠α补角是∠α余角的3倍,则∠α=45°.【解答】解:∠α的补角=180°﹣α,∠α的余角=90°﹣α,则有:180°﹣α=3(90°﹣α),解得:α=45°.故答案为:45°.16.(4分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是10.【解答】解:设可以购买x件这样的商品.3×5+(x﹣5)×3×0.8≤27解得x≤10,∴最多可以购买该商品的件数是10.17.(4分)已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.18.(4分)如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒…,按此规律摆下去,第n个图案需要小棒6n﹣2根(用含有n的代数式表示).【解答】解:如图可知,后一幅图总是比前一幅图多两个菱形,且多6根小棒,图案(1)需要小棒:6×1﹣2=4(根),图案(2)需要小棒:6×2﹣2=10(根),则第n个图案需要小棒:(6n﹣2)根.故答案为:6n﹣2.三、解答题(本大题共7小题,共计78分.解答题应写出必要的文字说明,证明过程或演算步骤)19.(10分)(1)计算:﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017(2)解方程:﹣1=.【解答】解:(1)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14;(2)去分母,得:2(x﹣3)﹣6=3(﹣2x+4)去括号,得:2x﹣6﹣6=﹣6x+12移项,得:2x+6x=12+6+6,合并同类项,得:8x=24,系数化为1,得:x=3.20.(7分)先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.【解答】解:原式=4x2y﹣[6xy﹣8xy+4+2x2y]+1=4x2y+2xy﹣4﹣2x2y+1=2x2y+2xy﹣3当x=﹣,y=1时,原式=2×(﹣)2×1+2×(﹣)×1﹣3=﹣.21.(10分)如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.【解答】解:(1)(2)(3)图中有线段6条.22.(10分)如图:四边形ABCD中,分别取AB,CD的延长线上一点E和F,连接EF,分别交BC,AD于点G和H,若∠1=∠2,∠3=∠4,求证:∠E=∠F.【解答】证明:∵∠1=∠AHE,∠1=∠2∴∠AHE=∠2∴AD∥BC∴∠3+∠C=180°∵∠3=∠4∴∠4+∠C=180°∴AB∥CD∴∠E=∠F23.(14分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.24.(12分)某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销前购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.【解答】解:(1)设每件衬衫降价x元,根据题意可得:(120﹣80)×400+(500﹣400)(120﹣x﹣80)=80×500×45%,解得:x=20,答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标;(2)由题意可得:[20×120+5×(120﹣20)]÷25=116(元),答:该公司购买这25件衬衫的平均价格是116元.25.(15分)如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.【解答】解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm∵AP=8cm,AB=12cm∴PB=AB﹣AP=4cm∴CD=CP+PB﹣DB=2+4﹣3=3cm②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB﹣CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所示:∴AD=AB﹣DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9或11附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
德州市数学七年级上学期期末数学试题题
德州市数学七年级上学期期末数学试题题一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒3.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 4.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+55.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣18.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4C .6D .89.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A.8cm B.2cm C.8cm或2cm D.以上答案不对10.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.11.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为()A.3.31×105B.33.1×105C.3.31×106D.3.31×10712.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1 C.6,2 D.﹣6,213.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.214.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3 cm B.6 cm C.11 cm D.14 cm15.把1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.2125二、填空题16.从一个n边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n的值是___________.∠的度17.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC数是__________.18.已知|x|=3,y2=4,且x<y,那么x+y的值是_____.19.把53°30′用度表示为_____.20.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.21.﹣30×(1223-+45)=_____. 22.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.23.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 24.因式分解:32x xy -= ▲ .25.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.26.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 27.五边形从某一个顶点出发可以引_____条对角线. 28.若2a +1与212a +互为相反数,则a =_____. 29.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 30.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 三、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和. 33.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.34.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
德州市数学七年级上学期期末数学试题题
德州市数学七年级上学期期末数学试题题一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 3.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .4 4.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .139 5.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短7.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒8.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )A .50°B .130°C .50°或 90°D .50°或 130°9.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°10.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱11.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.若3750'A ∠=︒,则A ∠的补角的度数为__________.15.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.16.因式分解:32x xy -= ▲ .17.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.19.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 20.|﹣12|=_____. 21.A 学校有m 个学生,其中女生占45%,则男生人数为________. 22.当x= 时,多项式3(2-x )和2(3+x )的值相等.23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.29.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数30.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.31.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A .【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.3.B解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键. 4.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b )+(3a-4ab )=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b )∴当a+b=7,ab=10时原式=10+7×7=59.故选B .5.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 7.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).8.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC ⊥OD ,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D .【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.9.A解析:A【解析】【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.10.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C .【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N 分别是AC,DB 的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC =2x ,CD =4x ,BD =7x ,因为M,N 分别是AC,DB 的中点,所以CM =12AC x =,DN =1722BD x =, 因为mn =17cm,所以x +4x +72x =17,解得x =2,所以BD =14,故答案为:14. 14.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.15.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB=5,BC =3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.16.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).17.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.18.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m,故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.22.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.23.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式. 解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 26.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.27.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.28.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.29.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.30.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,。
2022年山东省德州市庆云二中学数学七上期末达标测试试题含解析
2022-2023学年七上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列说法正确的是( )A .﹣5是﹣25的平方根B .3是(﹣3)2的算术平方根C .(﹣2)2的平方根是2D .8的平方根是±42.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡A .在糖果的称盘上加2克砝码B .在饼干的称盘上加2克砝码C .在糖果的称盘上加5克砝码D .在饼干的称盘上加5克砝3.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可赢利6元.设每本书的进价是x 元,根据题意列一元一次方程,正确的是( )A .7(160%)610x +=B .760%610x x -=C .7(160%)610x x +-=D .(160%)6x x +-=4.下列立体图形中,俯视图与主视图不同的是( ) A . B .C .D .5.已知2436α'∠=︒,β∠为α∠的余角,则β∠=( )A .50.2︒B .65.4︒C .90︒D .155.4︒6.下列各式是完全平方式的是( )A .214x x -+B .21+4xC .22a ab b ++D .221x x +-7.下列各个运算中,结果为负数的是( )A .2-B .()2--C .2(2)-D .22-8.一个角比它的余角大 18°22′,则这个角的补角的度数为( )A .54°11′B .125°49′C .108°11′D .35°49′ 9.方程153127x x +-=,去分母得( ) A .71061x x -+= B .710614x x --=C .71061x x --=D .756014x x -+=10.如果方程()21120m xm -++=是关于x 的一元一次方程,那么m 的值是( ) A .±1 B .1C .1-D .0 二、填空题(本大题共有6小题,每小题3分,共18分)11.文具店老板以每个60元的价格卖出两个计算器,其中一个赚了25%,另一个亏了25%,则卖这两个计算器总的是盈利____________元.12.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约____千克.13.数学课上,老师给出了如下问题:(1)以下是小刚的解答过程,请你将解答过程补充完整:解:如图2,因为120AOB ∠=︒,OC 平分AOB ∠,所以BOC ∠=______AOB ∠=______︒(角平分线的定义).因为20COD ∠=︒,所以BOD ∠=______︒.(2)小戴说:“我觉得这道题有两种情况,小刚考虑的是OD 在BOC ∠内部的情况,事实上,OD 还可能在AOC ∠的内部”.根据小戴的想法,请你在图1中画出另一种情况对应的图形,并直接写出BOD ∠的度数:______.14.已知关于x 的方程ax -b =5的解是x =-3,则代数式1-3a -b 的值为______15.单项式332a b 的次数是______.16.在数-3,-2,0,3中,大小在-1和2之间的数是__________.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.如果150∠=︒AOE ,40COD ∠=︒,那么AOB ∠是多少度?18.(8分)计算:⑴17(33)10(16)-+---- ; ⑵344( 1.75)(2)(3)(1)455---+---; ⑶215(12)4()2--⨯--÷-. 19.(8分)已知:ABC 中,AE 是ABC 的角平分线,AD 是ABC 的BC 边上的高,过点B 做//BF AE ,交直线AD 于点F .()1如图1,若70,30ABC C ∠=︒∠=︒,则AFB ∠=___ ____;()2若()1中的,∠=∠=,则AFBABC a ACBβ∠=__ ____;(用,aβ表示)()3如图2,()2中的结论还成立吗?若成立,说明理由;若不成立,请求出AFB∠.(用,aβ表示)20.(8分)如图,数轴上有A,B两点,AB=18,原点O是线段AB上的一点,OA=2OB.(1)求出A,B两点所表示的数;(2)若点C是线段AO上一点,且满足AC=CO+CB,求C点所表示的数;(3)若点E以3个单位长度/秒的速度从点A沿数轴向点B方向匀速运动,同时点F以1个单位长度/秒的速度从点B沿数轴向右匀速运动,并设运动时间为t秒,问t为多少时,E、F两点重合.并求出此时数轴上所表示的数.21.(8分)在天府新区的建设中,现要把176吨物资从某地运往华阳的甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为12吨/辆和8吨/辆,运往甲、乙两地的运费如下表:运往地甲地(元/辆)乙地(元/辆)车型大货车640 680小货车500 560(1)求这两种货车各用多少辆?(2)如果安排10辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,运往甲、乙两地的总运费为w元,求出w 与a 的关系式;(3)在(2)的条件下,若运往甲地的物资为100吨,请求出安排前往甲地的大货车多少辆,并求出总运费.22.(10分)如图,已知A 、B 、C 、D 是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母. ①画线段AB ;②画射线CA 、直线AD ;③过点B 画AD 的平行线BE ;④过点D 画AC 的垂线,垂足为F .23.(10分)如图,已知点A 在数轴上,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B 和点C ;(2)求点B 所表示的有理数与点C 所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和数 所表示的点重合.24.(12分)已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+. ()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值.参考答案一、选择题(每小题3分,共30分)1、B【解析】A、B、C、D都根据平方根的定义即可判定.【详解】解:A、负数没有平方根,故选项A错误;B、(-3)2=9,9的算术平方根是3,故选项B正确;C、(-2)2=4的平方根是±2,故选项C错误;D、8的平方根是±,故选项D错误.故选B.【点睛】本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.2、A【分析】由“第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡”可知,两块饼干的质量等于三颗糖果的质量;由“第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡”可知,一块饼干和一颗糖果共重10克,列方程求解可得答案.【详解】设一块饼干的质量为x克,则一颗糖果的质量为(10-x)克,根据题意可得:2x=3(10-x)解得x=6所以一块饼干6克,一颗糖果的质量为4克,故要使天平再度平衡,只有在糖果的称盘上加2克砝码,所以选A.考点:1、等式的性质;2、一元一次方程的应用.3、C【解析】设每本书的进价是x元,根据利润=售价-进价,即可得出关于x的一元一次方程,此题得解.【详解】设每本书的进价是x元,根据题意得:7 (160%)610x x+-=.故选C.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.4、C【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】A .俯视图与主视图都是正方形,故该选项不合题意;B .俯视图与主视图都是矩形,故该选项不合题意;C .俯视图是圆,左视图是三角形;故该选项符合题意;D .俯视图与主视图都是圆,故该选项不合题意;故选C .【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.5、B【分析】用90°减去α∠进一步求取α∠的余角即可.【详解】∵90°−α∠=6542'︒=65.4︒,∴α∠的余角β∠=65.4︒,故选:B.【点睛】本题主要考查了余角的性质,熟练掌握相关概念是解题关键.6、A【分析】根据完全平方公式的公式结构对各选项分析判断后利用排除法求解.【详解】A 、2211=()42x x x -+-,故本选项正确; B 、应为21+4+4x x ,故本选项错误;C 、应为222a ab b ++,故本选项错误;D 、应为22+1x x +,故本选项错误.故选:A .【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟记公式结构是解题的关键.7、D【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A 、|-2|=2,不是负数;B 、-(-2)=2,不是负数;C 、(-2)2=4,不是负数;D 、-22=-4,是负数.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.8、B【分析】和为90度的两个角互为余角,依此根据一个角比它的余角大18°22′可求这个角的度数,再根据和为180度的两个角互为补角,即可求解.【详解】设这个角为x ,则()901822'x x -︒-=︒,解得:5411'x =︒,这个角的补角的度数为1805411'12549'︒-︒=︒.故选:B .【点睛】本题考查了余角与补角,主要记住互为余角的两个角的和为90°;两个角互为补和为180°.利用方程思想较为简单. 9、B【分析】利用方程恒等变形的性质两边都乘以14,得()725314x x -+=,再去括号即可. 【详解】方程153127x x +-=, 方程两边都乘以14得:()725314x x -+=,去括号得710614x x --=,故选择:B .【点睛】本题考查方程的恒等变形问题,掌握方程恒等变形的性质是解题关键.10、B【分析】根据一元一次方程的定义得出2|m|-1=1,且m+1≠0,进而得出答案.【详解】由题意得:2|m|-1=1,且m+1≠0,解得:m=1,故选:B .【点睛】此题主要考查了一元一次方程的定义,正确把握一次项次数不能为零是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)【分析】可分别设两种计算器的进价,根据赔赚可列出方程求得,再比较两计算器的进价和与售价和之间的差,即可得出答案.【详解】解:设赚了25%的进价为x元,亏了25%的一个进价为y元,根据题意可得:x(1+25%)=60,y(1-25%)=60,解得:x=48(元),y=80(元).则两个计算器的进价和=48+80=128(元),两个计算器的售价和=60+60=120(元),则该文具店亏了8元.∴卖这两个计算器总的是盈利8-元;故答案为:8-.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.12、90【分析】根据题意先算出50户家庭可回收垃圾为15千克,再用300户家庭除以50户家庭乘以15即可解答【详解】100×15%=15千克30050×15=90千克故答案为90千克【点睛】此题考查扇形统计图,解题关键在于看懂图中数据13、(1)12;60°;40°(2)80°【分析】(1)依据角平分线的定义,即可得到∠BOC=12∠AOB=60°,再根据角的和差关系,即可得出∠BOD的度数.(2)依据角平分线的定义,即可得到∠BOC=12∠AOB=60°,再根据角的和差关系,即可得出∠BOD的度数.【详解】(1)如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC=12∠AOB=60°.∵∠COD=20°,∴∠BOD=60°-20°=40°.故答案为:12;60°;40°;(2)如图1,∵∠AOB=120°,OC平分∠AOB.∴∠BOC=12∠AOB=60°.∵∠COD=20°,∴∠BOD=60°+20°=80°.故答案为:80°.【点睛】本题主要考查了角平分线的定义以及角的计算,掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是关键.14、6【分析】把=-3x代入方程可得-3a-b=5,再代入代数式中即可求得.【详解】把=-3x代入方程可得:-3a-b=5,原式=1+(-3-)=1+5=6a b.【点睛】本题考查了一元一次方程的解,能根据等式变形得出代数式的值是关键.15、1【解析】根据单项式的次数是所有字母的指数和来求解即可.【详解】单项式332a b的次数是1.故答案为:1【点睛】本题考查的是单项式的次数,掌握单项式的次数的定义是关键.16、1【分析】根据正数大于1,1大于负数,正数大于负数进行比较即可.【详解】在数−3,−2,1,3中,大小在−1和2之间的数是1.故答案为:1.【点睛】本题主要考查的是比较有理数的大小,掌握比较有理数大小的法则是解题的关键.三、解下列各题(本大题共8小题,共72分)17、35°【分析】先根据角平分线的定义求出COE ∠ 的度数,然后利用AOC AOE COE ∠=∠-∠求出AOC ∠的度数,再利用角平分线的定义即可求出AOB ∠的度数.【详解】解:∵OD 是COE ∠ 的平分线,∴224080COE COD ∠=∠=⨯︒=︒∴1508070AOC AOE COE ∠=∠-∠=︒-︒=︒∵OB 是AOC ∠的平分线, ∴11703522AOB AOC ∠=∠=⨯︒=︒ ∴AOB ∠的度数是35°.【点睛】本题主要考查角平分线的定义和角的和与差,掌握角平分线的定义是解题的关键.18、(1)-44;(2)-1;(3)44【分析】(1)先去括号,然后加减运算即可;(2)把小数化为分数,然后再去括号,再通分进行加减即可;(3)先去绝对值,计算乘方,然后加减运算即可.【详解】解:(1)原式=17-3310+16=-44--;(2)原式=3344-1+23+1=12=-14455--; (3)原式=1-45(12)4=60-16=44⨯--÷ 【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解题的关键.19、(1)20°;(2)2αβ-;(3)不成立,1802AFB αβ-∠=︒-【分析】()1根据三角形的内角和求出BAC ∠=80°,根据AE 是ABC 的角平分线得到40BAE ∠=︒,根据AD ⊥BC 得20BAD ∠=︒,得到20EAD ∠=︒,根据平行线的性质即可求出AFB ∠;()2用,ABC a ACB β∠=∠=代替具体的角即可求解;()3根据三角形的内角和、角平分线及外角定理即可表示出AFB ∠.【详解】()1∵70ABC ∠=︒,30C ∠=︒∴BAC ∠=180°-ABC C ∠-∠=80°,∵AE 是ABC 的角平分线 ∴1402BAE BAC ∠=∠=︒, ∵AD ⊥BC∴9020BAD ABC ∠=︒-∠=︒,∴20EAD BAE BAD ∠=∠-∠=︒∵//BF AE∴AFB ∠=20EAD ∠=︒;故答案为:20°; ()2∵,ABC a ACB β∠=∠=∴BAC ∠=180°-ABC C ∠-∠=180a β︒--, ∵AE 是ABC 的角平分线 ∴11190222BAE BAC αβ∠=∠=︒--, ∵AD ⊥BC∴9090BAD ABC α∠=︒-∠=︒-, ∴1122EAD BAE BAD αβ∠=∠-∠=-=2αβ- ∵//BF AE∴AFB ∠=2EAD αβ∠=-; 故答案为:2αβ-;()3不成立,1802AFB αβ-∠=︒-, 理由如下:∵,ABC a ACB β∠=∠=∴BAC ∠=180°-ABC C ∠-∠=180a β︒--, ∵AE 是ABC 的角平分线∴11190222BAE BAC αβ∠=∠=︒--, ∵//BF AE ∴119022ABF BAE αβ∠=∠=︒--∵AD ⊥BC∴9090BAD ABC α∠=∠-︒=-︒,∴AFB ∠=180ABF BAD ∠-∠︒-=()11180909022αβα⎛⎫︒-︒----︒ ⎪⎝⎭=1802αβ-︒- ∴1802AFB αβ-∠=︒-.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知三角形的内角和、角平分线及外角定理.20、 (1)A ,B 两点所表示的数分别是﹣12,6;(2)C 点所表示的数是﹣2;(3)t =9时,E 、F 两点重合,数轴上所表示的数为1.【解析】(1)由OA =2OB ,OA+OB =18即可求出OA 、OB ;(2)设OC =x ,则AC =12﹣x ,BC =6+x ,根据AC =CO+CB 列出方程即可解决;(3)由点E 运动路程=18+点F 运动路程,可列方程,可求t 的值.【详解】解:(1)∵OA+OB =AB =18,且OA =2OB∴OB =6,OA =12,∴A ,B 两点所表示的数分别是﹣12,6;(2)设OC =x ,则AC =12﹣x ,BC =6+x ,∵AC =CO+CB ,∴12﹣x =x+6+x ,∴x =2,∴OC =2,∴C 点所表示的数是﹣2;(3)根据题意得:3t =18+t ,∴t =9∴当t =9时,E 、F 两点重合,此时数轴上所表示的数为OB+9=6+9=1.【点睛】考查一元一次方程的应用,实数与数轴以及数轴上两点之间距离公式的运用,找等量关系列出方程是解决问题的关键,属于中考常考题型.21、(1)大货车8辆,小货车10辆;(2)w=20a+10440;(3)安排前往甲地的大货车5辆,总费用为10540元.【分析】(1)由题意首先设大货车用x辆,则小货车用(18-x)辆,利用所运物资为176吨得出等式方程求出即可;(2)根据安排10辆货车前往甲地,前往甲地的大货车为a辆,得出小货车的辆数,进而得出w与a的函数关系;(3)根据运往甲地的物资为100吨,列出方程即可得出a的取值,进而解答.【详解】解:(1)设大货车x辆,则小货车(18﹣x)辆,由题意可得:12x+8(18﹣x)=176解得:x=8,则18﹣x=10∴大货车8辆,小货车10辆.(2)设前往甲地的大货车为a辆,可得:w=640a+680(8﹣a)+500(10﹣a)+560a化简得:w=20a+10440(3)12a+8(10﹣a)=100解得:a=5则w=20×5+10440=10540答:安排前往甲地的大货车5辆,总费用为10540元.【点睛】本题主要考查一元一次方程的应用,理解题意并根据题干已知条件关系列出等式是解决问题的关键.22、见解析;【解析】①连接AB即可;②连接CA并延长CA,一个端点为C;连接AD并两面延长即可;③根据网格及平行线的性质画图即可;④根据网格上正方形的性质画图即可.【详解】如图:①连接AB;线段AB即为所求,②连接CA并延长CA,端点为C;连接AD并两面延长,射线CA或直线AD即为所求,③因为AD在格线上,所以过B沿格线画直线BE,BE即为所求,④因为AC是网格正方形的对角线,所以连接D点所在小网格对角线交AC于F,DF即为所求,【点睛】本题考查简单的作图,注意:线段有两个端点,射线有一个端点,直线没有端点,熟记直线、射线、线段的定义是解题关键,23、(1)在数轴上表示见解析;(2)-1;(3)-2.【解析】分析:(1)将点A 向右移动3个单位长度得到点C 的位置,依据相反数的定义得到点B 表示的数;(2)依据有理数的乘法法则计算即可;(3)找出AB 的中点,然后可得到与点C 重合的数.详解:(1)如图所示:(2)-5×2=-1.(3)A 、B 中点所表示的数为-3,点C 与数-2所表示的点重合.故答案为-2.点睛:本题主要考查的是数轴、相反数、有理数的乘法,在数轴上确定出点A 、B 、C 的位置是解题的关键.24、(1)225x 9xy 9y +-(2)63或-13【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+, ∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项, ∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.19m2
B.21m2
C.33m2
D.34m2
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
13. (4 分)如果方程(m﹣1)x|m|+2=0 是表示关于 x 的一元一次方程,那么 m 的取值是
.
14.(4 分)若单项式 2ax+2b2 与﹣3aby 的和仍是一个单项式.则 xy 等于
指出结论并说明理由.
24.(12 分)某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件 80 元的价格购进了某品牌衬衫 500 件,并以每件 120 元的价格销售了 400 件,商场准备 采取促销措施,将剩下的衬衫降价销售.
(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利 45%的预期目标? (2)在(1)的条件下,某公司给员工发福利,在该商场促销前购买了 20 件该品牌的衬衫
步骤)
19.(10 分)(1)计算:﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017
(2)解方程: ﹣1=
.
20.(7 分)先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中 x=﹣ ,y=1.
21.(10 分)如图,在平面内有 A、B、C 三点.
(1)画直线 AC,线段 BC,射线 AB;
正确的是( )
A.船 A 在 M 的南偏东 30°方向 B.船 A 在 M 的南偏西 30°方向 C.船 B 在 M 的北偏东 40°方向 D.船 B 在 M 的北偏东 50°方向
第2页(共6页)
12.(4 分)一个画家有 14 个边长为 1m 的正方体,他在地面上把它们摆成如下图的形状, 然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为( )
发给员工,后因为有新员工加入,又要购买 5 件该衬衫,购买这 5 件衬衫时恰好赶上该 商场进行促销活动,求该公司购买这 25 件衬衫的平均价格. 25.(15 分)如图,P 是线段 AB 上任一点,AB=12cm,C、D 两点分别从 P、B 同时向 A
A.﹣(a+b﹣c)=﹣a+b﹣c
B.﹣2(a+b﹣3c)=﹣2a﹣2b+6c
C.﹣(﹣a﹣b﹣c)=﹣a+b+c
D.﹣(a﹣b﹣c)=﹣a+b﹣c
5.(4 分)若关于 x 的方程 2x﹣m=x﹣2 的解为 x=3,则 m 的值为( )
A.﹣5
B.5
C.﹣7
D.7
6.(4 分)若 a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,
(2)在线段 BC 上任取一点 D(不同于 B、C),连接线段 AD;
(3)数数看,此时图中线段共有
条.
第3页(共6页)
22.(10 分)如图:四边形 ABCD 中,分别取 AB,CD 的延长线上一点 E 和 F,连接 EF, 分别交 BC,AD 于点 G 和 H,若∠1=∠2,∠3=∠4,
求证:∠E=∠F.
9.(4 分)如图,将一副三角板叠放在一起,使直角的顶点重合于 O,则∠AOC+∠DOB= ()
A.90°
B.120°
C.160°
D.180°
10.(4 分)某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼
品的包装盒,每张硬纸板可制作盒身 12 个,或制作盒底 18 个,1 个盒身与 2 个盒底配成
一套,现有 42 张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用 x 张做盒身,则
下面所列方程正确的是( )
A.18(42﹣x)=12x
B.2×18(42﹣x)=12x
C.18(42﹣x)=2×12x
D.18(21﹣x)=12x
11.(4 分)M 地是海上观测站,从 M 地发现两艘船 A、B 的方位如图所示,下列说法中,
.
15.(4 分)若∠α 补角是∠α 余角的 3 倍,了对某种商品促销,将定价为 3 元的商品,以下列方式优惠销售:若购
买不超过 5 件,按原价付款;若一次性购买 5 件以上,超过部分打八折.如果用 27 元钱,
最多可以购买该商品的件数是
.
17.(4 分)已知线段 AB,在 AB 的延长线上取一点 C,使 AC=2BC,若在 AB 的反向延长
线上取一点 D,使 DA=2AB,那么线段 AC 是线段 DB 的
倍.
18.(4 分)如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要 4 根小棒,
图案(2)需要 10 根小棒…,按此规律摆下去,第 n 个图案需要小棒
根(用含有
n 的代数式表示).
三、解答题(本大题共 7 小题,共计 78 分.解答题应写出必要的文字说明,证明过程或演算
000 万元用科学记数法表示为
()
A.5000 万元
B.5×102 万元
C.5×103 万元
D.5×104 万元
3.(4 分)如图所示,由 A 到 B 有(1),(2),(3)三条路线,最短的路线选(1)的理由是
()
A.因为它直
B.两点确定一条直线
C.两点间距离的定义
D.两点之间,线段最短
4.(4 分)下列去括号正确的是( )
则代表式 a2015+2016b+c2017 的值为( )
A.2015
B.2016
C.2017
D.0
7.(4 分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对
面上的字是( )
A.传
B.统
C.文
第1页(共6页)
D.化
8.(4 分)下列说法正确的是( ) A.射线 AB 与射线 BA 表示同一条射线 B.连接两点的线段叫做这两点的距离 C.平角是一条直线 D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3
山东省德州市庆云县七年级(上)期末数学试卷
一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)
1.(4 分)下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是( )
A.桂林 11.2℃
B.广州 13.5℃
C.北京﹣4.8℃
D.南京 3.4℃
2.(4 分)某市在今年 4 月份突遇大风,冰雹灾害性天气,造成直接经济损失 5 000 万元.5
23.(14 分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线. (1)如图 1,当∠AOB 是直角,∠BOC=60°时,∠MON 的度数是多少? (2)如图 2,当∠AOB=α,∠BOC=60°时,猜想∠MON 与 α 的数量关系; (3)如图 3,当∠AOB=α,∠BOC=β 时,猜想:∠MON 与 α、β 有数量关系吗?如果有,