曲线基本要素计算公式
曲线计算公式

一、曲线要素计算已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长)1、求ZH 点(或ZY 点)坐标及方位角⎪⎩⎪⎨⎧-=-=-=11sin cos AT JDY ZHY A T JDX ZHX TJDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角⎪⎩⎪⎨⎧+=+=+-=22sin cos AT JDY HZY A T JDX HZX L T JDZH HZZH H3、求解切线长T 、外距E 、曲线长L(1)圆曲线⎪⎩⎪⎨⎧=-==180/)1)2/cos(/1()2/tan(απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan()(020R l l l Rl l R p R E l R L qp R T s s s HsH H ===⎪⎩⎪⎨⎧-+=+⨯-=+⨯+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ⎪⎩⎪⎨⎧+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯-+=⨯++=⨯⨯-==-=-=1111121132125cos sin sin cos /180)2/()6/()40/(Ay i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π四、圆曲线上各桩号点坐标及方位角计算已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1)⎪⎩⎪⎨⎧⨯-+=⨯++=⨯+⨯-=⎪⎩⎪⎨⎧=-==++-=-++=--=1111121231110211231111cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(Ay i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯--=⨯+-=⨯⨯+==-=-=2222222232225cos sin sin cos /180)2/()6/()40/(Ay i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZHHZZH L s s s π六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负)⎪⎩⎪⎨⎧-=-=+=T N Y BDY T N X BDX T T sin cos α七、纵断面高程计算(1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ))(*ZH DZH i H DH -+=(2) 竖曲线上高程计算已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) )2/(2R l k il H DH ZHDZH l ⨯-+=-=注:JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标R 、L S1、L S2:半径、缓和曲线1、缓和曲线2LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。
平曲线要素计算公式(给学生用的)

第三节 竖曲线纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线采用抛物线拟合。
一、竖曲线要素的计算公式(2)曲线主点桩号计算:ZH(桩号)=JD(桩号)-THY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩号)=YH(桩号)+l sJD(桩号)=QZ(桩号)+J/230-3 336629-3 4028)-(3 )(227-3 2sec )(26-3 225-3 2ls 180)2(m 18024)-(3 2)(23)-(3 9022)-(3 23842421)-(3 )( 240234202300034223m Rl R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T Rl m R l R l p m R l l q s s s s s Y s ss s s s -=-=-=-⋅+=-=+⋅⋅-=+⋅⋅=+⋅+=︒⋅︒=-=-=απβααπαπβ相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。
2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:[例1]、某山岭区二级公路,变坡点桩号为K5+,标高为,变坡点桩号的地面高程为,i1=+5%,i2=-4%,竖曲线半径R=2000m。
试计算竖曲线诸要素以及桩号为K5+和K5+处的设计高程,BPD的设计高程与施工高。
解:1.计算竖曲线要素ω= |i2-i1|= | =,为凸型。
曲线长L=Rω=2000×=180m 切线长T=L/2=180/2=90m外距E=T 2/2R=902/2×2000= 2.计算设计高程竖曲线起点桩号=(K5+)-90=K4+ 竖曲线起点高程=×=竖曲线终点桩号=(K5+)+90=K5+ 竖曲线终点高程=×=桩号K5+处:横距K5x 1=(K5+ )-(K4+)=60m 竖距h 1=x 12/2R=602/2×2000= 切线高程=(90-60)×= +60×= 设计高程=桩号K5+处: 横距x 2=(K5+-(K5+=20m 竖距h 2=x 22/2R=202/2×2000= 切线高程=(90-20)×=设计高程=横距x 2=(K5+-(K4+=160m 竖距h 2=x 22/2R=1602/2×2000= 切线高程=+160×= 设计高程=设计高程==BPD 施工高=设计高程-地面高程=,应为挖方。
缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。
缓和曲线计算公式

180 i (中桩点里程 HY里程 ) 0 R
X xZH x cos y sin Y xZH x sin y sin
(α为两坐标系旋转角)
4.原始坐标计算 (1)左偏情况: ★ 若该点在缓和曲线上,计算公式:
ZH 里程 =JD里程 -T
xXB yXB
li3 6 Rl0 li5 li 40 R 2l02
li 中桩点里程-ZH 里程
★ 若该点在圆曲线上,计算公式:
xXB R(1 cos i ) P yXB R sin i m
2
m
曲线长度: L R ( 2 0 ) 切曲差: D 2T L
180
2l0 R
180
l0
2
R
HY里程 =ZH 里程 +l0 QZ里程 =HY里程 ( L 2 l0 ) YH里程 =QZ里程 +( L 2 l0 ) HZ里程 =JD里程 +T D
1.曲线常数计算 缓和曲线倾角: 0=
l 0 180 2R
切线外移量(切垂距) : m=
l0 l3 0 2 2 240 R
l02 l04 圆曲线内移值: P= 24 R 2688R 3
2.曲线要素计算 切线长度: T ( R P ) tg 外矢距: E ( R P) sec 3.主点里程推算
i
180 (中桩点里程 HY里程 ) 0 R
(2)右偏情况: ★ 若该点在缓和曲线上,计算公式:
xXB yXB
li5 li 40 R 2l02 l3 i 6 Rl0
平曲线要素计算公式

(2)曲线主点桩号计算:ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+ls QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩30-3 336629-3 4028)-(3 )(227-3 2sec )(26-3 225-3 2ls 180)2(m 18024)-(3 2)(23)-(3 9022)-(3 23842421)-(3 )( 24023420230034223m Rl R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T Rl m R l R l p m R l l q s s sss Y s s s s s s -=-=-=-⋅+=-=+⋅⋅-=+⋅⋅=+⋅+=︒⋅︒=-=-=απβααπαπβ第三节竖曲线纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。
可采用抛物线或圆曲线。
一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。
2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:[例1]、某山岭区二级公路,变坡点桩号为K5+030.00,高程为427.68m,i1=+5%,i2=-4%,竖曲线半径R=2000m。
试计算竖曲线诸要素以及桩号为K5+000.00和K5+100.00处的设计高程。
解:1.计算竖曲线要素ω= |i2-i1|= |-0.04-0.05| =0.09,为凸型。
曲线长L=Rω=2000×0.09=180m切线长T=L/2=180/2=90m外距E=T2/2R=902/2×2000=2.03m2.计算设计高程竖曲线起点桩号=(K5+030.00)-90=K4+940.00竖曲线起点高程=427.68-90×0.05=423.18竖曲线终点桩号=(K5+030.00)+90=K5+120.00竖曲线终点高程=427.68-90×0.04=424.08桩号K5+000.00处:横距K5x 1=(K5+ 000.00)-(K4+940.00)=60m 竖距h 1=x 12/2R=602/2×2000=0.90m 切线高程=427.68-(90-60)×0.05=426.18m 423.18+60×0.05=426.18设计高程=426.18-0.90=425.28m 桩号K5+100.00处:横距x 2=(K5+120.00)-(K5+100.00)=20m 竖距h 2=x 22/2R=202/2×2000=0.1m切线高程=427.68-(90-20)×0.04=424.88m 设计高程=424.88-0.1=424.78m 横距x 2=(K5+100.00)-(K4+940.00)=160m 竖距h 2=x 22/2R=1602/2×2000=6.4m 切线高程=423.18+160×0.05=431.18m 设计高程=431.18-6.40=424.78m[例2]平原区某二级公路有一弯道,偏角α右=15°28′30″,半径R=600m ,缓和曲线长度Ls=70m , JD=K2+536.48。
平曲线的五大要素计算公式

平曲线的五大要素计算公式以下是关于平曲线的五大要素计算公式。
平曲线是指在平面上描述一条曲线的五种基本参数,包括曲线长度、曲线半径、曲线角度、曲线切线和曲线弧度。
下面是这五种要素的计算公式:1.曲线长度(L):曲线长度可以通过计算曲线上的所有坐标点之间的距离来获得。
对于参数方程表示的曲线,曲线长度L可以通过以下公式计算: L=∫(√((dx/dt)²+(dy/dt)²)dt) 其中,(dx/dt)和(dy/dt)分别是曲线在x和y方向上的速度矢量。
2.曲线半径(R):曲线半径表示曲线在某一点处弯曲的程度。
对于圆弧曲线,曲线半径R可以通过以下公式计算: R=(dx²+dy ²)^(1/2)/(1+(dy/dx)²)^(1/2) 其中,(dx,dy)是曲线上的某一点坐标。
3.曲线角度(θ):曲线角度表示曲线在某一点处与x轴的夹角。
对于参数方程表示的曲线,曲线角度θ可以通过以下公式计算: θ=atan2(dy/dx) 其中,(dx,dy)是曲线上的某一点坐标。
4.曲线切线(T):曲线切线表示曲线在某一点处的切线方向。
对于参数方程表示的曲线,曲线切线T可以通过以下公式计算: T=(dx/dt,dy/dt) 其中,(dx/dt)和(dy/dt)分别是曲线在x和y方向上的速度矢量。
5.曲线弧度(α):曲线弧度表示曲线在某一点处沿逆时针方向的旋转程度。
对于圆弧曲线,曲线弧度α可以通过以下公式计算: α=θ 其中,θ是曲线在某一点处与x轴的夹角。
需要注意的是,这些公式适用于平曲线的一般情况。
在实际应用中,根据具体的曲线类型和表示方式,可能需要对公式进行相应的调整。
竖曲线、缓和曲线计算公式

第三节竖曲线纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。
可采用抛物线或圆曲线。
一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。
1.二次抛物线基本方程:或ω:坡度差(%);L:竖曲线长度;R:竖曲线半径2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:二、竖曲线最小半径(三个因素)1.缓和冲击对离心加速度加以控制。
ν(m/s)根据经验,a=0.5~0.7m/s2比较合适。
我国取a=0.278,则Rmin=V2/3.6 或Lmin=V2ω/3.62.行驶时间不过短 3s的行程Lmin=V.t/3.6=V/1.23.满足视距的要求分别对凸凹曲线计算。
(一)凸形竖曲线最小半径和最小长度按视距满足要求计算1.当L<ST时,Lmin = 2ST - 4/ω2.当L≥ST时,ST为停车视距。
以上两个公式,第二个公式计算值大,作为有效控制。
按缓和冲击、时间行程和视距要求(视距为最不利情况)计算各行车速度时的最小半径和最小长度,见表4-13。
表中:(1)一般最小半径为极限最小半径的1.5~2倍;(2)竖曲线最小长度为3s行程的长度。
(二)凹曲线最小半径和长度1.夜间行车前灯照射距离要求:1)L<ST2) L≥STL<ST Lmin = 2ST - 26.92/ω (4-14)L≥STω /26.92 (4-15)3s时间行程为有效控制。
例:设ω=2%=0.02;则L=ωR竖曲线最小长度L=V/1.2速度V=120km/h V=40km/h 一般最小半径R凸17000 700一般最小半径R凹6000 700 L凸340 14L凹120 14 例题4-3ω=-0.09 凸形;L=Rω=2000*0.09=180mT=L/2=90mE=T2/2R=2.03m起点桩号=k5+030 - T =K4+940起始高程=427.68 - 5%*90=423.18m桩号k5+000处:x1=k5+000-k4+940=60m切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m设计高程=426.18 - 0.90=425.28m 桩号k5+100处:x2=k5+100-k4+940=160m切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=6.40m设计高程=431.18 - 6.40=424.78m第一节平面线形概述一、路线路线指路的中心线;路线在水平面上的投影叫路线的平面;路线设计:确定路线空间位置和各部分几何尺寸的工作;可分为平面设计、纵断面设计、横断面设计。
曲线常数,要素,主点里程计算公式

曲线常数、要素、主点里程计算公式1.引言在道路、铁路等工程建设中,曲线是常见的地理要素之一。
曲线的设计和计算涉及到曲线的常数、要素以及主点里程等概念。
本文将介绍曲线常数的定义、曲线要素的计算方法以及主点里程的计算公式。
2.曲线常数曲线常数是用来描述曲线形状和转弯的程度的常数值。
在道路或铁路设计中,常用的曲线常数有曲率半径、曲线长和超高补正。
下面分别介绍这些常数的定义和计算方法。
2.1曲率半径曲率半径是指曲线上某一点处的切线半径。
曲率半径一般用R表示,单位为米。
曲率半径的计算公式如下:R=(L*L)/(24*A)其中,R为曲率半径,L为曲线长(米),A为曲线上移的代数和(米)。
2.2曲线长曲线长是曲线上起点至终点的实际长度,也是曲线常数中的重要要素。
曲线长的计算方法如下:L=(A*100)/B其中,L为曲线长(米),A为曲线上移的代数和(米),B为曲线的偏距(米)。
2.3超高补正超高补正是为了消除车辆在曲线运行中受到的侧向加速度而进行的补正措施。
超高补正的计算方法如下:H=(V*V)/(127*R)其中,H为超高补正(米),V为设计速度(米/秒),R为曲率半径(米)。
3.曲线要素的计算曲线要素主要包括切线长、切曲差、切线与曲线连接的过渡曲线等。
下面分别介绍这些要素的计算方法。
3.1切线长切线长是曲线上切线的长度,用于计算车辆在曲线上行驶时的视线距离。
切线长的计算方法如下:T=R*ta n(A/2)其中,T为切线长(米),R为曲率半径(米),A为曲线的全角(度)。
3.2切曲差切曲差是曲线上切线长度与曲线长度的差值,用于计算车辆在曲线上行驶时的侧向位移。
切曲差的计算方法如下:D=T-L其中,D为切曲差(米),T为切线长(米),L为曲线长(米)。
3.3过渡曲线过渡曲线是连接切线与曲线的曲线段,用于缓和车辆在切线与曲线之间的过渡。
过渡曲线的计算方法根据具体的设计要求而不同。
4.主点里程的计算公式主点里程是指道路或铁路上的重要节点位置,可以用来标示曲线的起点、终点以及中间某些特定位置。