考研数学一重要知识点和题型总结
考研数一题型
考研数一题型摘要:一、考研数学一题型介绍1.选择题2.填空题3.解答题1) 计算题2) 证明题3) 应用题二、各类题型的解题策略1.选择题2.填空题3.解答题1) 计算题2) 证明题3) 应用题三、考研数学一题型的重要性1.了解题型,做到心中有数2.针对不同题型,提高解题技巧3.全面备考,确保考试顺利正文:考研数学一是考研科目中非常重要的一部分,其题型主要包括选择题、填空题和解答题。
其中,解答题又包括计算题、证明题和应用题。
对于备考考研数学一的同学来说,了解这些题型并掌握相应的解题策略是非常重要的。
首先,选择题是考研数学一的基础题型,通常有10道题,每题10分,共计100分。
选择题主要考察对基本概念、基本原理和基本方法的理解和掌握。
解题时要注意审题,仔细分析各个选项,避免因粗心大意而失分。
其次,填空题也是考研数学一的常见题型。
填空题共有6道题,每题15分,共计90分。
填空题主要考察对知识的灵活运用和计算能力。
解题时要注意把握题目的关键信息,准确地进行计算。
再者,解答题是考研数学一的重中之重,共有6道题,每题25分,共计150分。
解答题分为计算题、证明题和应用题。
其中,计算题主要考察学生的计算能力和对知识点的熟练掌握;证明题主要考察学生的逻辑思维能力和证明技巧;应用题则考察学生将理论知识运用到实际问题的能力。
针对不同类型的解答题,要有针对性地进行解题训练,提高解题技巧。
总的来说,了解考研数学一的题型和解题策略对于备考考研数学一是非常关键的。
只有全面了解题型,针对性地进行训练,才能在考试中取得理想的成绩。
考研数学一全部知识点总结(8K打印)
U ( x0 , )
o
,
4. 海 涅 (Heine) 归 结 原 则 : lim f ( x ) A 的 充 要 条 件 是 : 对 于 任 何 满 足
x x0
2 tan 1 tan 2 1 2 2 sin cos [sin( ) sin( )] cos 2 2cos 1 1 2sin 2 2 1 tan 1 cos 2 sin 2 cos sin [sin( ) sin( )] 1 tan 2 2 2tg ctg 2 1 1 ctg 2 cos cos [cos( ) cos( )] tg 2 2 1 tg 2ctg 2 sin 2 2sin cos
1 sin 3 3sin 4sin sin sin [cos( ) cos( )] 2 cos 3 4cos3 3cos
3
limxn x0 的数列{xn},都有 lim f ( xn ) A 。
n n
归结原则对于验证函数在某点没有极限是较方便的, 例如可以挑选一个 收敛于该点的自变量 x 的数列{xn},而相应的函数值数列{f(xn)}却不收敛;或 者选出两个收敛于该点的数列{xn},{x’n},而相应的函数值数列{f(xn)},{f(xn)} 却具有不同的极限。 1.4 无穷小与无穷大 若 lim ( x) l , 当 时 , 则 称 x→x0 时 称 α(x) 是 β(x) 的 l 0 x x0 ( x )
(3)对于
f ( x) f ( x0 ) lim g ( x), x x0 (1) f ( x)很复杂,按定义求,f ( x0 ) x x0 x x0 f ( x) , A,x x0 (2)否则,先求出f ( x),再求 lim f ( x)
考研数学常考题型及解题思路
考研数学常考题型及解题思路考研数学是众多考研学子需要攻克的重要科目之一。
在备考过程中,了解常考题型及掌握相应的解题思路至关重要。
以下将为大家详细介绍考研数学中常出现的题型以及有效的解题方法。
一、函数、极限与连续这部分是考研数学的基础,经常以选择题、填空题和解答题的形式出现。
1、求函数的极限对于简单的函数,直接代入法是常用的。
例如,当函数在某点的定义明确时,可以直接将该点的值代入函数中求解。
对于较为复杂的分式函数,通常采用约分、通分、有理化等方法将其化简,然后再求极限。
当遇到无穷小量乘以有界函数时,其极限为零。
2、函数的连续性要判断函数在某点的连续性,需要先判断函数在该点是否有定义,然后判断函数在该点的极限是否存在,最后判断极限值是否等于函数在该点的函数值。
间断点的类型判断也是常见考点,包括可去间断点、跳跃间断点和无穷间断点等。
二、一元函数微分学这部分在考研数学中占有较大比重。
1、导数的计算利用基本的求导公式是基础,如常见的幂函数、指数函数、对数函数等的求导公式。
对于复合函数,使用链式法则进行求导。
隐函数求导则需要通过方程两边同时对自变量求导来求解。
2、利用导数研究函数的性质通过求导判断函数的单调性和极值。
当导数大于零时,函数单调递增;导数小于零时,函数单调递减。
导数为零的点可能是极值点。
利用二阶导数判断函数的凹凸性。
二阶导数大于零时,函数为凹函数;二阶导数小于零时,函数为凸函数。
三、一元函数积分学1、不定积分的计算熟练掌握基本积分公式是关键。
换元积分法和分部积分法是常用的方法。
换元积分法要注意选择合适的换元方式,分部积分法通常适用于被积函数是两个不同类型函数乘积的情况。
2、定积分的计算与应用计算定积分可以通过牛顿莱布尼茨公式,先求出原函数,然后代入上下限相减。
定积分在几何上可以求图形的面积、旋转体的体积等;在物理上也有广泛的应用。
四、多元函数微分学1、偏导数的计算按照定义分别对每个自变量求偏导。
考研数学一大纲新题型解析与备考建议
考研数学一大纲新题型解析与备考建议随着考研竞争的日益激烈,考生们对于数学一科目的备考要求也日益增加。
为了更好地适应考试变化并取得好成绩,了解和解析新题型是至关重要的。
本篇文章将针对考研数学一大纲的新题型进行解析,并提供备考建议,帮助考生高效备考,取得优秀的成绩。
一、数学一大纲新题型解析1. 高斯消元法高斯消元法作为解线性方程组的重要方法,一直是数学一考试的重要内容。
其基本思想是通过初等行变换将线性方程组转化为阶梯形矩阵,进而求得方程组的解。
考生需要熟练掌握高斯消元法的基本原理和操作步骤,并能够灵活运用于解题过程中。
2. 微分方程微分方程作为数学一考试的一大难点,一直备受考生关注。
新大纲中对微分方程的考查主要集中于常微分方程的基本理论和求解方法。
考生需要熟练掌握一阶和二阶常微分方程的基本概念和解法,特别是常系数线性齐次微分方程的解法,同时要能够理解微分方程与几何图形的关系,并能运用微分方程解决实际问题。
3. 矩阵和行列式矩阵和行列式在数学一考试中占据了相当大的篇幅。
新大纲要求考生对矩阵和行列式的性质和运算规律有较深入的了解,并能够正确运用这些知识进行证明和计算。
考生需要熟悉行列式的计算方法,了解矩阵的特征值和特征向量的概念及其计算方法,并能够运用矩阵和行列式解决线性方程组和向量的相关问题。
4. 极限和连续极限和连续是数学一考试的基础知识点,也是解析函数和一元函数微分学的基础。
考生需要掌握极限和连续的相关概念和性质,能够正确理解和运用其中的定义、定理和运算规律,熟练掌握用极限和连续性解决函数性质和极值问题的方法。
二、备考建议1. 熟悉考纲详细了解考研数学一的考纲,明确各个知识点的权重和考查形式,有针对性地制定个人备考计划。
2. 做题熟练通过大量的练习,熟悉各类题型的解题思路和方法,加深对知识点的理解和掌握。
尤其对于高斯消元法、微分方程和矩阵行列式等重点知识,要多做题,多总结。
3. 查漏补缺及时总结错题并分析错误原因,查漏补缺。
数学一考研必备知识点总结
数学一考研必备知识点总结数学一考研是考研数学的一个科目,它的题目和知识点覆盖范围很广,包括高等数学、线性代数、概率统计和数学分析等内容。
在备考数学一考研的过程中,掌握一定的知识点是非常重要的。
本文将对数学一考研的必备知识点进行总结,希望能对考生们有所帮助。
一、高等数学高等数学是考研数学一的重要基础知识,包括微积分、常微分方程、多元微积分等内容。
学生在备考数学一考研的时候,需要掌握以下几个方面的知识点:1.1 微积分微积分是高等数学的基础,包括极限、导数、积分、微分方程和无穷级数等内容。
在备考数学一考研的过程中,学生需要掌握微积分的基本概念、性质和运算方法,以及常用函数的导数和积分公式。
1.2 常微分方程常微分方程是微积分的一个重要应用,包括一阶常微分方程、高阶常微分方程、线性常微分方程和非线性常微分方程等内容。
在备考数学一考研的过程中,学生需要掌握常微分方程的基本概念、解法和应用,特别是一阶线性常微分方程和二阶线性常微分方程的解法。
1.3 多元微积分多元微积分是微积分的一个重要拓展,包括重积分、曲线积分、曲面积分和梯度、散度和旋度等内容。
在备考数学一考研的过程中,学生需要掌握多元微积分的基本概念、性质和运算方法,以及常用的重积分和曲线积分公式。
二、线性代数线性代数是考研数学一的另一个重要基础知识,包括向量空间、线性方程组、矩阵和特征值等内容。
学生在备考数学一考研的时候,需要掌握以下几个方面的知识点:2.1 向量空间向量空间是线性代数的基础,包括向量的概念、线性相关和线性无关、基和维数、子空间和直和等内容。
在备考数学一考研的过程中,学生需要掌握向量空间的基本概念和性质,以及子空间和直和的相关定理和应用。
2.2 线性方程组线性方程组是线性代数的一个重要应用,包括齐次线性方程组和非齐次线性方程组、解的结构和解的存在唯一性等内容。
在备考数学一考研的过程中,学生需要掌握线性方程组的基本概念、解的性质和解的求法,特别是线性方程组的解的结构和解的存在唯一性的定理和应用。
考研数学一大题题型归纳
考研数学一大题题型归纳考研数学一是一个比较重要的科目,其中一道大题是题型比较多样且需要综合运用多个知识点的题目。
在这篇文章中,我将归纳一些常见的考研数学一大题题型,帮助考生更好地准备考试。
1. 函数与极限题型这是考研数学一中出现频率较高的题型之一。
经典的题型包括利用函数的性质求函数的特定值、函数的界与连续性、函数的单调性与图像的性质等。
考生需要熟练掌握函数与极限的性质,并灵活应用。
2. 一元函数微分学与高阶导数题型这类题目考查考生对导数概念的理解,要求灵活应用求导法则、高阶导数及其在函数研究中的应用。
常见的题型包括求函数的极值、函数的凹凸区间、函数与导数的关系等。
解题时,考生需要熟悉函数导数的基本概念与性质,并理解函数导数与函数本身的关系。
3. 一元函数积分学题型一元函数积分学也是考研数学一中的重点内容。
常见题型包括利用定积分求曲线下面积、参数方程下的弧长、平均值等。
考生需要掌握定积分的计算方法(换元法、分部积分等),并了解定积分的几何意义与物理应用。
4. 一阶线性微分方程题型一阶线性微分方程是考研数学一的重点内容之一。
这类题目要求考生对微分方程的求解方法有深入的理解,熟悉常微分方程的基本理论与性质,并能够灵活运用。
常见的题型包括求解一阶线性方程、初值问题、变量可分离方程等。
5. 常微分方程数值解题型这类题目考查考生对常微分方程数值解方法的掌握程度。
题型多样,常见包括欧拉法、改进的欧拉法、四阶龙格-库塔法等。
考生需要了解数值解方法的基本原理和步骤,并能够运用具体的数值方法求解常微分方程。
6. 多元函数微分学与积分学题型多元函数微分学与积分学是考研数学一中的难点内容。
考题要求考生熟悉多元函数的偏导数、方向导数、全微分、极值与条件极值等概念与性质,并能够应用到具体的题目中去。
对于多元函数的积分学,考生需要了解多重积分的计算方法(变量代换法、极坐标法、球坐标法等),并能够正确应用。
7. 无穷级数题型无穷级数是考研数学一中的重点内容之一。
考研数学知识点总结归纳
考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
考研数学一全部知识点总结
考研数学一全部知识点总结考研数学一是考研数学中难度较大的一门科目,涵盖了众多的知识点。
以下是对考研数学一全部知识点的总结:一、高等数学1、函数、极限、连续函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性。
数列极限与函数极限的定义及其性质,函数的左极限和右极限。
无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较。
极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则。
两个重要极限:sin x/x → 1(x → 0),(1 + 1/x)^x → e(x → ∞)。
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。
2、一元函数微分学导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系。
导数的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法。
高阶导数的概念,某些简单函数的 n 阶导数。
微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线。
3、一元函数积分学原函数和不定积分的概念,不定积分的基本性质,基本积分公式。
定积分的概念和基本性质,定积分中值定理。
积分上限的函数及其导数,牛顿莱布尼茨公式,不定积分和定积分的换元积分法与分部积分法。
反常积分的概念和计算,定积分的应用(平面图形的面积、旋转体的体积、功、引力、压力等)。
4、向量代数和空间解析几何向量的概念,向量的线性运算,向量的数量积和向量积,向量的混合积。
两向量垂直、平行的条件,两向量的夹角。
向量的坐标表达式及其运算,单位向量,方向余弦,向量的模。
平面方程和直线方程,平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距离。
曲面方程和空间曲线方程,常见的曲面(如球面、柱面、旋转曲面)和空间曲线(如空间曲线在坐标面上的投影曲线)。
考研数学一高数重点及题型
考研数学一高数重点及题型考研数学一高数重点及题型考研数学一高等数学重要考点及题型章节知识点题型第一章函数、极限、连续等价无穷小代换、洛必达法那么、泰勒展开式求函数的极限函数连续的概念、函数连续点的类型判断函数连续性与连续点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的.极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第五章多元函数微分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系多元复合函数、隐函数的求导法求偏导数,全微分第六章多元函数积分学格林公式、平面曲线积分与途径无关的条件平面第二型曲线积分的计算,平面曲线积分与途径无关条件的应用高斯公式计算第二型曲面积分二重积分的概念、性质及计算二重积分的计算及应用第七章无穷级数级数的根本性质及收敛的必要条件,正项级数的比拟判别法、比值判别法和根式判别法,交织级数的莱布尼茨判别法数项级数敛散性的判别傅里叶级数、正弦级数和余弦级数,狄利克雷定理将函数展开为傅里叶级数、正弦级数和余弦级数,写出傅里叶级数的和函数的表达式第八章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题。
考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析
考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析概率论与数理统计是考研数学一大纲中的重要部分,也是考生们在备考过程中常常遇到的难点之一。
本文将重点解析概率论与数理统计的典型题型,帮助考生更好地掌握这一部分知识。
一、概率论1. 概率与事件概率论的基础是概率与事件的概念。
在此部分,考生需要掌握事件的基本概念、事件的运算、概率的定义、概率的性质等内容。
典型题型包括事件的互斥与独立性、事件的运算法则等。
考生在解答此类题目时应注意运用概率的基本性质,并进行合理的计算。
2. 随机变量及其分布律随机变量是概率论与数理统计的重要概念之一。
考生需要掌握随机变量的定义、离散随机变量与连续随机变量的概念、分布律的性质等知识点。
典型题型包括计算随机变量的期望、方差等。
考生在解答此类题目时应注意根据定义和性质进行计算,并合理运用公式。
3. 数理期望与方差数理期望与方差是随机变量的重要特征之一。
考生需要掌握数理期望与方差的概念、性质、计算方法等知识点。
典型题型包括利用数理期望与方差计算随机变量的相关性和条件概率等。
考生在解答此类题目时应注意计算过程的合理性,并运用数理期望与方差的性质进行推理。
4. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要理论。
考生需要掌握大数定律与中心极限定理的概念、条件以及应用方法。
典型题型包括利用大数定律和中心极限定理求解随机变量的极限分布等。
考生在解答此类题目时应注意运用大数定律和中心极限定理的条件,并进行合理的推导。
二、数理统计1. 参数估计参数估计是数理统计的重要内容之一。
考生需要掌握点估计和区间估计的概念、性质、计算方法等知识点。
典型题型包括利用最大似然估计和矩估计求解参数的估计量等。
考生在解答此类题目时应注意理解估计的概念和方法,并进行合理的计算与推导。
2. 假设检验假设检验是数理统计中的重要内容之一。
考生需要掌握假设检验的基本原理、步骤、常见假设检验方法等知识点。
考研数学一每年必考的知识点及题型有哪些
考研数学一每年必考的知识点及题型有哪些根据大纲,我们可以了解到考研数学一会考到的内容。
那么从历年的真题当中发现有哪些知识点和提醒是数学一必考的呢?下面就是店铺给大家整理的考研数学一每年必考的知识点及题型,希望对你有用! 考研数学一每年必考的知识点及题型一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。
以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。
其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,今年(2017年)考查了第一型曲面积分及投影曲线,散度旋度常见于小题。
无穷级数中的傅里叶级数考过解答题也考过小题,31年真题中考过4次大题,6次小题。
多元函数微分学中考点常见于小题,切线和法平面,切平面和法线尤其喜欢出填空题,隐函数存在定理考过选择题。
微分方程中可降阶出现频率较高,常在微分方程的应用题中出现,欧拉方程单独直接考查出现过1次。
一元微分学中的曲率常见于小题如选择题填空题,隐函数求导属于常考题型,是一种计算工具,常与其他考点结合考查,如与极值、拐点相结合。
一元积分学中的物理应用:功、压力、质心等考频不高,考过3次。
由于这些考点属于数一单有的,也是考官比较青睐的内容,难度不大,只要我们复习到了就能拿分,所以希望大家引起重视。
考研数学历年必考题型1、运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
2023考研数学试卷结构及考点内容总结
2023考研数学试卷构造及考点内容总结2023考研数学试卷构造及考点内容总结2023考研数学复____论:试卷构造及考点内容总结。
无论数学一、数学二和数学三都成不同角度考察学生的数学掌握程度,考察学生对根本概念、根本理论、根本方法的理解,是否具有抽象思维才能、逻辑推理才能、空间想象才能和运算才能等。
考研数学在考研中一直占有重要的地位,影响着考生的初试成绩。
为帮助各位考研同学尽快尽早地对数学试卷的分值、题型、内容等有一个整体的把握。
下面分析历年考研数学试卷构造和内容。
众所周知,考研数学分为数学一、数学二和数学三。
针对于不同的学科对数学的要求也不一样,一般情况下,工科类的为数学一和数学二,其中工学类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科和专业,以及授予工学学位的管理科学与工程的一级学科均要求使用数学一考试试卷。
而工学类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中的二级学科和专业均要求使用是数学二考试试卷。
除此之外,还有一些工科类要求的数学试卷难易程度是由招生单位决定的,比方材料科学与工程、化学工程与技术、地质资料与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科,对数学要求高的二级学科那么选取数学一,要求较低的那么选取数学二。
经济类和管理类的为数学三,经济类和管理类包括经济学类的各一级学科、管理学类中的工商管理、农业经济管理的一级学科和授予管理学学位的管理科学与工程的一级学科。
无论数学一、数学二和数学三都成不同角度考察学生的数学掌握程度,考察学生对根本概念、根本理论、根本方法的理解,是否具有抽象思维才能、逻辑推理才能、空间想象才能和运算才能等。
高等数学考研知识点总结
第一讲函数、极限与连续一、考试要求1.理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。
2.了解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握(了解)极限的性质,掌握四则运算法则。
7.掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
11.掌握(会)用洛必达法则求未定式极限的方法。
二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系.(2)复合函数: y=f(u), u=ϕϕ()[()]x y f x ⇒=,重点:确定复合关系并会求复合函数的定义域.(3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。
(5)函数的特性:单调性、有界性、奇偶性和周期性 *注:1、可导奇(偶)函数的导函数为偶(奇)函数。
特别:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则⎰xdt t f 0)(为奇函数;若)(x f 为奇函数,则⎰xadt t f )(为偶函数;3、可导周期函数的导函数为周期函数。
特别:设)(x f 以T 为周期且)(0x f '存在,则)()(00x f T x f '=+'。
考研数学题型总结与分类
考研数学题型总结与分类在备考考研数学时,理解各种数学题型的特点和解题思路是非常关键的。
借助分类整理不同类型的数学题目可以帮助考生更好地把握难题的本质,从而提高解题的效率。
本文将对考研数学题型进行总结与分类,帮助考生更好地复习备考。
一、解析几何题型解析几何是考研数学中的重点和难点之一。
在解析几何题型中,考生需要熟悉直线、圆、抛物线、椭圆、双曲线等的性质和表示方法,掌握求直线与曲线的交点、直线或曲线的方程、曲线的参数方程等技巧。
在几何题型中,常见的题目包括:点到直线的距离、两直线夹角、两曲线交点等。
解决这些题目需要考生结合直线的一般式、点斜式、两点式等知识点来解答。
另外,还有求两条曲线的公共切线、曲线与圆的交点等题型,考生可以利用解析几何的性质和公式进行解答。
二、高等数学题型高等数学题型主要涉及微积分和常微分方程。
其中微积分是考研数学的基础,在备考过程中,考生需要掌握微分与导数、积分与不定积分、定积分和无穷积分等知识点。
在微积分题型中,常见的题目包括求函数的导数、极值、最大值最小值、弧长、曲率等。
考生需要掌握函数求导法则、曲线的切线和曲率等概念,结合具体题目进行计算。
在常微分方程题型中,主要涉及常微分方程的基本概念、求解一阶常微分方程和二阶常微分方程等。
考生需要了解常微分方程的分类和解法,运用相应的求解方法进行计算。
三、线性代数题型线性代数是考研数学中的一门重要课程,涉及矩阵、向量和线性方程组等内容。
在备考过程中,考生需要熟悉行列式的性质,掌握矩阵的运算及其逆矩阵的求解方法。
在线性代数题型中,常见的题目包括矩阵的乘法、转置、逆运算,行列式的求解、特征值和特征向量等。
考生需要通过灵活运用矩阵运算的性质和定义,解决具体的题目。
四、数学分析题型数学分析是考研数学中比较综合性的一门课程,主要涉及极限、连续与间断、一元函数积分和级数等内容。
在备考过程中,考生需要理解极限的定义、性质和运算法则,熟悉函数的连续性和间断性的判定方法。
数学一线代知识点
考研数学一《线性代数》知识点总结第一部分行列式一、本部分内容重点1.了解行列式的概念,掌握行列式的性质。
2.会用行列式的性质和行列式按行(列)展开法则计算行列式。
二、考点分析1.行列式是基础,它与后续要学的内容——方阵构成的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都有重要应用。
所以必须要弄清楚行列式在处理有关问题中的功能与作用,熟练掌握行列式的性质和计算方法,为应用行列式处理有关问题打下良好的基础。
2.计算行列式的常用方法:1)用定义法计算行列式中含某一项的系数;2)应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法);3)将各行(列)加到某一行(列),提取公因式;4)按行(列)展开行列式——降阶法(在此基础上,有些题可用数学归纳法、有些题可用递推关系式法来计算行列式)。
5)逐行(列)相加减;6)拆项法——将一个行列式分成几个较简单的行列式进行计算;7)公式法——如对角行列式、范德蒙德行列式等;8)升阶法。
在实际计算过程中,常常将上述方法交替使用。
第二部分矩阵一、本部分内容重点1.理解矩阵的概念。
2.了解单位矩阵、数量矩阵、对角矩阵、对称矩阵和反对称矩阵,以及它们的性质。
3.掌握矩阵的线性运算、乘法、转置,以及它们的运算律,了解方阵的幂,掌握方阵乘积的行列式。
4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
6.了解分块矩阵及其运算。
二、考点分析1.矩阵的运算(含逆矩阵)是矩阵考试内容中的重点,其中,又以矩阵乘法和逆矩阵最为重要。
要掌握矩阵运算,除了要理解各种运算的定义外,还要熟练掌握各种运算的运算律和运算性质。
在作矩阵运算时,一般要先利用运算法则通过“字母”运算进行化简。
考研数学一题型分布
考研数学一题型分布考研数学一题型分布主要包括以下几个方面:基本概念与基本运算、函数与极限、微分与微分中值定理、积分与积分中值定理、一元函数的导数与微分、一元函数的积分、微分方程、多元函数的偏导数与全微分、多元函数的积分、曲线积分与曲面积分、向量代数与空间解析几何、常微分方程、数列、级数、一元函数的泰勒展开和极值问题、常微分方程解法、多元函数的泰勒展开与极值问题等。
基本概念与基本运算是数学一考研的基础,主要包括数集、集合的运算、复数的运算、数列与级数等。
这部分题型是考察考生对数学基础知识的掌握程度。
函数与极限是数学一考研的重点内容,主要包括函数的连续性、可导性、极限的计算等。
考生需要熟练掌握函数的性质和极限的计算方法。
微分与微分中值定理是数学一考研的难点内容,主要包括导数的定义与性质、微分中值定理的应用等。
考生需要掌握导数的计算方法和微分中值定理的应用技巧。
积分与积分中值定理是数学一考研的重要内容,主要包括不定积分、定积分、定积分的计算方法、积分中值定理的应用等。
考生需要熟练掌握不定积分和定积分的计算方法,以及积分中值定理的应用技巧。
一元函数的导数与微分是数学一考研的基础知识,主要包括一元函数的导数定义、导数的性质、高阶导数等。
考生需要熟练掌握一元函数的导数计算方法和微分的概念。
一元函数的积分是数学一考研的重要内容,主要包括不定积分和定积分的计算方法、积分的性质与应用等。
考生需要熟练掌握一元函数的积分计算方法和积分的性质应用。
微分方程是数学一考研的难点内容,主要包括常微分方程和偏微分方程的基本概念、解法和应用。
考生需要熟练掌握微分方程的基本概念和解法,以及微分方程在实际问题中的应用。
多元函数的偏导数与全微分是数学一考研的较难部分,主要包括多元函数的偏导数计算、全微分的定义和性质等。
考生需要掌握多元函数的偏导数计算方法和全微分的概念。
多元函数的积分是数学一考研的重点内容,主要包括重积分和曲线积分、曲面积分的计算方法和应用等。
考研数学一考试范围
考研数学一考试范围一、考试内容概述考研数学一是中国大学数学一等级的研究生入学考试科目之一,主要涵盖高等数学的各个分支。
该科目的考试范围较为广泛,要求考生掌握高等数学的基本概念、定理和运算方法,并且能够熟练应用于解决各类数学问题。
二、考试知识点1. 高等代数高等代数是考研数学一中的重要内容之一,涉及线性方程组、矩阵与行列式、特征值与特征向量、线性空间等。
具体的知识点包括但不限于:•线性空间的定义与性质•线性方程组的解法•矩阵的性质和运算•行列式的定义和运算•特征值和特征向量的计算与应用2. 数学分析数学分析是考研数学一中的核心内容,主要研究函数、极限、微分和积分等。
具体的知识点包括但不限于:•函数的连续性与可导性•一元函数的极限和连续性•一元函数的导数和微分•一元函数的积分及其应用•多元函数的极限、连续性、偏导数和全微分3. 概率统计与随机过程概率统计与随机过程是考研数学一中的重点内容,主要研究概率论和数理统计。
具体的知识点包括但不限于:•随机事件、概率和概率分布•随机变量及其分布、密度函数•多维随机变量的分布和相关性•随机过程的基本概念和性质•参数估计和假设检验4. 数学建模与计算方法数学建模与计算方法是考研数学一中的实践内容,主要研究数值计算和数学建模的基本方法。
具体的知识点包括但不限于:•数值计算的基本思想和方法•常用的数值计算算法和计算误差分析•数学建模的基本步骤和方法•常见的数学建模问题三、备考建议考研数学一的考试范围较广,备考需要全面深入地学习各个知识点。
以下是一些建议:1.制定学习计划:合理分配学习时间,制定每个阶段的学习目标,并坚持按计划学习。
2.理解概念与原理:对于每个知识点,要逐步深入理解其中的概念和原理,掌握其内在关联和逻辑结构。
3.多做习题:通过大量的习题练习,加深对知识点的理解,并提高解题能力。
4.多进行实际应用:将所学知识应用于实际问题的解决中,提升对知识的灵活应用能力。
考研数学一大纲变动解析重点知识点和题型调整
考研数学一大纲变动解析重点知识点和题型调整考研数学一科目一直被认为是考研复习中难度较大的科目之一,在近年来,该科目的大纲也有一定的变动,针对这些变动我们有必要进行详细的解析和总结。
本文将从变动的大纲中提取出重点的知识点和题型,并对其进行分类和解析,帮助考生更好地进行备考。
一、数学一大纲的变动在过去的几年里,考研数学一科目的大纲发生了一些变化。
主要的变化体现在两个方面:知识点的调整和题型的修改。
具体来说,以下是数学一大纲的主要变动内容:1. 知识点的调整:大纲调整了部分章节的内容和要求,增添了一些新的知识点,并对一些旧有的知识点进行了精简。
这意味着考生需要对大纲进行重新学习和梳理。
2. 题型的修改:大纲对于题型的要求也有所调整,将更加注重对考生解题能力和思维综合能力的考查。
所以,考生在备考过程中应该注重对题型的理解和解题技巧的培养。
二、重点知识点的解析针对数学一大纲的变动,我们来分析和解析一些重点知识点。
1. 高等代数和数学分析知识点的调整:大纲在高等代数和数学分析方面进行了一些调整。
考生需要重点关注大纲中规定的新知识点,并对旧有知识点做好巩固和复习。
2. 随机变量和概率论的重点:在随机变量和概率论方面,考生需要掌握概率分布、随机变量的期望、方差以及常见的分布函数等知识点。
同时,在概率统计方面,要熟悉最大似然估计、极大后验估计等常见的统计方法。
3. 线性规划和凸规划的重点:线性规划和凸规划是数学一大纲中的重点内容,考生需要掌握线性规划的基本概念和原理,并能够能够灵活运用。
在凸规划方面,需要掌握基本的凸集和凸函数的性质,以及凸规划的常见解法。
4. 偏微分方程的重点:偏微分方程是数学一大纲中的重要内容,考生需要掌握基本的偏微分方程解法和变量分离的方法,同时还需要了解基本的边值问题和初值问题的求解思路。
三、题型的调整和解析除了知识点的调整外,题型的修改也是考生备考重点。
以下是数学一大纲题型的调整和解析:1. 填空题的调整:大纲在填空题的设计上进行了一些调整,增加了一些对知识点灵活运用能力的考查。