钙钛矿型太阳能电池研究进展

合集下载

钙钛矿太阳能电池研究进展

钙钛矿太阳能电池研究进展

钙钛矿太阳能电池研究进展一、本文概述随着全球对可再生能源需求的日益增长,钙钛矿太阳能电池作为一种新兴的光伏技术,近年来受到了广泛关注。

钙钛矿材料因其独特的光电性质和可调带隙结构,在太阳能电池领域展现出了巨大的应用潜力。

本文旨在全面综述钙钛矿太阳能电池的研究进展,从材料设计、电池结构、制备工艺到性能优化等方面进行深入探讨。

我们将首先回顾钙钛矿太阳能电池的发展历程,然后重点介绍其基本原理、关键材料和最新研究成果。

本文还将讨论钙钛矿太阳能电池当前面临的挑战,如稳定性、可重复性和大面积制备等问题,并展望未来的发展方向。

通过本文的综述,我们期望能为读者提供一个全面而深入的了解钙钛矿太阳能电池的研究进展和前景的视角。

二、钙钛矿太阳能电池的发展历程钙钛矿太阳能电池的发展历程可以追溯到21世纪初。

在2009年,日本科学家Miyasaka首次将钙钛矿材料应用于染料敏化太阳能电池中,实现了约8%的光电转换效率,这一开创性的研究为钙钛矿太阳能电池的发展奠定了基础。

然而,初期的钙钛矿太阳能电池效率较低,稳定性差,难以应用于实际生产中。

随后,科研人员通过不断改进材料组成、优化电池结构、提高制备工艺等方法,逐步提高了钙钛矿太阳能电池的光电转换效率和稳定性。

2012年,韩国科学家Park和Grätzel等人成功制备出了光电转换效率超过9%的钙钛矿太阳能电池,这一突破性的成果引起了全球科研人员的广泛关注。

进入21世纪10年代后期,钙钛矿太阳能电池的研究进入了快速发展阶段。

科研人员通过深入研究钙钛矿材料的物理化学性质、界面工程、载流子传输机制等方面,不断优化电池性能。

随着制备技术的不断进步,钙钛矿太阳能电池的尺寸逐渐增大,从最初的微米级发展到厘米级,甚至更大面积的柔性电池,使得钙钛矿太阳能电池在商业化应用中展现出巨大的潜力。

目前,钙钛矿太阳能电池的最高光电转换效率已经超过25%,并且在大面积模块制备、稳定性提升等方面也取得了显著进展。

黄维团队钙钛矿太阳能电池总结

黄维团队钙钛矿太阳能电池总结

黄维团队钙钛矿太阳能电池总结1.引言太阳能作为清洁能源的代表之一,一直受到广泛关注。

近年来,钙钛矿太阳能电池以其高效能转换率和低成本而备受研究者青睐。

本文将总结黄维团队在钙钛矿太阳能电池领域的研究成果和进展。

2.钙钛矿太阳能电池简介钙钛矿太阳能电池是一种新型的薄膜太阳能电池,其光电转换效率高达20%以上,且制备过程相对简便,成本较低。

它的主要组成是钙钛矿光敏层、电子传输层和阳极。

2.1钙钛矿光敏层钙钛矿光敏层是钙钛矿太阳能电池的核心部分,它能够将阳光中的光能转化为电能。

通过选择合适的钙钛矿材料和优化制备工艺,可以提高钙钛矿光敏层的光吸收和电子传输效果。

2.2电子传输层电子传输层用于提供电子传输通道,从而有效收集光生电子。

常用的电子传输层材料有二氧化钛、氧化锌等。

2.3阳极阳极通常使用导电玻璃或透明导电聚合物材料。

它既能够帮助电子流动,又能够让阳光透过透明阳极层到达钙钛矿光敏层。

3.黄维团队的研究成果黄维团队在钙钛矿太阳能电池领域取得了许多重要研究成果,为该领域的发展做出了突出贡献。

以下是其中的几个方面:3.1钙钛矿材料研究黄维团队对不同类型的钙钛矿材料进行了广泛的研究,包括有机-无机杂化钙钛矿、全无机钙钛矿等。

他们发现不同材料的特性和性能有所差异,为进一步提升钙钛矿太阳能电池的效率和稳定性提供了理论依据。

3.2制备工艺优化黄维团队在制备工艺上进行了精细调控,通过优化钙钛矿光敏层的厚度、晶粒大小等参数,提高了钙钛矿太阳能电池的光电转换效率。

同时,他们还改进了电子传输层和阳极的制备方法,进一步提高了电池性能。

3.3长期稳定性研究黄维团队关注钙钛矿太阳能电池的长期稳定性问题,通过测试和分析,他们发现了钙钛矿材料的退化机制,并提出了相应的改进方案,延长了电池的使用寿命。

3.4薄膜太阳能电池集成除了钙钛矿太阳能电池的研究,黄维团队还开展了薄膜太阳能电池的集成研究。

他们将钙钛矿太阳能电池与其他材料的太阳能电池进行了组合,实现了能量的更高转化效率。

分析新型钙钛矿太阳能电池研究进展及面临的问题

分析新型钙钛矿太阳能电池研究进展及面临的问题

分析新型钙钛矿太阳能电池研究进展及面临的问题摘要:新型钙钛矿太阳能电池是一种新型清洁可再生能源,将其应用到实际生活中充分满足了社会节能、低碳、环保的发展要求。

为此,文章在阐述新型钙钛矿太阳能电池基本构造的基础上,分析当前新型钙钛矿太阳能电池的研究进展和研究存在问题,并从提升新型钙钛矿太阳能电池转换效率、增强新型钙钛矿太阳能电池稳定性、降低新型钙钛矿太阳能电池污染性几个方面就其未来发展优化进行展望。

关键词;新型钙钛矿太阳能电池;构造;节能环保;发展展望新型钙钛矿太阳能电池的出现弥补了第三代太阳能电池开发成本高、稳定性差、使用效率低的问题,同时,从实际加工生产上来看,新型钙钛矿太阳能电池的加工原材料丰富、制作流程简单、转换效率高。

从产生到发展至今,新型钙钛矿太阳能电池拥有十一年的发展历史(2009年最早出现在日本),是一种有望替代化石燃料的清洁能源。

为此,文章结合新型钙钛矿太阳能电池的研究发展现状就如何优化新型钙钛矿太阳能电池的生产研发进行探究。

1.新型钙钛矿太阳能电池工作原理和基本结构新型钙钛矿太阳能电池在使用的时候太阳光会照射到吸光层上,能量超过吸收层禁带宽度的光子会将钙钛矿层中的价电子激发到导带上,并在价带位置下留下空穴。

由于钙钛矿材料激子束缚能的减少,在室内温度环境下能够分离出自由载流子。

新型钙钛矿太阳能电池是经过长时间的发展出现了多种期间结构,基本上可以分为介观结构、平面异质结构。

介质结构最早被人们应用在染料敏化的太阳能电池上,后来在先进工艺的发展支持下逐渐发展衍变为钙钛矿太阳能电池。

平面异质结构钙钛矿太阳能电池是利用钙钛矿层Wannier-Molt型激子在光照下分离,由此会产生电子和空穴。

自由电子在被激发到钙钛矿导上的时候,自由电子会和空穴结合在一起。

1.新型钙钛矿太阳能电池研究进展新型钙钛矿太阳能电池是一种复合型吸光材料,在使用的过程中会和电子、空穴传输融合在一起,最终形成一个新型太阳能电池。

《2024年无空穴传输层碳基钙钛矿太阳能电池的制备及性能研究》范文

《2024年无空穴传输层碳基钙钛矿太阳能电池的制备及性能研究》范文

《无空穴传输层碳基钙钛矿太阳能电池的制备及性能研究》篇一一、引言随着科技的飞速发展,能源需求持续增长,寻找清洁、可持续的能源成为了世界各国的共识。

其中,钙钛矿太阳能电池以其高效率、低成本等优势备受关注。

近年来,关于无空穴传输层碳基钙钛矿太阳能电池的研究逐渐增多,本文旨在探讨其制备方法及性能研究。

二、无空穴传输层碳基钙钛矿太阳能电池的制备1. 材料选择无空穴传输层碳基钙钛矿太阳能电池的制备主要涉及钙钛矿材料、导电基底、碳电极等材料的选用。

钙钛矿材料为光电转换的关键,导电基底应具备良好的导电性和透明度。

此外,需注意所选材料的稳定性和环保性。

2. 制备流程(1)制备导电基底:选择合适的导电玻璃基底,进行清洗和预处理。

(2)制备钙钛矿层:采用溶液法或气相沉积法将钙钛矿材料制备成薄膜,并对其进行退火处理。

(3)制备碳电极:在钙钛矿层上涂覆碳电极材料,并进行热处理。

(4)完成电池组装:将电极与其他组件进行组装,形成完整的太阳能电池。

三、无空穴传输层碳基钙钛矿太阳能电池的性能研究1. 光电性能分析通过测量电池的电流-电压曲线,分析其开路电压、短路电流、填充因子等关键参数。

同时,采用光谱响应测试、量子效率测试等方法,研究电池的光电转换效率及稳定性。

2. 结构与形貌分析利用X射线衍射、扫描电子显微镜等手段,对电池的结构和形貌进行表征。

通过分析钙钛矿层的结晶度、颗粒大小及分布等,探讨其光电性能的影响因素。

3. 稳定性测试在光照、湿度等不同环境条件下,对电池进行长时间稳定性测试。

通过对比不同条件下电池的性能变化,评估其实际应用潜力。

四、实验结果与讨论经过一系列实验,我们成功制备了无空穴传输层碳基钙钛矿太阳能电池。

通过光电性能分析,我们发现该电池具有较高的开路电压和短路电流,填充因子也表现出色。

在结构与形貌分析中,我们发现钙钛矿层的结晶度良好,颗粒分布均匀。

在稳定性测试中,该电池在光照和湿度环境下均表现出较好的稳定性。

钙钛矿太阳能电池中电子传输材料的研究进展

钙钛矿太阳能电池中电子传输材料的研究进展

钙钛矿太阳能电池中电子传输材料的研究进展一、本文概述随着全球对可再生能源需求的日益增长,太阳能电池作为将太阳能直接转换为电能的装置,受到了广泛关注。

在众多太阳能电池技术中,钙钛矿太阳能电池因其高光电转换效率、低成本和易于制备等优点,成为近年来研究的热点。

钙钛矿太阳能电池中的电子传输材料在提升电池性能方面发挥着至关重要的作用。

本文旨在全面概述钙钛矿太阳能电池中电子传输材料的研究进展,包括材料类型、性能优化、工作机制以及面临的挑战和未来的发展趋势。

通过对电子传输材料的深入研究,我们可以更好地理解钙钛矿太阳能电池的工作原理,从而推动其光电转换效率的提升,为太阳能电池的商业化应用提供有力支持。

二、钙钛矿太阳能电池中电子传输材料的分类与特点钙钛矿太阳能电池中的电子传输材料是提升电池性能的关键要素之一。

这些材料的主要功能是在太阳光照射下,有效地收集和传输光生电子,以提高电池的光电转换效率。

根据材料的性质和应用方式,电子传输材料可以分为以下几类,并各具特点。

金属氧化物:金属氧化物如二氧化钛(TiO2)和氧化锌(ZnO)等,是常见的电子传输材料。

它们具有良好的电子迁移率和稳定性,能够有效地传输电子并阻挡空穴。

金属氧化物还可以通过表面修饰和纳米结构设计等方法进一步优化其电子传输性能。

有机聚合物:有机聚合物如聚3,4-乙二氧基噻吩(PEDOT:PSS)等,也广泛应用于钙钛矿太阳能电池中。

这类材料具有良好的导电性和可加工性,能够与钙钛矿层形成良好的界面接触。

然而,有机聚合物的稳定性较差,容易受到光照和湿度等环境因素的影响。

碳基材料:碳基材料如碳纳米管(CNTs)和石墨烯等,具有优异的导电性和稳定性,是近年来备受关注的电子传输材料。

它们能够有效地提高钙钛矿太阳能电池的光电转换效率,并且具有良好的应用前景。

复合材料:复合材料是将两种或多种材料结合在一起形成的新型材料。

通过合理的设计和优化,复合材料可以综合各种材料的优点,进一步提高钙钛矿太阳能电池的性能。

钙钛矿太阳能电池的研究与开发

钙钛矿太阳能电池的研究与开发

钙钛矿太阳能电池的研究与开发钙钛矿太阳能电池是目前颇受瞩目的新型太阳能电池之一,拥有比硅太阳能电池更高的转换效率和更低的成本,并且具有较高的稳定性和可制备性。

本文将从矿物学、制备技术、应用前景等方面对钙钛矿太阳能电池进行详细探讨。

一、矿物学基础钙钛矿是一种自然界中存在的矿物,化学式为ABX3,其中A和B是两种阳离子,通常是较大的有机阳离子,X代表较小的负离子,通常是氧离子。

在钙钛矿结构中,A离子通常占据着晶体中心,形成一个由四面体组成的堆积结构,B离子位于四面体的顶点处,并且与四面体之间有规律的配位关系。

钙钛矿太阳能电池中采用的是一种由有机阳离子质子化后形成的钙钛矿结构,称之为钙钛矿外延膜(perovskite-like film)。

二、制备技术来自于锂离子电池产业的溶液法制备技术是制备钙钛矿太阳能电池最常用的方法。

制备的过程包括沉积、驱动和结晶三部分。

首先,在玻璃基片上镀上一层钛氧化物膜,接着通过溶液法在钛氧化物膜表面形成钙钛矿外延膜,根据需要,可以在表面镀上几个纳米银电极。

最后,在太阳照射下形成电荷并将其从太阳能电池中输出电流。

这种技术比其他制备技术更简单易行,并且在低温条件下工作。

三、应用前景由于其较高的效率和成本优势,钙钛矿太阳能电池具有巨大的应用潜力。

除了可以作为太阳能电荷控制器和添加到现有的硅太阳能电池中以提高效率外,它还可以在新技术和新市场中发挥作用。

例如,在背包、手提电脑等家电和电子装置等小型装置中应用,以及在大型太阳能电厂中应用以分散太阳能的损耗。

此外,由于其制备和组装完全可以自动化,因此也可在大规模制造中采用。

总之,钙钛矿太阳能电池作为一种新型太阳能电池,具有各种显著的优势,其矿物学基础、制造技术和应用前景也非常广泛。

随着科技的进步和应用的不断推广,钙钛矿太阳能电池的前景必将得到进一步的发展和完善。

钙钛矿太阳能电池国内外现状和发展趋势

钙钛矿太阳能电池国内外现状和发展趋势

钙钛矿太阳能电池国内外现状和发展趋势钙钛矿太阳能电池是一种新型的高效太阳能电池技术,具有高转换效率、低成本、可制备柔性器件等优点,因此备受关注。

本文将从国内外现状和发展趋势两个方面来探讨钙钛矿太阳能电池的发展情况。

一、国内现状近年来,中国在钙钛矿太阳能电池领域取得了显著进展。

国内多所高校和研究机构投入大量资源进行钙钛矿太阳能电池的研究和开发工作。

在材料研究方面,中国科学院、清华大学等机构提出了一系列改进和创新,如引入新的钙钛矿材料、优化电池结构等。

在工艺制备方面,国内研究机构不断改进制备工艺,提高了钙钛矿太阳能电池的制备效率和稳定性。

此外,国内企业也开始投入到钙钛矿太阳能电池的生产中,推动了产业化进程。

二、国外现状国外在钙钛矿太阳能电池领域的研究也非常活跃。

英国、美国、德国等国家的研究机构和企业在钙钛矿太阳能电池的研究和开发方面取得了很多成果。

例如,英国牛津大学的研究团队提出了一种新型的钙钛矿太阳能电池结构,大大提高了电池的稳定性和光电转换效率。

美国麻省理工学院的研究团队开发了一种可弯曲的钙钛矿太阳能电池,为柔性电子设备的应用提供了新的可能性。

三、发展趋势从国内外现状来看,钙钛矿太阳能电池的发展前景非常广阔。

未来的发展趋势主要集中在以下几个方面:1. 材料研究:钙钛矿太阳能电池的性能取决于材料的选择和优化。

未来的研究将聚焦于寻找更好的钙钛矿材料,提高电池的光电转换效率和稳定性。

2. 工艺制备:制备工艺的改进将有助于提高钙钛矿太阳能电池的制备效率和降低成本。

例如,采用新的工艺能够实现大规模生产,推动产业化进程。

3. 应用拓展:钙钛矿太阳能电池不仅可以用于传统的光伏发电,还可以应用于电动汽车、移动设备、建筑一体化等领域。

未来的发展将会进一步拓展钙钛矿太阳能电池的应用领域。

4. 环境友好:钙钛矿太阳能电池具有较低的能源消耗和环境污染,是一种环境友好型能源技术。

未来的发展将更加注重钙钛矿太阳能电池的可持续性和环境友好性。

《2024年碳基全无机CsPbBr3钙钛矿太阳能电池的制备及其性能研究》范文

《2024年碳基全无机CsPbBr3钙钛矿太阳能电池的制备及其性能研究》范文

《碳基全无机CsPbBr3钙钛矿太阳能电池的制备及其性能研究》篇一一、引言随着科技的进步和人类对可再生能源的追求,太阳能电池作为一种清洁、高效的能源转换设备,其研究与应用日益受到重视。

钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)以其高效率、低成本和可调谐的光电性能等优点,在光伏领域中崭露头角。

本文将重点探讨碳基全无机CsPbBr3钙钛矿太阳能电池的制备过程及其性能研究。

二、碳基全无机CsPbBr3钙钛矿太阳能电池的制备1. 材料选择与准备制备碳基全无机CsPbBr3钙钛矿太阳能电池,首先需要选择合适的材料。

本实验选用碳基材料作为电极,CsPbBr3作为钙钛矿吸光层。

在实验前,需准备好纯度较高的Cs源、Pb源以及Br 源等原料。

2. 电池制备步骤(1)制备导电玻璃基底:选用导电玻璃作为电池的基底,通过清洗、烘干等步骤处理后,待用。

(2)制备碳基电极:将碳基材料均匀涂布在导电玻璃上,形成电极。

(3)制备钙钛矿吸光层:将CsPbBr3材料溶解在适当的溶剂中,形成溶液后均匀涂布在碳基电极上,形成钙钛矿吸光层。

(4)制备电子传输层和空穴传输层:分别在钙钛矿吸光层上涂布电子传输层和空穴传输层材料。

(5)完成电池组装:将电池置于特定环境下进行热处理,使各层材料充分结合,形成完整的太阳能电池。

三、性能研究1. 性能参数测定对制备好的碳基全无机CsPbBr3钙钛矿太阳能电池进行性能测试,包括光电转换效率、开路电压、短路电流等参数的测定。

2. 结果分析通过分析测试结果,我们可以得出以下结论:(1)碳基电极具有较好的导电性和稳定性,能够有效地收集光生电流。

(2)CsPbBr3钙钛矿吸光层具有较高的光吸收能力和合适的光学带隙,有利于提高太阳能电池的光电转换效率。

(3)电子传输层和空穴传输层的引入,有助于提高电池的载流子传输性能和降低界面电阻。

(4)通过优化制备工艺和材料选择,可以有效提高碳基全无机CsPbBr3钙钛矿太阳能电池的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课序号文献检索和数据库期末论文题目:钙钛矿型太阳能电池研究进展姓名郭天凯学号2012437019年级专业2012应用物理指导教师2014年7月11日摘要:近年来,为了解决日益严峻的能源和环境问题,人们把目光投向了新能源的开发和利用上。

在各种新能源技术中,光伏发电无疑是最具有前景的方向之一。

传统的硅基太阳能电池虽然实现了产业化,有着较为成熟的市场,但其性价比还无法与传统能源相竞争,并且制造过程中的污染和能耗问题影响了其广泛应用。

因此,研究和发展高效率、低成本的新型太阳能电池十分必要。

在众多的新型太阳能电池里,钙钛矿薄膜太阳能电池近两年脱颖而出,吸引了众多科研工作者的关注,还被《Science》评选为2013年十大科学突破之一。

钙钛矿薄膜太阳能电池的光电转化效率在5年的时间内从3.8%迅速提高到经过认证的16.2%(截止到2013年底),把染料敏化太阳能电池、有机太阳能电池等新型薄膜太阳电池甩在了身后。

关键词:钙钛矿太阳能电池,研究领域,前沿科技,发展态势一、钛矿太阳电池技术研究领域的定义及其重要性1、钛矿太阳电池技术研究领域的定义钙钛矿太阳电池是以具有钙钛矿结构的有机-金属卤化物(简称:钙钛矿)等作为核心光吸收、光电转换、光生载流子输运材料的太阳电池。

钙钛矿太阳电池技术研究领域是指有关钙钛矿太阳电池的工作机理、结构、特性、核心制备工艺与关键产业化生产工艺、应用研究等。

钙钛矿太阳电池所采用的这种具有钙钛矿结构的有机-金属卤化物光吸收体具有良好的光吸收、光电转换特性以及优异的光生载流子输运特性,其电子与空穴扩散长度均可超过1000 nm。

因而采用这种新型光电转换材料的钙钛矿太阳电池具有特别优异的光电转换特性,目前实验室样品光电转换效率已高达16.2%。

目前钙钛矿太阳电池的构造通常采用体相异质结结构、平面异质结结构和无空穴输运材料异质结结构等。

钙钛矿太阳电池的实验室制备工艺通常采用液相沉积工艺、气相沉积工艺以及液相/气相混合沉积工艺。

基于上述简洁的构造、方便的制备工艺和优异的光电转换性能,钙钛矿太阳电池因而有望成为具有高效率、低成本、柔性、全固态等优点的新一代太阳电池。

钙钛矿太阳电池的大规模产业化生产将可采用卷对卷湿法涂覆、可打印印刷技术和干法等离子体增强沉积技术等。

钙钛矿太阳电池具有光明的应用前景和宽广的应用范围,特别适用于建筑光伏一体化(BIPV)、偏远地区分布式发电电站、家庭式发电电站、移动(室内、便携式)电子产品、艺术装饰品等应用。

2、钛矿太阳电池技术研究领域的重要性能源是社会和经济发展的重要基础条件,迄今为止人类社会发展仍然主要依赖于化石能源。

但化石能源在地球上的分布极不均衡,并且终究会枯竭。

另外燃烧化石能源带来的环境污染、雾霾气候和温室效应严重威胁人类社会的可持续发展。

太阳电池能够利用太阳能直接转化为电能,可以为人类社会发展提供取之不尽用之不竭的清洁能源,是人类社会应对能源危机,解决环境问题,寻求可持续发展的重要对策。

经过长期的研究与发展,目前单晶硅基太阳电池技术已经比较成熟。

但单晶硅基太阳电池存在生产成本高、生产过程能量消耗大、环境污染严重、成本回收时间长等问题。

因此,人们还在不断地探索开发更廉价的高效太阳电池技术。

经过多年的发展,基于CuInGaSe、CdTe、多晶硅、非晶硅等材料的薄膜太阳电池技术已经取得了长足的进步。

但这些电池技术仍然存在这样那样的不足,例如CuInGaSe薄膜电池需要使用地壳中非常匮乏的元素In和Ga,不利于这种电池的大规模持续应用,而CdTe中含有重金属元素Cd,会造成环境污染问题。

为此,探索高效、廉价、环保的新型太阳电池技术的努力仍在继续,新兴的太阳电池技术不断涌现,包括染料敏化太阳电池、有机太阳电池和量子点太阳电池等。

2009年,日本Miyasaka等人在研究敏化太阳电池的过程中,首次使用具有钙钛矿结构的有机金属卤化物CH3NH3PbBr3 和CH3NH3PbI3作为敏化剂,拉开了钙钛矿太阳电池研究的序幕。

在随后短短的几年时间内,钙钛矿太阳电池技术取得了突飞猛进的进展,能量转换效率已经超过了染料敏化太阳电池、有机太阳电池和量子点太阳电池。

2014年第一期英国《自然(NATURE)》周刊甚至预计今年钙钛矿太阳电池的能量转换效率会达到20%,也就是达到目前技术已经比较成熟的CuInGaSe薄膜太阳电池的水平,从而为钙钛矿太阳电池的产业化发展指明方向。

钙钛矿太阳电池不仅具有较高的能量转换效率,而且其核心光电转换材料具有廉价、可溶液制备的特点,便于采用不需要真空条件的卷对卷技术制备,这为钙钛矿太阳电池的大规模、低成本制造提供可能。

不仅如此,钙钛矿太阳电池还可以制备在柔性衬底上,便于应用在各种柔性电子产品中,例如可穿戴的电子设备、折叠式军用帐篷等。

与染料敏化太阳电池相比,钙钛矿太阳电池不需要液体电解质,不用担心太阳电池的漏液问题。

与有机光伏器件相比,钙钛矿太阳电池的核心光电转换材料是有机-无机杂化材料,材料的耐候性可能会优于有机光伏器件中使用的有机半导体材料。

这些优点可能会使钙钛矿太阳电池在实际使用中具有比染料敏化太阳电池和有机光伏器件更好的性能稳定性和更长的使用寿命。

基于上述原因,钙钛矿太阳电池具有非常光明的产业化前景,是现有商业太阳电池最有潜力的竞争者。

因此,积极开展钙钛矿太阳电池研究对于抢占太阳电池行业发展的先机,促进太阳电池技术的升级换代具有重要意义。

从更高的层次上讲,开展钙钛矿太阳电池研究,推动钙钛矿电池的产业化,将使人类更廉价、更方便地获得取之不尽、用之不竭的清洁能源,对于整个人类社会和经济的可持续发展、提高绿色GDP、治污防霾都具有重要意义。

二、矿太阳电池技术研究领域世界前沿科技发展态势近四年来,钙钛矿太阳电池得到了迅速发展,其光电转换效率由最初的3.8%发展到了16.2%的水平。

同时,电池器件在低温制备及柔性化方面也取得了较大进展。

在2009年,具有钙钛矿结构的有机铅卤化物首次作为光吸收材料被用于液态电解质染料敏化太阳电池。

由于钙钛矿吸光层在液态电解质中稳定性差,仅得到3.8%左右的光电转换效率。

此后,通过进一步优化光阳极介孔薄膜的厚度,液态电解质染料敏化太阳电池的效率提高到了6.54%。

同其他常见报道的染料相比,新型钙钛矿结构光吸收薄膜具有高消光系数和宽吸收光谱范围。

它的这一优势在固态染料敏化太阳能上得到了充分体现。

2012年,韩国科研人员报道了基于钙钛矿敏化固态介孔太阳电池,效率可达9.7%。

同年,英国牛津大学Snaith小组通过对介孔材料及钙钛矿结构光吸收材料的优选,采用了“介孔超结构杂化太阳能电池”,将固态敏化太阳电池的效率提高到了10.9%。

通过进一步的研究发现降低杂化电池介孔层的厚度,也可显著提高电池器件的光电转换效率。

这一结果为“平面异质结(Planar Heterojunction)”钙钛矿电池的出现提供了可能性。

2013年,Snaith小组首次报道了光电转换效率为15.4%的平面异质结钙钛矿太阳电池。

与此同时,美国和韩国科研人员也对平面异质结钙钛矿太阳电池进行了广泛的研究。

2013年,低温钙钛矿太阳电池和柔性钙钛矿太阳电池也都得到了迅猛发展。

通过发展致密层低温制备技术及开发新型电子收集层材料,低温钙钛矿电池光电转换效率已达15.9%。

采用ZnO纳米颗粒作为电子输运层的柔性钙钛矿电池效率已高达10.2%。

目前,经美国可再生能源国家实验室(NREL)认证的实验室样品电池的效率已高达16.2%。

英国《自然》周刊发表评论预计,到2014年底,钙钛矿太阳电池的最高光电转换效率可望突破20%的大关。

综上所述,钙钛矿太阳电池的突飞猛进,为我们解决能源问题提供了一条崭新的途径。

三、我国在钙钛矿太阳电池技术研究领域发展现状我国科学家在钙钛矿太阳电池技术研究领域,虽然起步晚于日本、瑞士、英国、美国和韩国等国家,但我国科学家的研究工作颇具特色,具有很强的竞争实力。

中科院等离子体所和中科院大连化学物理研究所在探索新型空穴传输材料方面进行了研究,分别采用P3HT/多壁碳纳米管,和PCBTDPP作为空穴传输材料,获得了6.45%,和5.55%的光电转换效率。

华中科技大学开发了钙钛矿太阳电池新型制备技术,采用廉价的碳材料取代贵金属作为导电电极,结合全印刷的工艺获得了效率为6.64%的器件。

此外,清华大学着重研究了钙钛矿太阳电池的稳定性,研究表明引入Al2O3层会提高钙钛矿太阳电池的稳定性。

中国科学院物理所报道了效率为10.49%无空穴传输材料的钙钛矿太阳电池,并结合单异质结理想二极管模型及阻抗技术证明了该类无空穴传输材料的钙钛矿太阳电池是一种典型的异质结电池。

国科研工作者在钙钛矿太阳电池的研究将会更进一步地促进钙钛矿太阳电池的发展。

但是我国在钙钛矿太阳电池技术研究领域的研究工作起步稍晚,目前的研究工作无论是从数量上和还是从质量上与国际水平相比较均有不小的差距。

存在的问题主要有总体上原创性还不够强、尚缺乏系统深入的工作。

四、区发展钙钛矿太阳电池技术领域的相关建议1、瞻部署面向首都防污治霾、解决清洁能源问题的重大战略需求,以光-电转换为核心,以新型钙钛矿光电材料设计与制备为基础,发挥新型光电材料的理论与模拟的引领作用,重视微纳结构和表面界面工程研究,旨在揭示钙钛矿太阳电池高效光-电转换的机理,突破现有原理和技术局限,为新型钙钛矿光电转换材料和器件在可再生能源的开发和能源高效利用方面提供新思路和技术支撑。

通过材料、化学、数理和信息等多学科交叉,在理论和实验的源头创新上取得突破,揭示提高光-电转换性能的新机制,建立和发展新型高效钙钛矿光电转换材料制备和高效钙钛矿太阳电池制造新方法,发展具有自主知识产权的材料体系,为可再生能源的研究与开发提供新途径,造就一支在全国有影响力的研究队伍,提高首都在光电材料和器件研究领域的整体创新能力。

2、点研究方向1)钙钛矿太阳电池光-电转换基本过程与原理重点研究钙钛矿太阳电池光电转换过程的机理、理论与模拟,揭示高效钙钛矿太阳电池光-电转换的新机制,发展新结构;建立以性能预测为导向的计算方法与高效钙钛矿太阳电池器件物理模型;提出突破现有框架的新理论与材料设计的计算方法。

2)高稳定性宽光谱固态高效钙钛矿太阳电池的设计与可控制备重点研究新型钙钛矿光电转换材料的设计与制备及其器件应用,发展具有自主知识产权的高效稳定的光-电转换材料体系,包括有机、氧化物与和化合物半导体光伏材料等,提出光电转换材料设计新概念、新理论和新方法等。

研究探索新型的高稳定性、宽光谱捕光材料和无机空穴传输材料,并制备出高稳定性、宽光谱、固态高效钙钛矿太阳电池。

3)低成本大面积柔性高效钙钛矿太阳电池结构和表面界面工程通过微纳结构、表面界面工程及其功能调控,研究表面界面结构、微纳结构对光-电转换性能的影响规律,建立和发展界面结构及聚集态结构的原位、实时表征方法,探索实现高效稳定的光伏以及与能源利用相关的光电器件新原理和新结构。

相关文档
最新文档