信号与系统第三章答案1

合集下载

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为Te jE e jE e jEe jEt f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20= 幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号与系统 陈后金 第二版 课后习题答案(完整版)

信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠

2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )

北理工-信号与系统-第三版-第三章-作业参考答案

北理工-信号与系统-第三版-第三章-作业参考答案
k 0



k
| u[k ] | ,有界
是非稳定系统
(e) 显然n<0时,h[n]=0,所以是因果系统;
k
| h[k ] | | u[k ] / n | ,无界
k


是非稳定系统
(f) 显然n<0时,h[n]=0,所以是因果系统;
| h[k ] |
(d)
y[n] x[n] h[n]
k
[k n ] [n k n ]
1 2

[n n1 n2 ]
3.11在LTI离散时间系统中 已知x[n]=u[n]时的零状态响应(单位阶跃响应)为s[n],求单位抽样响应h[n]; 已知h[n],求s[n].
y[n] - 4y[n-1] =2x[n]+3x[n-1];
令x[n]=δ[n],则有 h[n] – 4h[n-1] =2 δ[n]+3 δ[n-1];当n<0时,h[n]=0,得h[0]=2,h[1]=11,
特征方程为 λ-4=0, 得λ=4,
h[n]=c(4)nu[n],由h[1]=4c=11,c=11/4得 h[n]=(11/4)(4)nu[n-1]=11 (4)n-1u[n-1],考虑h[0]=2=2 δ[n],得 h[n]=2 δ[n]+11 (4)n-1u[n-1]。(n>0的解) (b).据图有同(a)一样的结果…。 (c).据图 y[n]=3y[n-1]- 2y[n-2]+ x[n]+2x[n-1]+x[n-2] ,即差分方程为 y[n] -3y[n-1]+2y[n-2] = x[n]+2x[n-1]+x[n-2], 先求

信号与系统 梁风梅主编 电子工业出版社 ppt第三章答案

信号与系统  梁风梅主编   电子工业出版社 ppt第三章答案

习题三3.1考虑一个连续时间LTI 系统,满足初始松弛条件,其输入)(t x 与输出)(t y 的关系由下列微分方程描述:d ()4()()d y t y t x t t+= (1)若输入(13)()()j t x t e u t -+=,求输出)(t y 。

(2)若输入()e cos(3)()t x t t u t -=,求输出)(t y 。

解:此系统的特征方程为40s += 所以4()t h y t Ae -= (1)(13)()()j tx t eu t -+=设(13)()e j t p y t Y -+= 则(13)(13)(13)(13j)e 4e e ,0j tj t j t Y Y t -+-+-+-++=>解得11336jY j -==+ 所以4(13)1()()()e e ()6t j t h p j y t y t y t A u t --+-⎛⎫=+=+ ⎪⎝⎭又因为初始松弛,所以106jA -+= 即16j A -=所以4(13)11()()()()()66t j th p j j y t y t y t e e u t --+--=+=+ (2)()cos(3)()t x t e t u t -=是(1)中(13)()()j tx t eu t -+=的实部,用2()x t 表示cos(3)()t e t u t -,用1()x t 表示(13)()j t e u t -+观察得{}21()Re ()x t x t =所以{}421111()Re ()cos(3)sin(3)()666t t t y t y t e e t e t u t ---⎛⎫==-++ ⎪⎝⎭3.2若离散时间LTI 系统的输入[]x n 与输出][n y 的关系由下述差分方程给出:][]1[25.0][n x n y n y =--求系统的单位冲激响应][n h 。

解:[]0.25[1][]h n h n n δ=-+因为该系统是因果的,所以0n <时,[]0h n =2231[0]0.25[1][0]01111[1]0.25[0][1]1044111[2]0.25[1][2]0444111[3]0.25[2][3]0444 (111)[]0.25[1][]0444n nh h h h h h h h h n h n n δδδδδ-=-+=+==+=⨯+==+=⨯+==+=⨯+==-+=⨯+=综上,1[][]4n h n u n = 3.3系统S 为两个系统1S 与2S 的级联:S1:因果LTI 系统,[]0.5[1][]w n w n x n =-+; S2: 因果LTI 系统,[][1][]y n ay n bw n =-+][n x 与][n y 的关系由下列差分方程给出:[]0.125[2]0.75[1][]y n y n y n x n +---=(1) 确定a 与b 。

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

第三章作业答案_1-7

第三章作业答案_1-7

a2 N =
1 1 T 1 T − j (4 N π / T ) t 2 x t e dt = x(t )e− j (4 Nπ / T )t dt + ∫T x(t )e− j (4 Nπ / T )t dt ( ) ∫ ∫ T T T 0 T 2 =
T 1 T T ( ∫ 2 x(t )e − j (4 Nπ / T )t dt + ∫T − x(t − )e− j (4 Nπ / T )t dt ) T 0 2 2 T 1 T ( ∫ 2 x(t )e − j (4 Nπ / T ) t dt + ∫ 2 − x(t )e− j (4 Nπ / T )t dt ) = 0 0 T 0
+∞
e − j 2ω (答案) 2 + jω
+∞ +∞ −∞
X ( jϖ ) = ∫ x(t )e − jωt dt = ∫ e −2 ( t − 2) u (t − 2)e − jωt dt = ∫ e −2 ( t − 2) e − jωt dt
−∞ 2
= ∫ e −( 2+ jω )t + 4 dt =
jkπt
,由已知条件 k ≤ 4 时,H(jw)不为零,而 k ≥ 5 ,H(jw)=0
jkπt
故响应为: y k (t ) = H ( jkπ ) a k e 当 k > 5 时,激励 x k (t ) = a k e 此有 y (t ) =
= (1 −
k 5
)a k e jkπt , k ≤ 4
(2) 由于系统的单位冲激响应 h(t)已知,可以据此而求出其频谱。因为 h(t)是方波脉冲,直 接由典型信号的频谱得:
FT h(t ) ←→ H ( jω ) =

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统第三章习题部分参考答案

信号与系统第三章习题部分参考答案
(5) t f (3t);
(7) (1 − t) f (1 − t) ;
(2) [1 + m f (t)]cosω0 t
(4) (t + 2) f (t); ( ) (6) e− jω0 t df t
dt
(8) f (t)∗ f (t − 3);
t
(9) ∫τ f (τ )dτ −∞
1−t / 2
(11) ∫ f (τ )dτ −∞
2π (sin π t )2 ↔ 2π (1− ⎜w⎜)[ε(w + 2π ) − ε(w − 2π )]
πt

即 (sin π t )2 ↔ (1− ⎜w⎜)[ε(ω + 2π ) − ε(w − 2π )]
πt

(3)双边指数信号
∵ e−a⎜t⎜

2a a2 + w2
(−∞
<
t
<
+∞)
∴ 2a a2 + w2
(13) f (t)∗ Sa(2t) (15) t df (1 − t)
dt
t+5
(10) ∫ f (τ )dτ −∞
(12) df (t) + f (3t ) − 2 e− jt ;
dt
(14) f (t) u(t)
(16) (t − 2) f (t)e j2(t−3)
解:(1) f 2 (t) + f (t) = f (t). f (t) + f (t) ↔ 1 [F (w}* F (w)] + F (w)
又 f (t) = 2 + cos⎜⎛ 2πt ⎟⎞ + 4sin⎜⎛ 5πt ⎟⎞
⎝3⎠

信号与系统课后答案第三章作业答案

信号与系统课后答案第三章作业答案

初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2

3dy(t) dt来自2y(t)

df (t) dt

6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)

a[u(t
s) 2

u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)

h(t)

ab[(t

1 2
)
u(t
1 2
)

(t

1 2
)
u(t
1) 2

tu(t)

1 4
(et

e3t
)u(t)

1 2
t
e3tu(t)

[
1 4
et

(
1 2
t

1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。

信号与系统第三章习题答案

信号与系统第三章习题答案

d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:

信号与系统习题答案第三章

信号与系统习题答案第三章

第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。

它是否是完备集? 解:(积分???)此含数集在(0,2)π为正交集。

又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。

由完备正交函数定义所以此函数集不完备。

3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。

3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。

如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。

解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。

和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。

北邮信号与系统课后答案第3章部分1

北邮信号与系统课后答案第3章部分1

为功率信号
(d) P lim 1 T0 u t 2 dt lim 1 T0 1dt 1
T0
2T0 T0
T0 2T0 0
2
为功率信号。
【知识点】能量信号、功率信号 3-3 对信号 f (t) 在数值和时间两方面进行运算变成 af (bt)
(1)如果在全部时间
t
内, f (t) 是具有能量为 W 的能量信号,
f1 t 1
f2 t 1
0
1
2
3t
0
1
2
3t
锯齿形脉冲
正弦脉冲
题 3-6 图
解:
3
0 f1 t f2 t d t
31 t sin
tdt
- t cos
t - 3 sin
3
t
03 3
3
2 30
3
3
sin
2
tdt
31 1 - cos 2 t d t 3
03
02
3
2
C12 2
t2
fe t
- sin t
3
3
3 t - 2 sin t sin tdt
sin 2
1t
4
3 cos 2 1 t 4
15 cos 4 1 t 4
...
2
A 1 T A
sin 2
1t
2
2A 3 cos 2 1t
2A 15 cos 4 1t 2 ...
AA
2A
2A
cos 2
1t
3 cos 2 1t
15 cos 4 1t
...
9
随着T , C12 ,当T
时使得 C12 0 。

信号与系统第一、二、三章自测题解答

信号与系统第一、二、三章自测题解答

第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。

3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。

4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。

(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。

答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。

答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。

信号与系统第三版课后习题答案

信号与系统第三版课后习题答案

信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。

在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。

下面是信号与系统第三版课后习题的答案。

第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。

系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。

2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。

离散时间信号是在离散时间范围内定义的信号,可以用数列表示。

3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。

非周期信号是指不具有周期性的信号。

4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。

偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。

5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。

6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。

7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。

第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。

奇偶分解的目的是简化信号的处理和分析。

2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。

卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。

3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。

冲激响应可以用来描述系统的特性和性能。

4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。

单位阶跃响应可以用来描述系统的稳定性和响应速度。

5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。

单位斜坡响应可以用来描述系统的积分特性。

信号与系统答案 西北工业大学 段哲民 信号与系统1-3章答案

信号与系统答案 西北工业大学 段哲民 信号与系统1-3章答案

第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。

答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。

答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。

答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

信号系统习题解答3版-第三章-推荐下载

信号系统习题解答3版-第三章-推荐下载

信号与系统徐天成第3版第3章习题答案3-1 已知周期矩形脉冲信号的重复频率,脉宽,幅度,如图题5 kHz f=20 s τ=μ10V E =3-1所示。

用可变中心频率的选频回路能否从该周期矩形脉冲信号中选取出5,12,20,50,80及频率分量来?要求画出图题3-1所示信号的频谱图。

100 kHz 图 题3-1解:,,,,5kHz f =20μs τ=10V E =11200T s fμ==41210f ππΩ==频谱图为从频谱图看出,可选出5、20、80kHz 的频率分量。

3-3 求图题3-3所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。

图 题3-3解: 在一个周期(0,T 1)内的表达式为: ()f t 11()()Ef t t T T =--111110011111()()(1,2,3)2T T jn tjn t n E jE F f t e dt t T e dt n T T T n π-Ω-Ω==--=-=±±±⎰⎰ 11010011111()()2T T E E F f t dt t T dt T T T ==--=⎰⎰傅氏级数为:111122()22244j t j t j t j tE jE jE jE jE f t e e e e ππππΩ-ΩΩ-Ω=-+-+-(1,2,3)2n E F n n π==±±± (0)2(0)2n n n πϕπ⎧->⎪⎪=⎨⎪<⎪⎩3-4 求图题3-4 所示半波余弦信号的傅里叶级数,若, ,大致画出幅10 V E =10 kHz f =度谱。

图 题3-4解:由于是偶函数,所以展开式中只有余弦分量,故傅氏级数中,另由图()f t 0n b =可知有直流分量, 在一个周期(,)内的表达式为:()f t ()f t 2T -2T其中:111cos 4()04T E t t f t T t ⎧Ω<⎪⎪=⎨⎪>⎪⎩112T πΩ=11112401112411()cos T T T T E a f t dt E tdt T T π--==Ω=⎰⎰111111241112422()cos T T jn t jn t T T n n a c f t e dt E t e dt T T -Ω-Ω--===Ω⋅⎰⎰211sin sin 2122cos 3,5,71112n n E E n n n n n πππππ+-⎡⎤⎢⎥=+=-=⎢⎥+--⎢⎥⎣⎦111211122()2T j t T E a c f t e dt T -Ω-===⎰所以,的三角形式的傅里叶级数为:()f t 11122()cos cos 2cos 42315E E E Ef t t t t πππ=+Ω+Ω-Ω+ 3-6 利用信号的对称性,定性判断图题3-6中各周期信号的傅里叶级数中所含有()f t的频率分量。

信号与系统第3章习题和重点

信号与系统第3章习题和重点

ZB
3-26
已知 f (t) = f1(t) + f2(t)的频谱密度函数 F(ω) = 4Sa(ω) − j
4
ω

为偶函数, 为奇函数, 且 f1(t)为偶函数, f2(t)为奇函数,试求 f1(t)和 f2(t) 。 解:由题意知
f1(t) ↔4Sa(ω) = AτSa( 2 ∴f1(t) = 2g2(t)
F = n 1 T 1 T
∫ ∫
3T 4 T 4
f (t)e− jnω0tdt
L − 2 L 2 2 2 −2T −T 0 T 2T t
() 1
− jnω0 T 2 ) = 1 (1−e− jnπ )

=
T 1 δ (t) −δ (t − )e− jnω0tdt = (1−e T 2 T − 4
0
T
ZB
3-4 已知周期信号 f (t)的前四分之一周期的波形如图所 且其余每一段四分之一周期的波形要与之相同, 示,且其余每一段四分之一周期的波形要与之相同,试 整个周期的波形。 就下列情况分别画出 f (t)整个周期的波形。 为偶函数, 解:(1) f (t)为偶函数,且只含偶次谐波
f (t)

F(ω) =
∫ = e e ∫
=
−∞ 0 2t − jωt
e2tε(−t)e− jωtdt dt
−∞ (2− jω)t 0 e
2 − jω −∞
ZB
1 = 2 − jω 《信号与系统》SIGNALS AND SYSTEMS
3-19 设 f (t) ↔F(ω) ,试证: 试证: (1) ∫ ∞ f (t)dt = F(0) ) −
解: (2) 为非周期信号 T →∞

[信号与系统作业解答]第三章

[信号与系统作业解答]第三章

3-4 求下图所示周期三角信号的傅里叶级数(三角形式)。
解:从图中可知,周期信号的在[ T / 2,T / 2] 的表达式为
f (t)
2E T
t,
0
t
T /2
2E T
t
T /2 t 0
周期为T ,基频 0
2 T。
1)三角形式的傅里叶级数
f (t) a0
[an cos(n 0t) bn sin(n 0t)]
解:
f (t)cos( 0t)
F1( )
1 2
[F(
0) F(
0 )]
f (t)e j 0t F2( ) F(
0)
f (t)cos( 1t)
F3( )
1 2
[F(
1) F(
1)]
3-39 确定下列信号的最低抽样率与奈奎斯特间隔。
(1) Sa(100t )
(3)Sa(100t) Sa(50t)
解:(1)因为Sa(100t) 50G200( ) ,最高频率为 m 100 rad / s ,所以最低抽样
所以
F [fo(t)] 1 [F( ) 2
1 2F
[f (t)
F *( )]
f *( t)] j Im[F( )]
(2)因为 fr (t)
1 2
[f
(t)
f *(t)] ,
所以
F [fr (t)]
1 2F
[f (t)
f *(t)]
1 [F( ) F *( 2
)]
同样的, fi (t)
1 [f (t) 2j
1因为20010050sa最高频率为100所以最低抽样频率为2002又因为另一个分量1005025sa最高频率为100所以最低抽样频率为200341系统如图所示求最大抽样间隔max100020003000300030001000200010001000300010003000波形如下图所示可知的最高频率为3000要进行无失真的恢复则最低抽样频率为min6000对应的最大抽样间隔为maxmin波形如下图所示其中

南邮信号与系统课后答案第三章

南邮信号与系统课后答案第三章

3-14
如题图 3 14 所示信号 f t F ,在不求出 前提下,求
1
F 的
f t
(1) F 0 F 0
-1
0
1
t
解: F 0 F 0




f t e
j t
dt
0




f t dt
f 1 t
1
(a)
2 5
0
-1
2 5
t
2 2 解: f 1 t cos 10 t u t u t cos 10 tg 4 t 5 5 5 2 f t g 4 t Sa F 5 5 5 4 f 1 t 1 2
y 1 t
H 2
cos 2 t
4 5
sin 2 t cos 2 t 127
4 5 Ae
j



另解:
1 j2 1 j2
j
e
j 127

y t A cos 2 t cos 2 t 127




1 10
g 10 t Sa 5 1 10 5
1 10 , A 10
Sa 5 t 2
g 10
对称性
u 5 u 5

g 10

5
3-8
已知 f t F ,求下列函数的傅里叶
2 j
F e
2 j
t ( 6 ) t 2 f 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时移性
Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) 时移性 jw 1 1 = e - j 3wp d (w ) + e - j 3w = p d (w ) + e - j 3w jw jw 1 1 \ U (t ) - U (t - 3) « p d (w ) + - p d (w ) - e - j 3w jw jw 1 = (1- e - j 3w ) jw
2p 5p t ) + 4sin( t ) , 将其表示成复指数信号形 3 3
式,求 Fn ( jnw0 ) ,并画出双边幅度谱和相位谱。
p 解:由三角关系式 sin(a ) = cos(a - ) 可将原式化为: 2 2p 5p p f (t ) = 2 + cos( t ) + 4 cos( t - ) 3 3 2
f (-t ) « F (- jw ) f (t )e ± jw0t « F ( j (w m w0 ) 可得: f (t + 3) « e jw 3 F ( jw ) 1 jw 3 w f (3 + 2t ) « e 2 F ( j ) 2 2 1 - jw 3 w f (3 - 2t ) « e 2 F (- j ) 2 2 (w -1) 1 - j3 (w - 1) jt e f (3 - 2t ) « e 2 F (- j ) 2 2
3.7 一连续周期信号 f (t ) ,周期 T=8,已知其非零傅里叶复系数是:F1 = F-1 = 2 ,
F3 = F-*3 = 4 j ,试将 f (t ) 展开成三角型傅里叶级数,求 An 并画出单边幅度谱和相
位谱。 解:根据复指数形式的傅里叶级数与三角型傅里叶级数的关系
Fn = Fn e jjn
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w 根据冲激函数的性质: 1 Q d (aw ) = d (w ) a \ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
d (t - 1) « e - jw
\ e-2(t -1)d (t - 1) « e - jw
(8) U (t ) - U (t - 3) 解法一: 3 U (t ) - U (t - 3) = g3 (t - ) 2 3 g3 (t ) « 3Sa( w ) 2 3 -j w 3 3 g3 (t - ) « 3Sa ( w )e 2 2 2 解法二:
(5) (1 - t ) f (1 - t ) 解法一: 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw )
w 1 jb w f (at + b) « e a F ( j ) a a
dn (-jt ) f (t ) « F ( jw ) dw n 可得:
n
d F ( jw ) dw d tf (t ) « j F ( jw ) dw - jtf (t ) «
(2) f (1 - t ) 根据傅里叶变换的性质 f (t ± t0 ) « e± jwt0 F ( jw ) f (-t ) « F (- jw ) 可得: f (1 + t ) « e jw f (1 - t ) « e- jw
(3) tf (3t ) 根据傅里叶变换的性质 1 w f (at ) « F ( j ) a a dn (-jt ) f (t ) « F ( jw ) dw n 可得:
可得:
Fn =
1 An 2
\
A1 = 4
Q
F1 = F1 e F1 = 2
jj1
= 2e = 2
j0
F3 = F3 e
jj3
= 4e
j
p 2
=4j
F3 = 4
j1 = 0 j3 = p 2
A3 = 8
单边幅度谱(即 An 对应的函数波形)
单边幅度频谱 An
nw0
单边相位谱 j n
p 2
nw0
3.8 已知连续周期信号 f (t ) = 2 + cos(
F0 = A0 = 2 F2 = F-2 = A2 1 = 2 2 1 2
j2 = j-2 = 0
F-2 = F-2 e jj -2 = 1 2 p j-5 = 2
j
Þ F2 = F2 e jj2 = F5 = F-5 = A5 =2 2
j5 = -j
p 2
Þ F5 = F5 e jj5 = 2e
p 2
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:
n
1 w f (3t ) « F ( j ) 3 3 1 d w - jtf (3t ) « F( j ) 3 dw 3 j d w \ tf (3t ) « F( j ) 3 dw 3
(4) e jt f (3 - 2t ) 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) f (at ) « 1 w F( j ) a a
式中每一项的频率都应该是基频的整数倍,因此基频是
p 。 3 根据幅度谱和相位谱的定义可得:
求得基频为 w0 =
2p 5p 、 的最大公约数。 3 3
A0 = 2
A2 = 1
A5 = 4
j2 = 0
j5 = -
p 2
1 An , 双边相位谱是单边相位谱关于原 2
根据单边谱和双边谱的关系, Fn = F- n = 点奇对称,可得:
时移性 线性
e - j 2d (t - 2 ) « e - j 2 e - j 2w = e - j 2(w +1)
Q 根据傅里叶变换的性质 时移: f (t ± t0 ) « e ± jwt0 F ( jw ) 频移:f (t ) e ± jw0t « F ( j (w m w0 )) 可得: d (t ) « 1
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t )
= -2 j
F-5 = F-5 e jj -5 = 2e
p 2
=2j
因此, f (t ) 写成复指数形式:
f (t ) =
n =-¥
å Fe
n -
¥
ቤተ መጻሕፍቲ ባይዱ
jnw0t
= F-5e -5 jw0t + F-2 e -2 jw0t + F0 + F2 e 2 jw0t + F5e5 jw0t = 2 je
5p jt 3
(6) e -2(t -1)d (t - 1)
(8) U (t ) - U (t - 3)
t (2) U ( - 1) 2 U (t ) « pd (w ) + 1 jw 1 ) jw 时移性:f (t ± t0 ) « e ± jwt0 F ( jw ) 时频展缩:f (at ) « 1 w F( j ) a a
d F ( jw ) dw d (1 - t ) f (1 - t ) « je- jw F (- jw ) d (-w ) (t + 1) f (t + 1) « je jw 解法二: (1 - t ) f (1 - t ) = f (1 - t ) - tf (1 - t ) f (1 - t ) « F (- jw )e- jw 时频展缩特性 dF (- jw ) - jw - jtf (1 - t ) « e - F (- jw ) je- jw 时域微分特性 dw dF (- jw ) - jw tf (1 - t ) « j e + F (- jw )e- jw dw dF (- jw ) - jw f (1 - t ) - tf (1 - t ) « F (- jw )e- jw - j e - F (- jw )e - jw dw dF (- jw ) - jw =- j e dw dF (- jw ) - jw = j e d (-w )
3 3 w j w -j w 1 - j3 2 2 = e (e - e 2 ) jw
冲激函数相乘特性 线性
=
w 1 - j3 3 e 2 2 j sin( w ) jw 2
欧拉公式
3 -j w 3 3 = sin( w )e 2 3w / 2 2 3 -j w 3 = 3Sa( w )e 2 2
3.27 已知 f (t ) « F ( jw ) ,利用傅里叶变换的性质,求下列信号的傅里叶变换。
d (t - 2) « e- j 2w
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 冲激函数的相乘特性
线性
(6) (2t - 2) f (t ) 由题(5)可得: d tf (t ) « j F ( jw ) dw 根据傅里叶变换的线性性质: d 2tf (t ) « 2 j F ( jw ) dw \ (2t - 2) f (t ) = 2tf (t ) - 2 f (t ) « 2 j
相关文档
最新文档