八年级数学经典练习题

合集下载

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)

一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣2B .2﹣4C .1D 2A解析:A【分析】 根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于2 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =2∴BE =BD ﹣DE =2﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =22BE =22×(2﹣4)=4﹣2. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15C解析:C【分析】 根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A.4 B.5 C.8 D.10C解析:C【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【详解】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.6C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.5.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()A.若AB AD=,则平行四边形ABCD是矩形B.若AB AD=,则平行四边形ABCD是正方形C.若AB BC⊥,则平行四边形ABCD是矩形D.若AC BD⊥,则平行四边形ABCD是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.6.菱形的一个内角是60︒,边长是3cm,则这个菱形的较短的对角线长是()A.3cm2B33cm2C.3cm D.33cm C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.83C.16 D.163A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的OE ,则四边形EFCD的周长为_____.周长为19, 2.5145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.12.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.13.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.14.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.15.如图,B,E,F,D四点在一条直线上,菱形ABCD的面积为2120cm,正方形AECF 的面积为250cm ,则菱形的边长为___cm .13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1 解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm , ∴22AB AO BO +25144+, 故答案为13. 【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答. 16.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:122 【分析】 画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.18.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.19.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解. 【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线, ∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =,∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.解析:(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】 (1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t 秒.∵四边形MNCB 是平行四边形,∴MB=NC ,当N 从D 运动到C 时,∵BC=13cm ,CD=21cm ,∴BM=AB-AM=16-t ,CN=21-2t ,∴16-t=21-2t ,解得t=5,当N 从C 运动到D 时,∵BM=AB-AM=16-t ,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.解析:(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?解析:(1)t =2;(2)t =3或65t =. 【分析】 (1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒),∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】 本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.解析:(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ; (2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.27.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.解析:(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.28.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点图形.(1)在图甲中画出一个三角形,使BP平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP平分该四边形的面积.解析:(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.。

(完整版)八年级数学几何经典题【含答案】

(完整版)八年级数学几何经典题【含答案】

F八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF ..4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .B5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。

求证:EF=FD 。

8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。

9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EFD FEP CB AFPDE CBA,九年级数学【答案】1.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。

2.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。

可得PQ=2EGFH。

由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。

人教版八年级数学上册经典精品练习题-强烈推荐

人教版八年级数学上册经典精品练习题-强烈推荐

人教版八年级数学第一学期期末考试试卷(试卷满分120分,考试时间100分钟)题号 一二三四五六七八 总分 累分人得分祝你考出好成绩!一、精心选一选(请将下列各题唯一正确的选项代号填在题后的括号内.本大题共10小题,每小题3分,共30分.)1、下列运算中,计算结果正确的是 ( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2、在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第四象限B. 第三象限C.第二象限D. 第一象限 3、化简:a+b-2(a-b)的结果是 ( ) A.3b-a B.-a-b C.a+3b D.-a+b 4、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、 E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm 5、下列多项式中,不能进行因式分解的是 ( ) A. –a 2+b 2 B. –a 2-b 2 C. a 3-3a 2+2a D. a 2-2ab+b 2-16、小明家下个月的开支预算如图所示,如果用于衣服上的支 是200元,则估计用于食物上的支出是 ( ) A. 200元 B. 250元 C. 300元 D. 3507、下列函数中,自变量的取值范围选取错误..的是 ( ) A .y=2x 2中,x 取全体实数 B .y=11x +中,x 取x ≠-1的实数 C .y=2x -中,x 取x ≥2的实数 D .y=13x +中,x 取x ≥-3的实数 得分阅卷人食物30%教育22%衣服20%其他28%图2AB C FED8、下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④ A 、②③④ B 、①②③ C 、①②④ D 、①②④ 9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 10、如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置 的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D二、耐心填一填(本大题共6小题,每小题4分,共24分.)11、32c ab -的系数是 ,次数是 。

八年级数学典型例题

八年级数学典型例题

1.现有布料25米,要裁大人和小孩的两种服装,已知大人每套用布2.4米,小孩用布一米,问各裁多少套恰好把布用完?解:设大人用布x套,小孩用布y套。

2.4x+y=25 y=25-2.4x13=25-2.4x5 1=2.4x10答:大人裁5套和小孩裁13套或者大人裁10套和小孩裁1套。

田华华2.蜻蜓有六条腿和两对翅,蝉有六条腿和一对翅膀。

现这两种昆虫共有108条腿和20对翅膀,则蜻蜓和蝉各有多少只?解:设蜻蜓有x只,蝉有y只.6x+6y=108 x=22x+y=20 y=16答:蜻蜓有两只,蝉有16只田华华3已知长江比黄河长836千米,黄河长度的六倍比长江的五倍多1284千米长江黄河分别为多少千米?解:设长江为x千米,黄河为y千米。

x-y=836 x=63006y-1284=5x y=5464答:长江为6300千米,黄河为5464千米。

田华华4.一栋宿舍楼,若每间住1人,则有十人没有房间住,若每间住1人,则有10间无人住。

这栋宿舍楼有多少间?解:设这栋宿舍楼有x间。

X+10=3x-3x10X=20答:这栋宿舍楼有20间。

田华华5.有两条绳子,长绳是短绳的三倍,如过它们各自剪去20米,那么长绳是短绳的四倍,则长绳和短绳原来的长度分别是多少米?解:设长绳为x米,短绳为y米。

X=3y x=180(x-20)=4(y-20) y=60答:长绳的长度为180米,短绳的长度为60米。

田华华6.一个笼中有若干只鸡,若干只兔子,它们共有8个头,22只脚,那么鸡和兔各有多少只?解:设鸡有x只,兔有y只。

x+y=8 x=52x+4y=22 y=3答:鸡有五只,兔有三只。

田华华7.甲乙两人骑自行车同时从相距65千米的两地相向而行。

2小时后相遇,若甲比乙每小时多骑2.5千米,则乙的速度是多少千米每小时?解:设甲的速度为x,乙的速度为y。

2(x+y)=65 x=17.5X=y+2.5 y=15答:甲的速度为17.5千米每小时,乙的为15千米每小时。

八年级上数学练习题

八年级上数学练习题

八年级上数学练习题一、有理数及其运算1. 计算下列各题:(1) (3) + 7 5(2) 4 (9) + 6(3) 5 × (4) ÷ 2(4) 15 ÷ (3) × (2)2. 化简下列各题:(1) (2)^3 + 5^2 1(2) 3 × (4) + 2^5 7(3) 4 × (3)^2 + 6 ÷ 2(4) 8 ÷ (2)^3 + 9 × 5二、整式及其运算1. 计算下列各题:(1) 3x 2y + 4x 5y(2) 5a^2 3a^2 + 7a^2 2a^2(3) 4m^2n 2mn^2 + 3m^2n 5mn^2(4) 6ab^2 3a^2b + 2ab^2 4a^2b2. 化简下列各题:(1) (2x 3y)(x + 4y)(2) (a + 3b)(a 2b)(3) (4m 5n)(2m + 3n)(4) (3x^2 + 2y^2)(x^2 y^2)三、一元一次方程1. 解下列方程:(1) 3x 7 = 5(2) 2x + 5 = 9(3) 4x 15 = x + 8(4) 5x 3(x 2) = 72. 解决实际问题:(1) 某数的3倍减去5等于这个数的2倍加1,求这个数。

(2) 甲、乙两人年龄之和为45岁,甲的年龄是乙的2倍,求甲、乙的年龄。

四、二元一次方程组1. 解下列方程组:(1)\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\](2)\[\begin{cases}4x 5y = 7 \\3x + 2y = 11\end{cases}\]2. 解决实际问题:(1) 甲、乙两人共生产零件120个,甲每天生产5个,乙每天生产8个,求甲、乙各生产多少天。

(2) 某商店同时卖出两件商品,每件售价80元,其中一件盈利20%,另一件亏损20%,求这两件商品的成本价。

八年级数学100道经典题,打印一份练习!

八年级数学100道经典题,打印一份练习!

八年级数学100道经典题,打印一份练习!第一部分:三角形
★一星级
★★二星级
第二部分:全等三角形
★★二星级
第三部分:轴对称★一星级
()27、下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一条腰上的中线也是这条腰上的高的等腰三角形。

其中是等边三角形的有
A、①②③
B、①②④
C、
①③D、①②③④
()28、三角形三个角的度数之比为1:2:3,最大边长为16,则最小边长为
A、8
B、4
C、6
D、10
★★二星级
第四部分:整式的乘除和因式分解★一星级
★★二星级
第五部分:分式★一星级
★★二星级
第六部分:二次根式★一星级
第七部分:勾股定理★一星级
★★二星级
第八部分:平行四边形★一星级
★★二星级
第九部分:一次函数★一星级
★★二星级
第十部分:数据的分析★一星级。

(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒D解析:D【分析】 先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > A解析:A【分析】 当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.4.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】 根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4B解析:B【分析】 先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒C解析:C【分析】 先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C解析:C【分析】 利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题11.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角 解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.12.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.13.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=_____.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A=2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC=2∠DBC,∠ACE=2∠DCE.再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE,∠A=∠ACE﹣∠ABC.即得出∠A=2∠D,即得出答案.【详解】∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBE=2(∠DCE﹣∠DBE),∴∠A=2∠D=40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.≅,延长BC,分别交AD,ED于点F,G,若14.如图,ABC ADE∠=________︒.∠=︒,10B∠=︒,30EAB120CAD∠=︒,则CFD95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.15.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,AB=8cm,AC=5cm,∠A=∠B,点P在线段AB上以2cm/s的速度由点A向B 运动,同时,点Q以x cm/s的速度从点B出发在射线BD上运动,则△ACP与△BPQ全等时,x的值为_____________2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12 cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==,1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.(1)如图,∠MAB=30°,AB=2cm,点C在射线AM上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可; (2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.解析:(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ;(2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90°∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.26.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.27.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。

八年级数学《菱形》练习题含答案

八年级数学《菱形》练习题含答案

八年级数学《菱形》练习题随堂演练一、填空题1.菱形的对角线长为24和10,则菱形的边长为 ,周长为 .2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角为 , , , .3.菱形的两条对角线分别为3和7,则菱形的面积为 .4.已知在菱形ABCD 中,E ,F 是BC ,CD 上的点,且AE =EF =AF =AB ,则∠B= .5.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .6.已知菱形的面积等于80cm 2,高等于8cm ,则菱形的周长为 .7.已知菱形ABCD 中AE ⊥BC ,垂足E ,F 分别为BC ,CD 的中点,那么∠EAF 的度数为 .8.顺次连结菱形各边的中点,所得的四边形为 形.二、选择题1.能够判定一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线相等且对角相等C .对角线互相垂直D .两组对角分别相等且一条对角线平分一组对角2.菱形ABCD ,若∠A:∠B =2:1,∠CAD 的平分线AE 和边CD 之间的关系是( )A .相等B .互相垂直且不平分C .互相平分且不垂直D .垂直且平分3.已知菱形ABCD 的周长为40cm ,BD=34AC ,则菱形的面积为( ) A .96cm 2 B .94cm 2 C .92cm 2 D .90cm 24.菱形的周长等于高的8倍,则这个菱形较大内角是( )A .60°B .90°C .120°D .150°5.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .邻边相等的四边形为菱形7.矩形具有而菱形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直8.菱形的对角线把它分成全等的直角三角形的个数是( )A .4个B .3个C .2个D .1个三、解答题1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。

八年级数学勾股定理经典大题例题

八年级数学勾股定理经典大题例题

(每日一练)八年级数学勾股定理经典大题例题单选题1、若△ABC三边长a,b,c满足√a+b−25+|b−a−1|+(c−5)2=0,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:根据非负数的性质求得a、b、c的值,再根据勾股定理的逆定理即可解答.解:∵√a+b−25+|b-a-1|+(c-5)2=0,∴a+b-25=0,b-a-1=0,c-5=0,∴a=12,b=13,c=5,∵a2+c2=b2=169,∴△ABC是直角三角形.故选C.小提示:本题考查了非负数的性质及勾股定理的逆定理,根据非负数的性质求得a、b、c的值是解决问题的关键.2、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,,则BC的长是()折痕现交于点F,已知EF=32A.3√22B.3√2C.3D.3√3答案:B解析:折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=12AB,所以AB=AC,的长可求,再利用勾股定理即可求出BC的长.解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,且∠AFB=90°,∴EF=12AB,∵EF=32,∴AB=2EF=32×2=3,在ΔRtABC中, AB=AC,AB=3,∴BC=√AB2+AC2=√32+32=3√2,故选B.小提示:本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.3、如图,在△ABC中,点D是线段AB上的一点,过点D作DE∥AC交BC于点E,将△BDE沿DE翻折,得到△B'DE,若点C恰好在线段B'D上,若∠BCD=90°,DC:CB'=3:2,AB=16√2,则CE的长度为()A.2√2B.4C.3√2D.6答案:C解析:设DC=3x,CB′=2x,则DB'=5x,由折叠的性质得出DB=DB',∠BDE=∠B'DE,BE=B'E,由勾股定理求出BC =8√2,设CE=a,则BE=8√2﹣a=B'E,由勾股定理得出方程求出a的值,则可得出答案.解:设DC=3x,CB'=2x,则DB'=5x,∵将△BDE沿DE翻折,得到△B'DE,∴DB'=DB,∠BDE=∠B'DE,BE=B'E,∵DE∥AC,∴∠A=∠BDE,∠ACD=∠CDE,∴∠A=∠ACD,∴CD=AD=3x,∴AB=AD+DB=8x=16√2,∴x=2√2,∴CD=6√2,BD=10√2,B'C=4√2,∴BC=√BD2−CD2=8√2,设CE=a,则BE=8√2﹣a=B'E,∵CE2+B'C2=B'E2,∴a2+32=(8√2﹣a)2,解得a=3√2,∴CE=3√2,故选:C.小提示:本题考查了折叠的性质,勾股定理,平行线的性质,等腰三角形的性质与判定,熟练掌握折叠的性质是解题的关键.4、勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A.B.C.D.答案:D解析:利用两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D .解: A 、两个以a 和b 为直角边三角形面积与一个直角边为c 的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故12ab +12ab +12c 2=12(a +b )2,整理得: a 2+b 2=c 2,即能证明勾股定理,故本选项不符合题意;B 、以a 与b 为两直角边四个全等三角形面积与边长为c 的小正方形面积和等于以a+b 的和为边正方形面积,故4×12ab +c 2=(a +b )2,整理得: a 2+b 2=c 2,即能证明勾股定理,故本选项不符合题意;C 、以a 与(a+b )为两直角边四个全等三角形面积与边长为b 的小正方形面积和等于以c 为边正方形面积,4×12a (a +b )+b 2=c 2,整理得: a 2+b 2=c 2,即能证明勾股定理,故本选项不符合题意;D 、四个小图形面积和等于大正方形面积,2ab +a 2+b 2=(a +b )2 ,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D .小提示:本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.5、如图,在Rt △ABC 中,∠ACB =90°,BC =3,AB =5,角平分线CD 交AB 于点D ,则点D 到AC 的距离是( )A .127B .2C .157D .3答案:A解析:作DE ⊥AC 于E ,作DF ⊥BC 于F ,根据勾股定理可求AC ,根据角平分线的性质可得DE =DF ,再根据三角形面积公式即可求解.解:作DE⊥AC于E,作DF⊥BC于F,在Rt△ACB中,AC=√AB2−BC2=√52−32=4,∵CD是角平分线,∴DE=DF,∴12AC⋅DE+12BC⋅DF=12AC⋅BC,即12×4×DE+12×3×DE=12×4×3,解得DE=127.故点D到AC的距离是127.故选:A.小提示:本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等.6、如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.6答案:B解析:试题分析:设CH=x,因为BE:EC=2:1,BC=9,所以,EC=3,由折叠知,EH=DH=9-x,在Rt△ECH中,由勾股定理,得:(9−x)2=32+x2,解得:x=4,即CH=4考点:(1)图形的折叠;(2)勾股定理7、有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5B.√7C.√5D.5或√7答案:D解析:分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可.解:当4是直角边时,斜边=√32+42=5;当4是斜边时,另一条直角边=√42−32=√7;故选:D.小提示:本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2答案:A解析:根据∠C=90°确定直角边为a、b,对式子a+b=14两边平方,再根据勾股定理得到ab的值,即可求解.解:根据∠C=90°确定直角边为a、b,∴a2+b2=c2=100∵a+b=14∴(a+b)2=142,即a2+2ab+b2=196∴2ab=96∴S△ABC=1ab=24cm22故选A小提示:此题考查了勾股定理的应用,涉及了完全平方公式,解题的关键是根据所给式子确定ab的值.填空题9、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.则旗杆的高度______.答案:12米解析:设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.解:设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.所以答案是:12米.小提示:本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解.10、如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为____.答案:45°解析:利用勾股定理可求出AB2,AC2,BC2的长,进而可得出AB2=AC2+BC2,AC=BC,利用勾股定理的逆定理可得出△ABC 为等腰直角三角形,再利用等腰直角三角形的性质,可得出∠ABC=45°.解:连接AC,根据题意,可知:BC2=12+22=5,AC2=12+22=5,AB2=12+32=10.∴AB2=AC2+BC2,AC=BC,∴△ABC为等腰直角三角形,∴∠ABC=45°.所以答案是:45°.小提示:本题考查了勾股定理的逆定理、勾股定理以及等腰直角三角形的性质,利用勾股定理的逆定理及AC=BC,找出△ABC为等腰直角三角形是解题的关键.11、如图,在四边形ABCD中,∠ABC=∠ADC=90°,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.答案:29解析:如图(见解析),先根据正方形的面积公式可得AB2=30,BC2=16,CD2=17,再利用勾股定理可得AD2的值,由此即可得出答案.如图,连接AC,由题意得:AB2=30,BC2=16,CD2=17,∵在△ABC中,∠ABC=90°,∴AC2=AB2+BC2=46,∵在△ACD中,∠ADC=90°,∴AD 2=AC 2−CD 2=29,则正方形丁的面积为AD 2=29,所以答案是:29.小提示:本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.12、正方形ABCD 的边长是4,点P 是AD 边的中点,点E 是正方形边上的一点,若△PBE 是等腰三角形,则腰长为________.答案:2√5或52或√652 解析:分情况讨论:(1)当PB 为腰时,若P 为顶点,则E 点与C 点重合,如图1所示:∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P 是AD 的中点,∴AP=DP=2,根据勾股定理得:BP=√AB 2+AP 2=√42+22=2√5;若B 为顶点,则根据PB=BE′得,E′为CD 中点,此时腰长PB=2√5;(2)当PB 为底边时,E 在BP 的垂直平分线上,与正方形的边交于两点,即为点E ;①当E 在AB 上时,如图2所示:则BM=12BP=√5,∵∠BME=∠A=90°,∠MEB=∠ABP ,∴△BME ∽△BAP ,∴BE BP =BM BA ,即2√5=√54,∴BE=52;②当E 在CD 上时,如图3所示:设CE=x ,则DE=4−x ,根据勾股定理得:BE 2=BC 2+CE 2,PE 2=DP 2+DE 2,∴42+x 2=22+(4−x)2,解得:x=12,∴CE=12,∴BE=√BC 2+CE 2 =√42+(12)2=√652;综上所述:腰长为:2√5,或52,或√652; 故答案为2√5,或52,或√652. 点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.13、已知一直角三角形的两条直角边分别为6cm 、8cm,则此直角三角形斜边上的高为____.答案:4.8cm.解析:根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.∵直角三角形的两条直角边分别为6cm ,8cm ,∴斜边为√62+82 =10(cm),设斜边上的高为h ,则直角三角形的面积为12×6×8=12×10h , 解得:h=4.8cm ,这个直角三角形斜边上的高为4.8cm.故答案为4.8cm.小提示:此题考查勾股定理,解题关键在于列出方程.解答题14、如图,把一块直角三角形(△ABC ,∠ACB =90°)土地划出一个三角形(△ADC )后,测得CD =3米,AD =4米,BC =12米,AB =13米.(1)求证:∠ADC=90°;(2)求图中阴影部分土地的面积.答案:(1)见解析;(2)24解析:(1)根据勾股定理求出AC的长,再根据勾股定理的逆定理证明∠ADC=90°;(2)利用△ABC的面积减去△ACD的面积即可.解:(1)∵∠ACB=90°,BC=12,AB=13,∴AC=√AB2−BC2=5,∵32+42=52,即AD2+CD2=AC2,∴∠ADC=90°;(2)S阴影=S△ABC-S△ACD=1 2×AC×BC−12×CD×AD=1 2×5×12−12×3×4=24.小提示:本题考查的是勾股定理在实际生活中的应用以及勾股定理的逆定理,有利于培养学生生活联系实际的能力.15、勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止己有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中b>a,点E在线段AC上,点B、D在边AC两侧,试证明:a2+b2=c2.答案:见解析.解析:首先连结BD,作DF⊥BC延长线于F,则AE=b−a,根据RtΔABC≅RtΔDAE,易证∠DAB=90°,再根据S四边形ADFB =SΔADE+SΔABC+S四边形DFCE,S四边形ADFB=SΔADB+SΔDFB,两者相等,整理即可得证.证明:连结BD,作DF⊥BC延长线于F,则AE=b−aS四边形ADFB =SΔADE+SΔABC+S四边形DFCE=12ab+12ab+(b−a)⋅b =ab+b2−ab=b2∵RtΔABC≅RtΔDAE ∴AB=AD=c∴∠ADE=∠BAC∵∠ADE+∠DAE=90°∴∠BAC+∠DAE=90°即∠DAB=90°,∴AD⊥AB∴S四边形ADFB=SΔADB+SΔDFB=12c2+12(a+b)⋅(b−a) =12c2+12b2−12a2即有:b2=12c2+12b2−12a2∴a2+b2=c2小提示:本题考查了勾股定理的证明,用两种方法表示出四边形ADFB的面积是解本题的关键.。

八年级数学经典练习题附答案

八年级数学经典练习题附答案

八年级数学经典练习题附答案( 因式分解 )因式分解练习题一、填空题:2.(a- 3)(3-2a)=_______(3-a)(3-2a);12.若 m2- 3m+ 2=(m+ a)(m+b),则 a=______,b=______;15.当 m=______时, x2+2(m- 3)x+ 25 是完好平方式.二、选择题:1.以下各式的因式分解结果中,正确的选项是()A. a2b+ 7ab-b=b(a2+ 7a)B.3x2y- 3xy-6y=3y(x-2)(x+ 1)C.8xyz-6x2y2=2xyz(4-3xy)D.- 2a2+4ab- 6ac=- 2a(a+ 2b-3c)2.多项式 m(n-2)- m2(2-n)分解因式等于 ()A. (n-2)(m+ m2)B. (n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m- 1) 3.在以低等式中,属于因式分解的是()A. a(x-y)+ b(m+n)= ax+bm-ay+bn C.- 4a2+9b2=(-2a+3b)(2a+3b)B.a2-2ab+b2+1=(a-b)2+1 D. x2-7x-8=x(x- 7)-84.以下各式中,能用平方差公式分解因式的是()A. a2+b2B.- a2+b2C.- a2-b2D.- (-a2)+b25.若9x2+mxy+ 16y2是一个完好平方式,那么m 的值是 ()A.- 12B.± 24C.12D.± 126.把多项式 a n+4- a n+1分解得 ()A. a n(a4- a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+ 1)D.a n+1(a-1)(a2+a+ 1) 7.若 a2+ a=- 1,则 a4+2a3-3a2-4a+ 3 的值为 ()A. 8B.7C.10D. 128.已知 x2+ y2+2x- 6y+10=0,那么 x,y 的值分别为 ()A. x=1, y=3B.x=1,y=- 3C.x=- 1, y=3D.x=1,y=- 3 9.把 (m2+3m)4-8(m2+3m)2+16 分解因式得 ( )A. (m+1)4(m+ 2)2B.(m-1)2(m- 2)2(m2+ 3m- 2)C.(m+4)2(m- 1)2D. (m+1)2(m+ 2)2(m2+ 3m- 2)210.把 x2-7x- 60 分解因式,得 ()A. (x- 10)(x+ 6)B.(x+5)(x- 12)C. (x+3)(x-20)D.(x- 5)(x+12) 11.把 3x - 2xy-8y分解因式,得 ()22A. (3x+4)(x- 2)B.(3x- 4)(x+2) C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把 a +8ab-33b2分解因式,得 ()2A. (a+11)(a-3) B.(a- 11b)(a-3b) C.(a+ 11b)(a-3b)D.(a- 11b)(a+3b)13.把x4-3x2+2 分解因式,得()A. (x2-2)(x2-1)B. (x2-2)(x+ 1)(x-1)C.(x2+2)(x2+1)D. (x2+ 2)(x+1)(x- 1)14.多项式x2- ax-bx+ab 可分解因式为()A.- (x+a)(x+b)B.(x-a)(x+b)C. (x- a)(x-b)D. (x+a)(x+b)15.一个关于 x 的二次三项式,其x2项的系数是 1,常数项是- 12,且能分解因式,这样的二次三项式是()A. x2-11x-12 或 x2+11x-12B.x2- x-12或x2+x-12C.x2-4x-12 或x2+4x- 12D.以上都能够16.以下各式 x3-x2- x+ 1,x2+ y- xy-x,x2-2x-y2+1,(x2+3x)2- (2x+ 1)2中,不含有 (x -1)因式的有 ( )A. 1 个B.2 个C.3 个D.4 个17.把9- x2+12xy-36y2分解因式为()A. (x- 6y+3)(x- 6x-3)B.- (x- 6y+3)(x- 6y-3)C.- (x-6y+ 3)(x+6y-3)D.- (x- 6y+3)(x- 6y+3)18.以下因式分解错误的选项是()A. a2-bc+ ac-ab=(a-b)(a+ c)B. ab-5a+3b- 15=(b-5)(a+3)C.x2+3xy-2x- 6y=(x+ 3y)(x- 2)D.x2-6xy-1+9y2=(x+3y+ 1)(x+3y- 1)19.已知 a2x2± 2x+b2是完好平方式,且a, b 都不为零,则 a 与 b 的关系为 ()A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对 x4+4 进行因式分解,所得的正确结论是 ( )A.不能够分解因式B.有因式 x2+2x+2C. (xy+2)(xy- 8) D.(xy-2)(xy-8)21.把 a +2a b2+ b -a b 分解因式为 ()42422A. (a2+b2+ab)2B. (a2+ b2+ab)(a2+b2-ab) C.(a2-b2+ab)(a2- b2-ab)D.(a2+b2-ab)222.- (3x-1)(x+ 2y)是以下哪个多项式的分解结果()A. 3x + 6xy- x- 2y B.3x -6xy+ x-2y 22C.x+2y+3x2+6xy D.x+2y- 3x2-6xy 23.64a8-b2因式分解为 ()A. (64a4- b)(a4+ b)B. (16a2- b)(4a2+b)C.(8a4-b)(8a4+ b)D. (8a2-b)(8a4+ b) 24.9(x-y) +12(x -y)+4(x+y) 因式分解为 ()2222A. (5x-y)2 B. (5x+ y)2C.(3x-2y)(3x+2y) D. (5x- 2y)2 25.(2y-3x)2- 2(3x-2y)+1 因式分解为 ()A. (3x-2y-1)2B.(3x+2y+ 1)2C.(3x-2y+1)2D.(2y-3x- 1)226.把 (a+ b) - 4(a -b )+4(a-b) 分解因式为 ()2222A. (3a- b)2B.(3b+a)2C.(3b-a)2D. (3a+ b)227.把 a (b+c) -2ab(a-c)(b+ c)+b (a- c) 分解因式为 ( )2222A. c(a+b)2B. c(a- b)2C.c2(a+b)2D.c2(a- b)28.若 4xy-4x2-y2-k 有一个因式为 (1- 2x+y),则 k 的值为 ()A. 0B. 1C.- 1D. 429.分解因式 3a2x-4b2y-3b2x+4a2y,正确的选项是 ()A.- (a2+ b2)(3x+4y)B. (a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y)D.(a-b)(a+b)(3x-4y) 30.分解因式 2a2+ 4ab+2b2-8c2,正确的选项是 ()A. 2(a+ b-2c)B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)- p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+ xy3;4.abc(a2+b2+ c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c- a)+c2(a- b);6. (x2- 2x)2+2x(x- 2)+1;7.(x- y)2+12(y-x)z+36z2;8.x2- 4ax+ 8ab-4b2;9.(ax+by)2+(ay- bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2- 1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+ b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m- 2n)3+(3m+ 2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3- b3-c3;20.x2+ 4xy+3y2;21.x2+ 18x- 144;22.x4+2x2-8;23.- m4+18m2- 17;24.x5- 2x3- 8x;25.x+ 19x -216x ;26.(x -7x) +10(x -7x)-24;85222227.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x- 1)-2;29.x2+ y2-x2y2- 4xy- 1;30.(x- 1)(x-2)(x-3)(x- 4)-48;四、证明 (求值 ):1.已知 a+b=0,求 a3- 2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,必然是一个完好平方数.3.证明: (ac-bd)2+(bc+ ad)2=(a2+ b2)(c2+d2).4.已知 a=k+ 3, b=2k+2,c=3k-1,求 a2+b2+ c2+2ab- 2bc- 2ac 的值.5.若 x2+mx+n=(x-3)(x+4),求 (m+ n)2的值.6.当 a 为何值时,多项式x2+7xy+ay2-5x+43y-24 能够分解为两个一次因式的乘积.7.若 x,y 为任意有理数,比较6xy 与 x2+9y2的大小.8.两个连续偶数的平方差是 4 的倍数.参照答案 :一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+ 5,- 212.- 1,- 2(或- 2,- 1)14.bc+ ac,a+b,a-c15.8 或- 2二、选择题:1.B2.C 3.C 4.B 5.B6.D7.A8.C 9.D10.B11.C12.C 13.B14.C 15.D16.B 17.B18.D19.A 20.B 21.B 22.D 23.C 24.A25.A 26.C27. C 28.C29.D30. D三、因式分解:1.(p- q)(m- 1)(m+1).8.(x- 2b)(x- 4a+2b).11.4(2x- 1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+ 24).27.(3+2a)(2- 3a).四、证明 (求值 ):2.提示:设四个连续自然数为n,n+1,n+2,n+3八年级数学经典练习题附答案6.提示: a=-18.∴a=-18.11 / 11。

初二数学练习题

初二数学练习题

初二数学练习题一、选择题1.下列数列中,是等差数列的是() A. 1, 3, 5, 7 B. 1, 2, 4, 8 C. 1, 1, 2, 3D. 1, 3, 6, 102.若a * b = 0,则以下哪个条件成立?() A. a = 0 B. b = 0 C. a = 0或b = 0 D. a ≠ 0 或b ≠ 03.设长方形的面积是S,宽是a,长是b,下列哪个式子成立?() A.S = a + b B. S = 2a + 2b C. S = a * b D. S = a - b4.下列哪个数是无理数?() A. 3.14 B. 2.71828 C. 1.414213 D. 0.618二、填空题1.已知函数 f(x) = 2x + 3,那么 f(5) = \\\\。

2.若六边形的一条对角线的长度为10,那么此六边形的周长为 \\\\。

3.一辆车以每小时60km的速度行驶,4小时后的行程为 \\\\ km。

4.若已知一个等差数列的首项为5,公差为2,那么第10项的值为\\\\。

三、计算题1.一辆汽车以每小时80km的速度行驶,行驶了4小时,此时行驶的距离是多少?2.一个长方形的长是15cm,宽是8cm,求它的面积和周长。

3.一个等差数列的首项是2,公差是4,求它的第n项的值。

4.若a + b = 20,ab = 96,求a和b的值。

四、应用题1.小明和小红参加一个跑步比赛,小明以每分钟的速度跑300米,小红以每分钟的速度跑250米。

如果他们同时开始跑步,那么他们跑到终点时,小红比小明多跑了多少米?2.医院为了更好地管理病人的用药,需要将一种药物的剂量进行转换,已知每瓶药物的剂量是0.5克,而病人所需的剂量是300毫克,需要将多少瓶药物提供给这位病人?3.一个阶梯共有15个台阶,若每次只能上一个台阶或者两个台阶,则上完这个阶梯需要多少步?4.某公司发放奖金,个人的奖金金额取决于该员工的销售额,销售额超过10000元的部分按照1.5倍计算奖金。

八年级数学上册全册经典试题(一课一练)

八年级数学上册全册经典试题(一课一练)

第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°.4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80°B.90°C.20°D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30°B.40°C.50°D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61°B.39°C.29°D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是()A.60°B.36°C.54°D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为() A.80°B.90°C.100°D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30°B.40°C.60°D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是()A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180°B.360°C.540°D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?第十二章全等三角形12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30°B.60°C.20°D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________. 3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为() A.50°B.100°C.150°D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十三章轴对称13.1轴对称13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25°B.45°C.30°D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD=∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI.2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35°B.45°C.55°D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG 是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( )A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( ) A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( ) A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法1.化简a 2·a 的结果是( )A .a 2B .a 3C .a 4D .a 5 2.下列计算正确的是( )A .x 2·x 2=x 4B .x 3·x ·x 4=x 7C .a 4·a 4=a 16D .a ·a 2=a 2 3.填空:(1)(-a )5·(-a )2=________;(2)(a -b )·(a -b )2=________(结果用幂的形式表示); (3)a 3·a 2·(________)=a 11. 4.计算:(1)a 2·a 5+a ·a 3·a 3; (2)⎝⎛⎭⎫1104×⎝⎛⎭⎫1103.5.(1)若2x =3,2y =5,求2x +y 的值;(2)若32×27=3n ,求n 的值.1.计算(x3)4的结果是()A.x7B.x12C.x81D.x642.下列运算正确的是()A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.已知5y=2,则53y的值为()A.4 B.6 C.8 D.94.计算:(1)a6·(a2)3=________;(2)(-a3)2=________.5.计算:(1)(x3)2·(x2)3; (2)(-x2)3·x5;(3)-(-x2)3·(-x2)2-x·(-x3)3.6.若(27x)2=36,求x的值.1.计算(x 2y )2的结果是( )A .x 6yB .x 4y 2C .x 5yD .x 5y 2 2.计算(-2a 2b )3的结果是( )A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 3 3.若m 2·n 2=25,且m ,n 都为正实数,则mn 的值为( )A .4B .5C .6D .7 4.计算:(1)(mn 3)2=________; (2)(2a 3)3=________; (3)(-2x 2y )3=________;(4)⎝⎛⎭⎫-12x 3y 3=________. 5.计算:(1)(ab 2c 4)3; (2)(3a 2)3+(a 2)2·a 2;(3)(x n y 3n )2+(x 2y 6)n; (4)(-2×103)2;(5)4100×0.25100.14.1.4整式的乘法第1课时单项式与单项式、多项式相乘1.计算x3·4x2的结果是()A.4x5B.5x6C.4x6D.5x52.化简x(2-3x)的结果为()A.2x-6x2B.2x+6x2C.2x-3x2D.2x+3x23.下列各式中,计算正确的是()A.3a2·4a3=12a6B.2xy(3x2-4y)=6x3-8y2C.2x3·3x2=6x5D.(3x2+x-1)(-2x)=6x3+2x2-2x4.计算:(1)(6ab)·(3a2b)=__________;(2)(-2a2)2·a=__________;(3)(-2a2)(a-3)=__________.5.若一个长方形的长、宽分别是3x-4、2x,则它的面积为________.6.计算:(1)ab·(-3ab)2; (2)(-2a2)·(3ab2-5ab3).7.已知a=1,求代数式a(a2-a)+a2(5-a)-9的值.第2课时多项式与多项式相乘1.计算(x-1)(x-2)的结果为()A.x2+3x-2 B.x2-3x-2C.x2+3x+2 D.x2-3x+22.若(x+3)(x-5)=x2+mx-15,则实数m的值为()A.-5 B.-2 C.5 D.23.下列各式中,计算结果是x2+7x-18的是()A.(x-2)(x+9) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-1)(x+18)4.计算:(1)(2x+1)(x+3)=________________;(2)(y+3x)(3x-2y)=________________.5.一个长方形相邻的两条边长分别为2a+1和3a-1,则该长方形的面积为____________.6.计算:(1)(a+1)(2-b)-2a;(2)x(x-6)-(x-2)(x+1).7.先化简,再求值:(2a-3b)(a+2b)-a(2a+b),其中a=3,b=1.第3课时 整式的除法1.计算a 6÷a 2的结果为( )A .4a 4B .3a 3C .a 3D .a 42.下列计算正确的是( )A .x 8÷x 2=x 4B .(-x )6÷(-x )4=-x 2C .36a 3b 4÷9a 2b =4ab 3D .(2x 3-3x 2-x )÷(-x )=-2x 2+3x3.计算:(1)20180=________;(2)a 8÷a 5=________;(3)a 6b 2÷(ab )2=________;(4)(14a 3b 2-21ab 2)÷7ab 2=________.4.当m ________时,(m -2019)0的值等于1.5.计算:(1)(-6m 4n 5)÷⎝⎛⎭⎫12m 2n 2; (2)(x 4y +6x 3y 2-x 2y 3)÷3x 2y .6.一个等边三角形框架的面积是4a 2-2a 2b +ab 2,一边上的高为2a ,求该三角形框架的边长.14.2 乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1) 3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.14.3因式分解14.3.1提公因式法1.下列变形,是因式分解的是()A.x(x-1)=x2-x B.x2-x+1=x(x-1)+1C.x2-x=x(x-1) D.2a(b+c)=2ab+2ac2.多项式12ab3c+8a3b中各项的公因式是()A.4ab2B.4abc C.2ab2D.4ab3.把多项式m2-9m分解因式,结果正确的是()A.m(m-9) B.(m+3)(m-3)C.m(m+3)(m-3) D.(m-3)24.分解因式:(1)5a-10ab=____________;(2)x4+x3+x2=________________;(3)m(a-3)+2(3-a)=________________.5.计算:20182-2018×2017.6.分解因式:(1)2mx-6my; (2)3x(x+y)-(x+y)2. 7.先分解因式,再求值:a2b+ab2,其中a+b=3,ab=2.14.3.2公式法第1课时运用平方差公式分解因式1.多项式x2-4分解因式的结果是()A.(x+2)(x-2) B.(x-2)2C.(x+4)(x-4) D.x(x-4)2.下列多项式中能用平方差公式分解因式的是()A.a2+b2B.5m2-20mnC.x2+y2D.x2-93.分解因式3x3-12x,结果正确的是()A.3x(x-2)2B.3x(x+2)2C.3x(x2-4) D.3x(x-2)(x+2)4.因式分解:(1)9-b2=____________;(2)m2-4n2=____________.5.利用因式分解计算:752-252=________.6.若a+b=1,a-b=2007,则a2-b2=________.7.因式分解:(1)4x2-9y2; (2)-16+9a2;(3)9x2-(x+2y)2; (4)5m2a4-5m2b4.第2课时 运用完全平方公式分解因式1.把多项式x 2-8x +16分解因式,结果正确的是( )A .(x -4)2B .(x -8)2C .(x +4)(x -4)D .(x +8)(x -8)2.下列各式中,能用完全平方公式进行因式分解的是( )A .x 2-2x -2B .x 2+1C .x 2-4x +4D .x 2+4x +13.若代数式x 2+kx +49能分解成(x -7)2的形式,则实数k 的值为________.4.若x 2+kx +9是完全平方式,则实数k =________.5.因式分解:(1)x 2-6x +9=________;(2)-2a 2+4a -2=________.6.因式分解:(1)4m 2-2m +14; (2)2a 3-4a 2b +2ab 2;(3)(x +y )2-4(x +y )+4.7.先分解因式,再求值:x 3y +2x 2y 2+xy 3,其中x =1,y =2.第十五章 分 式15.1 分 式15.1.1 从分数到分式1.下列各式不是分式的是( )A.x yB.y π+yC.x 2D.1+x a 2.若分式x +1x -1有意义,则x 的取值范围是( ) A .x ≠1 B .x ≠-1 C .x =1 D .x =-13.如果分式|x |-1x -1的值为零,那么x 的值为( ) A .1 B .-1 C .0 D .±14.某人种了x 公顷的棉花,总产量为y 千克,则棉花的单位面积产量为________千克/公顷.5.当x =________时,分式x 2-9x -3的值为零. 6.x 取何值时,下列分式有意义?(1)x +22x -3; (2)6(x +3)|x |-12;(3)x +6x 2+1; (4)x (x -1)(x +5).15.1.2 分式的基本性质1.下列分式是最简分式的是( )A.x -13x -3B.3(x 2-y 2)x -yC.x -12x +1D.2x 4-2x2.分式x 5y 与3x 2y 2的最简公分母是( ) A .10xy B .10y 2 C .5y 2 D .y 23.根据分式的基本性质填空:(1)a +b ab =( )a 2b; (2)x 2+xy x 2=x +y ( ); (3)a -2a 2-4=1( ). 4.下列式子变形:①b a =b +1a +1;②b a =b -1a -1;③b -2a =2b -42a ;④a 2+a a 2-1=a a -1.其中正确的有________(填序号).5.约分:(1)-4x 2y 6xy 2=________; (2)a 2+2a a 2+4a +4=________. 6.通分:(1)x ac ,y bc ; (2)24-x 2,x x +2; (3)1x 2-6x +9,13x -9.15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.计算a bc ·c 2a 2的结果是( ) A.c 2a 2b B.c ab C.c 2ab D.a 2bc2.计算2x 3÷1x的结果是( ) A .2x 2 B .2x 4 C .2x D .43.化简:(1)a 2+ab a -b ÷ab a -b=________; (2)2x +2y 5a 2b ·10ab 2x 2-y 2=________. 4.计算:(1)x x 2-1÷1x +1; (2)x 2-9x 2+6x +9·3x 3+9x 2x 2-3x.5.先化简,再求值:x -2x +3·x 2-9x 2-4x +4,其中x =-1.第2课时 分式的乘方1.计算⎝⎛⎭⎫x 2y 3的结果是( )A.x 38y 3B.x 36y 3C.x 8y 3D.x 38y2.计算a 2·⎝⎛⎭⎫1a 3的结果是( ) A .a B .a 5 C.1a D.1a 5 3.已知⎝⎛⎭⎫x 3y 22·⎝⎛⎭⎫-y 3x 2=6,则x 4y 2的值为( ) A .6 B .36 C .12 D .34.计算:(1)⎝⎛⎭⎫3b 2a 2=________;(2)a 2b ·b 2a =________; (3)⎝⎛⎭⎫-y 2ax 2÷y 24x =________. 5.计算:(1)⎝⎛⎭⎫-3ac 2b 2; (2)a -b b ·b a 2-b 2; (3)-a 32b ÷⎝⎛⎭⎫-a 2b 3·b 2.6.先化简,再求值:a -a 2a 2-1÷a a -1·⎝ ⎛⎭⎪⎫a +1a -12,其中a =2.15.2.2 分式的加减第1课时 分式的加减1.计算x -1x +1x的结果是( ) A.x +2x B.2x C.12D .1 2.化简4x x -2-x 2-x的结果是( ) A.3x x -2 B.5x 2-x C.5x x -2 D.3x 2-x3.计算:(1)1a 2-1+a a 2-1=________; (2)1a -1-1a (a -1)=________. 4.计算:(1)5a +3b a 2-b 2-2a a 2-b 2; (2)m m +n +m m -n -m 2m 2-n 2.5.先化简:x 2+x x 2+2x +1+1-x x 2-1,然后从-1≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.第2课时 分式的混合运算1.化简⎝⎛⎭⎫1+1x -2·x 2-2x x -1的结果为( ) A .4x B .3x C .2x D .x2.化简:(1)⎝ ⎛⎭⎪⎫a +1a -1+11-a ÷a 1-a=________; (2)x 2-4x 2-2x +1·x -1x -2-x x -1=________. 3.计算:(1)a 2-16a +64a -8÷⎝⎛⎭⎫1-8a ; (2)⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+x +1x -1·1-x 1+x;(3)⎝⎛⎭⎫x -1x ÷⎝⎛⎭⎫2x -1+x 2x ; (4)⎝⎛⎭⎫b 2a 2÷⎝⎛⎭⎫b a -14a ·23b .4.先化简,后求值:⎝⎛⎭⎫1x -1-1x +1÷x x 2-1,其中x =2.15.2.3 整数指数幂第1课时 负整数指数幂1.计算5-2的值是( )A .-125 B.125C .25D .-25 2.计算⎝⎛⎭⎫-12-1的结果是( ) A .-12 B.12C .2D .-2 3.计算a 3·a -5的结果是( )A .a 2B .a -2C .-a 2D .-a -24.若b =-3-2,c =⎝⎛⎭⎫13-2,d =⎝⎛⎭⎫-130,则( ) A .b <c <d B .b <d <c C .d <c <b D .c <d <b5.计算:(1)(-2)0×3-2=________;(2)(x -1)2·x 3=________.6.计算:(1)⎝⎛⎭⎫23-2×3-1+(π-2018)0÷⎝⎛⎭⎫13-1;(2)(ab -2)-2·(a -2)3;(3)(2xy -1)2·xy ÷(-2x -2y ).第2课时用科学记数法表示绝对值小于1的数1.0.000012用科学记数法表示为()A.120×10-4B.1.2×10-5C.-1.2×10-5D.-1.2×1052.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为() A.0.432×10-5B.4.32×10-6C.4.32×10-7D.43.2×10-73.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.若将0.0000025用科学记数法表示为2.5×10n(n为整数),则n的值为()A.-7 B.-6 C.-5 D.64.用科学记数法把0.000009405表示成a×10-6,则a=________.5.用科学记数法表示下列各数:(1)0.0000314; (2)-0.0000064.6.用小数表示下列各数:(1)2×10-7; (2)2.71×10-5.7.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米.已知某种植物孢子的直径约为45000纳米,用科学记数法表示该孢子的直径约为多少米?15.3 分式方程第1课时 分式方程及其解法1.下列方程是分式方程的是( )A.12-x 3=0B.4x=-2 C .x 2-1=3 D .2x +1=3x2.以下是解分式方程1-x 2-x -3=1x -2时,去分母后的结果,其中正确的是( ) A .1-x -3=1 B .x -1-3x +6=1C .1-x -3x +6=1D .1-x -3x +6=-13.分式方程12x =2x +3的解是________.4.当实数m =________时,方程2m -1x =3的解为x =1.5.若关于x 的方程3x -1=1-k1-x 无解,则k 的值为________.6.解方程:(1)3x =2x +1; (2)3x +5-1x -1=0;(3)1x -2=4x 2-4; (4)1-13x -1=56x -2.第2课时 分式方程的应用1.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务.设这个工程队原计划每天要铺建x 米管道,则依题意所列方程正确的是( )A.2000x +2=20001.25xB.2000x =20001.25x-2 C.2000x +20001.25x =2 D.2000x -20001.25x=2 2.某特快列车在最近一次的铁路大提速后,平均时速提高了30千米/时,则该列车行驶350千米所用的时间比原来少用1小时.若该列车提速前的速度是x 千米/时,下列所列方程正确的是( )A.350x -350x -30=1B.350x -350x +30=1 C.350x +30-350x =1 D.350x -30-350x =1 3.学校最近新配备了一批图书需要甲、乙两人进行整理,若甲单独整理完成需要4小时;若甲、乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要多少小时?4.某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.第十一章 三角形11.1 与三角形有关的线段11.1.1 三角形的边1.C 2.B 3.C 4.6 ∠B AE ∠AED ∠C5.解:(1)∵|a -3|+(b -2)2=0,∴a -3=0,b -2=0,∴a =3,b =2.由三角形三边关系得3-2<c <3+2,即1<c <5.(2)∵c 为整数,1<c <5,∴c =2或3或4.11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S △ABC =12AB ·CE =12×6×4.5=13.5. (2)∵S △ABC =12BC ·AD ,∴BC =2S △ABC AD =2×13.55=5.4. 11.2 与三角形有关的角11.2.1 三角形的内角第1课时 三角形的内角和1.D 2.B 3.30° 4.(1)27 (2)29 (3)595.解:∵∠BAC =65°,∠C =30°,∴∠B =85°.∵DE ∥BC ,∴∠BDE =180°-∠B =180°-85°=95°.第2课时 直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A =70°,CE ,BF 是△ABC 的两条高,∴∠EBF =20°,∠ECA =20°.又∵∠BCE =30°,∴∠ACB =50°,∴在Rt △BCF 中,∠FBC =40°.7.证明:∵∠ACB =90°,∴∠A +∠B =90°.∵∠ACD =∠B ,∴∠A +∠ACD =90°,∴∠ADC =90°,∴CD ⊥AB .11.2.2 三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE =140°,∴∠ACB =40°.∵∠A =80°,∴∠1=40°+80°=120°.11.3 多边形及其内角和11.3.1 多边形1.A 2.B 3.B 4.B 5.18 6.4 57.解:(1)六边形ABCDEF ,它的内角是∠A ,∠B ,∠C ,∠D ,∠E ,∠F .(2)如图所示.(3)如图,∠DCG 即为点C 处的一个外角(答案不唯一).11.3.2 多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n 边形.由题意可得(n -2)·180°=3×360°,解得n =8.故该多边形为八边形.8.解:根据题意,设四边形ABCD 的四个外角的度数分别为3x ,4x ,5x ,6x ,则3x +4x +5x +6x =360°,解得x =20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.第十二章 全等三角形12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE=180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS).(2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS).4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,。

八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】【导语:】这篇关于八年级数学上册练习题【五篇】的文章,是特地为大家整理的,希望对大家有所帮助!第二章实数一、选择题1.在下列实数中,是无理数的为()(A)0(B)-3.5(C)(D)2.A为数轴上表示-1的点,将点A沿数轴移动3个单位到点B,则点B所表示的实数为().(A)3(B)2(C)-4(D)2或-43.一个数的平方是4,这个数的立方是()(A)8(B)-8(C)8或-8(D)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(A)n<m(B)n2<m2(C)n0<m0(D)|n|<|m|5.下列各数中没有平方根的数是()(A)-(-2)(B)3(C)(D)-(2+1)6.下列语句错误的是()(A)的平方根是±(B)-的平方根是-(C)的算术平方根是(D)有两个平方根,它们互为相反数7.下列计算正确的是().(A)(B)(C)(D)—18.估计56的大小应在().(A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间9.已知,那么()(A)0(B)0或1(C)0或-1(D)0,-1或110.已知为实数,且,则的值为()(A)3(B)(C)1(D)二、填空题11.的平方根是____________,()2的算术平方根是____________。

12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有个。

13.写出一个3到4之间的无理数。

14.计算:。

15.的相反数是______,绝对值是______。

三、解答题16.计算:17.某位同学的卧室有25平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点A爬到顶点B,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长=5,宽=4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(A)(5,2)(B)(-6,3)(C)(―4,―6)(D)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1)3.点P(—2,3)关于y轴对称的点的坐标是()(A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3)4.平面直角坐标系内,点A(,)一定不在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限5.如果点P(在轴上,则点P的坐标为()(A)(0,2)(B)(2,0)(C)(4,0)(D)(0,6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为()(A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6,7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限8.若P()在第二象限,则Q()在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(A)A处(B)B处(C)C处(D)D处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(A)(2,0)(B)(0,-2)(C)(0,)(D)(0,)二、填空题11.点A在轴上,且与原点的距离为5,则点A的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将AOB绕点O逆时针旋转900,得到。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

初中数学八年级下期末经典练习(含答案解析)

初中数学八年级下期末经典练习(含答案解析)

一、选择题1.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 3.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形4.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.(0分)[ID :10214]要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =06.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .17.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A.3B.4C.5D.2.58.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.72BC BD为折痕,则9.(0分)[ID:10199]将一张长方形纸片按如图所示的方式折叠,,∠的度数为()CBDA.60︒B.75︒C.90︒D.95︒10.(0分)[ID:10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵11.(0分)[ID:10176]如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A 点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC 中点时,△APD的面积为()A.4B.5C.6D.712.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD14.(0分)[ID:10168]无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.(0分)[ID:10148]如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.3二、填空题16.(0分)[ID:10322]24的结果是__________.17.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____. 18.(0分)[ID :10308]如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.19.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.20.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).21.(0分)[ID :10267]如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.22.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______23.(0分)[ID :10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.24.(0分)[ID :10236]已知3a b +=,2ab =a bb a的值为_________. 25.(0分)[ID :10235]将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题26.(0分)[ID :10390]为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.(0分)[ID :10375]甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数 空间与图形 统计与概率 综合与实践 学生甲 93 93 89 90 学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?28.(0分)[ID :10367]甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是 千米/时,t = 小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.29.(0分)[ID:10354]如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD 于点D,点E为BC的中点,求DE的长.30.(0分)[ID:10425]某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.C4.B5.C6.C7.D8.D9.C10.D11.B12.B13.D14.C15.A二、填空题16.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:17.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及18.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>119.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠20.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的21.【解析】【分析】根据正方形的面积分别求出BCBE的长继而可得CE的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S△ACE==故22.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题23.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差24.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运25.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长. 【详解】解:依题意画出图形,设芦苇长AB=AB′=x 尺,则水深AC=(x-2)尺, 因为B'E=16尺,所以B'C=8尺 在Rt △AB'C 中,82+(x-2)2=x 2, 解之得:x=17, 即芦苇长17尺. 故选C . 【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.C解析:C 【解析】 【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形. 【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC ,∴四边形EFGH 是平行四边形, ∵AC ⊥BD ,AC =BD , ∴EF ⊥FG ,FE =FG , ∴四边形EFGH 是正方形, 故选:C . 【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.4.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.6.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.7.D解析:D【解析】由▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上一点E ,易证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形,则可求得BC 的长,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠CBE ,∠DEC=∠BCE ,∠ABC+∠DCB=90°,∵BE ,CE 分别是∠ABC 和∠BCD 的平分线,∴∠ABE=∠CBE=12∠ABC ,∠DCE=∠BCE=12∠DCB , ∴∠ABE=∠AEB ,∠DCE=∠DEC ,∠EBC+∠ECB=90°,∴AB=AE ,CD=DE ,∴AD=BC=2AB ,∵BE=4,CE=3, ∴BC=2222345BE CE =+=+,∴AB=12BC=2.5. 故选D .【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.8.D解析:D【解析】【分析】求▱ABCD 的面积,就需求出BC 边上的高,可过D 作DE ∥AM ,交BC 的延长线于E ,那么四边形ADEM 也是平行四边形,则AM=DE ;在△BDE 中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE 是直角三角形;可过D 作DF ⊥BC 于F ,根据三角形面积的不同表示方法,可求出DF 的长,也就求出了BC 边上的高,由此可求出四边形ABCD 的面积.【详解】作DE ∥AM ,交BC 的延长线于E ,则ADEM 是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,在△BDE 中,∵BD 2+DE 2=144+81=225=BE 2,∴△BDE 是直角三角形,且∠BDE=90°,过D 作DF ⊥BE 于F ,则DF=365BD DE BE ⋅=, ∴S ▱ABCD =BC•FD=10×365=72. 故选D .【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.10.D解析:D【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.11.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.12.B解析:B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到FH=AE,GF=AG,得到AH=BE=EF,设AE=x,则AH=BE=EF=4-x,根据勾股定理即可得到结论.∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.13.D解析:D【解析】【分析】根据矩形性质可判定选项A 、B 、C 正确,选项D 错误.【详解】∵四边形ABCD 为矩形,∴∠ABC=90°,AC=BD ,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.14.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m 取何值,直线y=x+2m 与y=-x+4的交点不可能在第三象限.故选C .15.A解析:A【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题16.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:解析:4【解析】【分析】根据二次根式的性质直接化简即可.【详解】|4|4=.故答案为:4.【点睛】(0)||0 (0)(0)a aa aa a⎧⎪===⎨⎪-⎩><.17.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及解析:3【解析】【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【详解】=与最简二次根式∴215a -=,解得:3a =故答案为:3【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.18.>1【解析】∵直线l1:y =x +n -2与直线l2:y =mx +n 相交于点P(12)∴关于x 的不等式mx +n <x +n -2的解集为x>1故答案为x>1 解析:x >1【解析】∵直线l 1:y =x +n -2与直线l 2:y =mx +n 相交于点P(1,2),∴关于x 的不等式mx +n <x +n -2的解集为x>1,故答案为x>1.19.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形C ODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.20.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y =−2x +1中k =−2<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.21.【解析】【分析】根据正方形的面积分别求出BCBE 的长继而可得CE 的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE -BC=-∴S△ACE==故解析:52 【解析】【分析】根据正方形的面积分别求出BC 、BE 的长,继而可得CE 的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD 的面积为5,正方形BEFG 的面积为7,∴,∴∴S △ACE =1122CE AB =⨯,故答案为:52. 【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.22.—1【解析】【分析】首先根据勾股定理计算出AC 的长进而得到AE 的长再根据A 点表示-1可得E 点表示的数【详解】∵AD 长为2AB 长为1∴AC=∵A 点表示-1∴E 点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴,∵A 点表示-1,∴E -1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.23.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案. ∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差24.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】b a=+=(a b ab+, ∵3a b +=,2ab =,∴原式=3=22;故答案为:2. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.25.y=-3x+5【解析】【分析】平移时k 的值不变只有b 发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k 的值不变,只有b 发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k 和b 的值的变化,掌握这点很重要.三、解答题26.(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y 与x 的函数关系式是分段函数,待定系数法求解析式即可. (2)设甲种花卉种植为 a m 2,则乙种花卉种植(12000-a )m 2,根据实际意义可以确定a 的范围,结合种植费用y (元)与种植面积x (m 2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -.()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想. 27.(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.8.【解析】【分析】(1)由中位数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】(1)甲的中位数=9093=91.52+,乙的中位数=9294=932+; (2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.【点睛】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.28.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)83小时或4小时或6小时.【解析】【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A 地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC 两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C 地时;③两车都朝A 地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【详解】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度=720÷6=120(千米/小时) ∴t=360÷120=3(小时). 故答案为:60;3;(2)①当0≤x≤3时,设y=k 1x ,把(3,360)代入,可得3k 1=360,解得k 1=120,∴y=120x (0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k 2x+b ,把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120{840k b =-=∴y=﹣120x+840(4<x≤7). (3)①÷+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,÷60=240÷6=4(小时)③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x ﹣[120(x ﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发83小时、4小时、6小时后两车相距120千米. 【点睛】本题考查一次函数的应用.29.【解析】试题分析:延长BD 与AC 相交于点F ,根据等腰三角形的性质可得BD=DF ,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=12CF ,然后求解即可. 试题解析:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD.∵BD ⊥AD ,∴∠ADB =∠ADF ,又∵AD =AD ,∴△ADB ≌△ADF(ASA ).∴AF =AB =6,BD =FD.∵AC =10,∴CF =AC -AF =10-6=4.∵E 为BC 的中点,∴DE 是△BCF 的中位线.∴DE =12CF =12×4=2. 30.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.⨯=.有25008%200∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。

八年级数学三角形经典例题

八年级数学三角形经典例题

八年级数学三角形经典例题一、三角形内角和定理相关例题。

1. 在△ABC中,∠A = 50°,∠B - ∠C = 10°,求∠B和∠C的度数。

- 解析:- 因为三角形内角和为180°,即∠A+∠B + ∠C = 180°,已知∠A = 50°,所以∠B+∠C=180° - 50° = 130°。

- 又因为∠B - ∠C = 10°,设∠C=x°,则∠B=(x + 10)°。

- 可得方程x+(x + 10)=130,2x+10 = 130,2x=120,x = 60。

- 所以∠C = 60°,∠B=∠C + 10°=70°。

2. 一个三角形三个内角的度数之比为2:3:4,求这个三角形三个内角的度数。

- 解析:- 设三个内角分别为2x°,3x°,4x°。

- 根据三角形内角和定理,2x+3x + 4x = 180,9x = 180,x = 20。

- 所以三个内角分别为2x = 40°,3x = 60°,4x = 80°。

二、三角形三边关系相关例题。

3. 已知三角形的两边长分别为3cm和5cm,求第三边的取值范围。

- 解析:- 根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

- 设第三边为xcm,则5 - 3<x<5 + 3,即2<x<8。

4. 有四条线段,长度分别为2cm、3cm、4cm、5cm,从中任取三条能组成三角形的概率是多少?- 解析:- 从四条线段中任取三条的组合有:2cm、3cm、4cm;2cm、3cm、5cm;2cm、4cm、5cm;3cm、4cm、5cm共4种情况。

- 根据三角形三边关系判断:- 2cm、3cm、4cm:2+3>4,3 - 2<4,能组成三角形。

初二数学八年级各种经典难题例题(含答案)非常经典

初二数学八年级各种经典难题例题(含答案)非常经典

1已知一个等腰三角形二内角的度数之比为1:4,则那个等腰三角形顶角的度数为()之阳早格格创做A .20 B .120 C .20或者120 D .36 1.一个凸多边形的每一个内角皆等于150°,则那个凸多边形所有对付角线的条数总同有( )A .42条B .54条C .66条D .78条 3、若曲线11y k x =+与24y k x =-的接面正在x 轴上,那么k k 等于()(竞赛)1 正真数,x y 谦脚1xy =,那么44114x y +的最小值为:( ) (A)12 (B)58 (C)1 (D)2(竞赛)正在△ABC 中,若∠A >∠B ,则边少a 与c 的大小闭系是( )A 、a >cB 、c >aC 、a >1/2cD 、c >1/2a16.如图,曲线y=kx+6与x 轴y 轴分别接于面E ,F.面E 的坐标为(-8,0),面A 的坐标为(-6,0).(1)供k 的值;(2)若面P(x ,y)是第二象限内的曲线上的一个动面,当面P 疏通历程中,试写出△OPA 的里积S 与x的函数闭系式,并写出自变量x的与值范畴;(3)商量:当P 疏通到什么位子时,△OPA 的里积为827,并道明缘由.6、已知,如图,△ABC 中,∠BAC=90°,AB=AC,D 为AC 上一面,且∠BDC=124°,延少BA 到面E ,使AE=AD,BD 的延少线接CE 于面F ,供∠E 的度数.7.正圆形ABCD 的边少为4,将此正圆形置于仄里曲角坐标系中,使AB 边降正在X 轴的正半轴上,且A 面的坐标是(1,0).①曲线y=43x-83通过面C ,且与x 轴接与面E ,供四边形AECD 的里积;②若曲线l 通过面E 且将正圆形ABCD 分成里积相等的二部分供曲线l 的剖析式,③若曲线1l 通过面F ⎪⎭⎫ ⎝⎛-0.23且与曲线y=3x 仄止,将②中曲线l 沿着y 轴进与仄移32个单位接x 轴于面M ,接曲线1l 于面N ,供NMF ∆的里积.(竞赛奥数)如图,正在△ABC 中,已知∠C=60°,AC >BC ,又△ABC′、△BCA′、△CAB′皆是△ABC 形中的等边三角形,而面D 正在AC 上,且BC=DC(1)道明:△C′BD ≌△B′DC ;(2)道明:△AC′D ≌△DB′A ;9.已知如图,曲线343y x =-+x 轴相接于面A ,与曲线3y x=相接于面P .①供面P 的坐标. ②请推断OPA ∆的形状并道明缘由.③动面E 从本面O 出收,以每秒1个单位的速度沿着O→P→A 的门路背面A 匀速疏通(E 没有与面O 、A 沉合),过面E 分别做EF ⊥x 轴于F ,EB ⊥y 轴于B .设疏通t 秒时,矩形EBOF 与△OPA 沉叠部分的里积为S .供: S 与t 之间的函数闭系式.16多边形内角战公式等于(n - 2)×180根据题意即(n - 2)×180=150n,供得n=12, 多边形的对付角线的条数公式等于 n(n-3)/2戴进个多边形所有对付角线的条数同有54条果为二曲线接面正在x 轴上,则k1战k2必定没有为0,且接面处x=-1/k1=4/k2,所以k1:k2=-1:41/x^4+1/4y^4=(y^4+x^4)/x^4y^4果为xy=1所以x^4y^4=1所以本式=y^4+x^4果为(x^2-y^2)^2>0且(x^2-y^2)^2=y^4+x^4-x^2y^2大于或者等于0所以y^4+x^4大于或者等于x^2y^2 即1所以y^4+x^4的最小值为1竞赛解:正在△ABC中,∵∠A>∠B,∴a>b,∵a+b>c,∴2a>a+b>c,∴a>12c.故选C.1、y=kx+6过面E(-8,0)则-8K+6=0K=3/42、果面E(-8,0)则OE=8曲线剖析式Y=3X/4+6当X=0时,Y=6,则面F(0,6)果面A(0,6),则A、F沉合OA=6设面P(X,Y)则面P对付于Y轴的下为|X|当P正在第二象限时,|X|=-XS=OA×|X|/2=-6X/2=-3X3、S=3|X|当S=278时278=±3XX1=278/3,X2=-278/3Y1=3X1/4+6=3/4×278/3+6=151/2Y2=3X2/4+6=-3/4×278/3+6=-127/2面P1(278/3,151/2),P2(-278/3,-127/2)6解:正在△ABD战△ACE中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ABD≌△ACE(SAS),∴∠E=∠ADB.∵∠ADB=180°-∠BDC=180°-124°=56°,∴∠E=56°.7(1)由题意知边少已经报告,易供四边形的里积;(2)由第一问供出E面的坐标,设出F面,根据曲线l通过面E且将正圆形ABCD分成里积相等的二部分,本来是二个曲角梯形,根据梯形里积公式,可供出F面坐标,进而解出曲线l的剖析式.解:(1)由已知条件正圆形ABCD的边少是4,∴四边形ABCD的里积为:4×4=16;(2)由第一问知曲线y=4/3x-8/3与x轴接于面E,∴E(2,0),设F(m,4),曲线l通过面E且将正圆形ABCD分成里积相等的二部分,由图知是二个曲角梯形,∴S梯形AEFD=S梯形EBCF= 1/2(DF+AE)•AE= 1/2(FC+EB)∴m=4,∵F(4,4),E(2,0),∴曲线l的剖析式为:y=2x-4竞赛奥数(1) 先证△ABC≌△C1BD:∵AB=C1B, ∠ABC=∠C1BD (果为皆是60°+∠ABD), BD=BC. (SAS)(得出:∠C1DB=∠C=60°)再证:△ABC≌△B1DC:∵AC=B1C, ∠C=∠B1CA=60°, BC=DC.(SAS)∴△C1BD≌△B1DC(得出:B1C=C1D)(2) ∵B1C=C1D,B1C=AB1,∴AB1=C1D∠C1DB=60°,∠BDC=60°,∴∠ADC1=60°=∠B1ADAD是公同边∴△AC1D≌△DB1A (SAS)(3) S△B1CA > S△ABC1 > S△ABC > S△BCA1y=-(3^½)x+4*(3^½)与x轴相接于A,即x=4,y=0,则A面坐标为:(4,0)又与y=(3^½)x相接于P,则联列解得:x=2,y=2*(3^½)即P面坐标为:(2,2*(3^½))|OP|={2²+[2*(3^½)]²}^½=4|AP|={(2-4)²+[2*(3^½)]²}^½=4而|OA|=4所以△OAP为等边三角形。

八年级数学上册实数经典例题及习题试题

八年级数学上册实数经典例题及习题试题

卜人入州八九几市潮王学校实数经典例题及习题类型一.有关概念的识别1.下面几个数:0.23…,,3π,,,其中,无理数的个数有〔〕A、1B、2C、3D、4举一反三:【变式1】以下说法中正确的选项是〔〕A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,那么点A表示的数是〔〕A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,那么以下结论正确的选项是〔〕A. B.C. D.举一反三:【变式1】1〕5的算术平方根是__________;平方根是__________.2〕-27立方根是__________.3〕___________,___________,___________.【变式2】求以下各式中的〔1〕〔2〕〔3〕类型三.数形结合3.点A在数轴上表示的数为,点B在数轴上表示的数为,那么A,B两点的间隔为______ [变式2]实数、、在数轴上的位置如下列图:化简类型四.实数绝对值的应用4.化简以下各式:(1)||(2)|π-42|(3)|-|(4)|x-|x-3||(x≤3)(5)|x2+6x+10|举一反三:【变式1】化简:类型五.实数非负性的应用5.:=0,务实数a,b的值。

举一反三:【变式1】(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

【变式2】那么a+b-c的值是___________类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

〔4个长方形拼图时不重叠〕〔1〕计算中间的小正方形的面积,聪明的你能发现什么?〔2〕当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.类型七.易错题7.判断以下说法是否正确〔1〕的算术平方根是-3;〔2〕的平方根是±15.〔3〕当x=0或者2时,〔4〕是分数类型八.引申进步8.〔1〕的整数局部为a,小数局部为b,求a2-b2的值.〔2〕把以下无限循环小数化成分数:①②③学习成果测评:A组〔根底〕一、细心选一选1.以下各式中正确的选项是〔〕A. B. C. D.2.的平方根是()A.4B. C.2D.3.以下说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。

八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】

【导语:】这篇关于⼋年级数学上册练习题【五篇】的⽂章,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助! 第⼆章实数 ⼀、选择题 1.在下列实数中,是⽆理数的为() (A)0(B)-3.5(C)(D) 2.A为数轴上表⽰-1的点,将点A沿数轴移动3个单位到点B,则点B所表⽰的实数为(). (A)3(B)2(C)-4(D)2或-4 3.⼀个数的平⽅是4,这个数的⽴⽅是() (A)8(B)-8(C)8或-8(D)4或-4 4.实数m、n在数轴上的位置如图1所⽰,则下列不等关系正确的是() (A)n<m(B)n2<m2 (C)n0<m0(D)|n|<|m| 5.下列各数中没有平⽅根的数是() (A)-(-2)(B)3(C)(D)-(2+1) 6.下列语句错误的是() (A)的平⽅根是±(B)-的平⽅根是- (C)的算术平⽅根是(D)有两个平⽅根,它们互为相反数 7.下列计算正确的是(). (A)(B) (C)(D)—1 8.估计56的⼤⼩应在(). (A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间 9.已知,那么() (A)0(B)0或1(C)0或-1(D)0,-1或1 10.已知为实数,且,则的值为() (A)3(B)(C)1(D) ⼆、填空题 11.的平⽅根是____________,()2的算术平⽅根是____________。

12.下列实数:,,,︱-1︱,,,0.1010010001……中⽆理数的个数有个。

13.写出⼀个3到4之间的⽆理数。

14.计算:。

15.的相反数是______,绝对值是______。

三、解答题 16.计算: 17.某位同学的卧室有25平⽅⽶,共⽤了64块正⽅形的地板砖,问每块砖的边长是多少? 18.如图2,⼀只蚂蚁沿棱长为的正⽅体表⾯从顶点A爬到顶点B,则它⾛过的最短路程为多少? 19.如图3,⼀架长2.5⽶的梯⼦,斜靠在⼀竖直的墙上,这时,梯底距离墙底端0.7⽶,如果梯⼦的顶端沿墙下滑0.4⽶,那么梯⼦的低端将滑出多少⽶? 20.学校要在⼀块长⽅形的⼟地上进⾏绿化,已知这块长⽅形⼟地的长=5,宽=4 (1)求该长⽅形⼟地的⾯积.(精确到0.01) (2)若绿化该长⽅形⼟地每平⽅⽶的造价为180元,那么绿化该长⽅形⼟地所需资⾦为多少元? 第三章位置与坐标 ⼀、选择题 1.如图1,⼩⼿盖住的点的坐标可能是() (A)(5,2)(B)(-6,3) (C)(―4,―6)(D)(3,-4) 2.在平⾯直⾓坐标系中,下列各点在第⼆象限的是() (A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1) 3.点P(—2,3)关于y轴对称的点的坐标是() (A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3) 4.平⾯直⾓坐标系内,点A(,)⼀定不在() (A)第⼀象限(B)第⼆象限(C)第三象限(D)第四象限 5.如果点P(在轴上,则点P的坐标为() (A)(0,2)(B)(2,0)(C)(4,0)(D)(0, 6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为() (A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6, 7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平⾏四边形,则第四个顶点不可能在() (A)第⼀象限(B)第⼆象限(C)第三象限(D)第四象限 8.若P()在第⼆象限,则Q()在() (A)第⼀象限(B)第⼆象限 (C)第三象限(D)第四象限 9.如图2是某战役中缴获敌⼈防御⼯程的坐标地图碎⽚, 依稀可见:⼀号暗堡的坐标为(1,2),四号暗堡的坐标为 (-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置⼤约是() (A)A处(B)B处(C)C处(D)D处 10.以边长为4的正⽅形的对⾓线建⽴平⾯直⾓坐标系,其中⼀个顶点位于轴的负半轴上,则该点坐标为() (A)(2,0)(B)(0,-2)(C)(0,)(D)(0,) ⼆、填空题 11.点A在轴上,且与原点的距离为5,则点A的坐标是________. 12.如图3,每个⼩⽅格都是边长为1个单位 长度的正⽅形,如果⽤(0,0)表⽰A点的 位置,⽤(3,4)表⽰B点的位置,那么 ⽤表⽰C点的位置. 13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标 为________. 14.第三象限内的点,满⾜,,则点的坐标是. 15.如图4,将AOB绕点O逆时针旋转900, 得到。

初中数学八年级对称轴经典题型练习题(附有答案)

初中数学八年级对称轴经典题型练习题(附有答案)

初中数学八年级对称轴专题训练练习题一、单选题1. 如图,在△ABD中,AB的垂直平分线DE交BC于点D,∠B=20°,AD=AC,∠ADC的度数为()A .35°B .40°C .70°D .95°2. 如图,等腰△ABC中,AB=AC= 8,BC=5,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A .7B .9C .11D .133.如图所示,直角△ABC≌直角△AED,点E是线段BC的中点,∠C = 25°,则∠AED的度数是( )A .40°B .45°C .65°D .70°4. 如图,在△ABC中,∠BAC=60°,AB=AC,AD⊥BC于D,BC=10,点F是AB 的中点,点E在AD边上,则BE+EF的最小值是( )A .5B .5√3C .10D .3√65. 如图,菱形ABCD中,AB=4,∠BAD=60°,E是AB的中点,P是对角线AC 上的一个动点,则PE+PB的最小值是( )A .2B .4C .2D .2√36. 等腰△ABC中,AB=AC,若∠B=68°,则∠A的度数是()A .44°B .88°C .102°D .144°7. 等腰三角形的两边长为3和7,则周长是()A .12B .13C .13或17D .178.如图,四边形 ABCD中,AB=BC,∠ABC=60°,BD是对角线,AD=6,∠ACD=90°DC=3,则四边形ABCD的面积为()A .4√3B .5√3C .7√3D .9√39.如图,矩形ABCD中,点O是对角线的交点,若OD=2OE,AE=3√3,AE⊥BD,垂足为E.则DE的长为()A .9B .9√3C .10D .10√310.如图,在△ABC中,AB=10,BC=16,AC=14,BF、CF分别平分∠ABC和∠ACB,过点F作EG∥BC分别交于点AB、AC于点E、G.则△AEG的周长为()A .20B .22C .24D .3011.等腰三角形一腰上的高与底边所夹的角()A .等于顶角B .等于顶角的一半C .等于顶角的2倍D .等于底角的一半12. 如图,在△ABC中,∠C=55°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A .40°B .45°C .65°D .70°13. 已知CE⊥AB于E,AB=AD+2BE,AC平分∠DAB,则下列结论:①CD=CB;②2AE=AB+AD;③S△ACE=S△BCE+S△ADC;④∠DAB+∠DCB=180°.其中正确结论的个数是( )A .1个B .2个C .3个D .4个14.如图,在△ABC中,线段AB的垂直平分线交AC于点N,△BCN的周长是15cm,AC=8cm,则BC的长为()A .6B .7C .8D .915. 如图,正方形ABCD中,在BA延长线上取一点E,使BE=BD,连接DE,则∠EDA的度数为()A .8°B .12°C .15°D .22.5°16. 等腰三角形ABC中∠A =22°,则∠B的度数为( )A .22°B .22°或68°C .22°或136°或79°D .22°或68°或136°(x>0)的图象上,则点B 17. 如图,已知正三角形AOB的顶点A在函数y= √3x的坐标为()A (2, 0)B (√3, 0)C ( 4, 0)D (2√3, 0)18. 如图,在等腰△ABC 中,AB=AC,BO、CO 分别平分∠ABC,∠ACB,DE 经过点 O,且 DE∥BC,DE 分别交 AB,AC 于 D,E,则图中等腰三角形的个数为( )A .4B .5C .6D .719. 如图,在三角形ABC中,AB=11cm,BC=7cm.DE是AC边的垂直平分线,那△BEC的周长是()A .19cmB .18cmC .17cmD .16cm20.如图,四边形ABCD中,∠B=∠D=90°,∠BAD=120°,在BC,CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A .90°B .100°C .120°D .110°二、解答题21. 已知:如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,且DE=DF.求证:△ABC是等腰三角形.22. 如图,AB=AC=AD,∠BAC=24°,且AD∥BC,求∠D的度数.23. 如图,AC=AB,DC=DB,AD与BC相交于O.(1)求证:△ACD≌△ABD;(2)求证:AD垂直平分BC.参考答案1、【答案】B∠ADC=2∠B=40°2、【答案】D△BCD 的周长=(BD+DC)+BC=(AD+DC)+BC=AC+BC=8+5=133、【答案】C4、【答案】BBE+EF 的最小值是是高AD=5【答案】过E 点作AC 的垂线,交AD 于E /,交AC 于F ,连接E /B 交AC 于P ,,E /B 则就是PE+PB 最小值,因为菱形边长为4,∠BAD=60°,所以,对角线AC=4, BD=4EF= OB ÷2=BD ÷4=4÷4=1∵EF ∥OB ,E 为AB 的中点∴OF=AF=AO ÷2=AC ÷4=∵△E /PF ∽△OBO∴FP:PO=1:2即:FP=OF ÷3=/3勾股定理:E /P ²=FP ²+E /F ²E /P ²=(/3)²+1²=4/3E /P=2/3E /B=3E /P=2故:PE+PB 最小值=E /B=26、【答案】A33333337、【答案】D8、【答案】D在RT △ACD 中,AC=3, △ACD 面积=AC ×CD ÷2=9/2 等边三角形ABC 面积=9/2 四边形ABCD 的面积=99、【答案】A10、【答案】C ∵EF ∥AC ,BF 平分∠AB ∴∠FBE=∠EBF∴BE=BF同理:FG=CG△AEG 的周长=AE+EF+FG+EG=AB+AC=10+24=24故选C11、【答案】B12、【答案】D∵C ′是由C 旋转来的, ∴AC ′=AC 3333∵OD =2OE∴BO=2OE则,E 为BE 的中点,又AE ⊥BD ∴AB=AO ,∴AB=AC/2,又△ABC 是直角三角形∴∠ACB=30°又∵∠ADB=∠ACB=30°∴在直角三角形AED 中,DE=3AE=9故选A∴∠AC′C=∠C=55°又∵B′C′A=∠C=55°故:∠B′C′B=180°-55°-55°=70°13、【答案】C在AB上取一点F,使得CF=BC,∵CE⊥AB∴CF=CB又∵AC平分∠DAB∴△ADC≌△ACF故:AF=ADDC=CF=CB故①正确AE=AF+FE=AD+BE两边同时乘以2,得:2AE=2AD+2BE-----(1)又∵AB=AD+2BE-------(2)(1)-(2)得:2AE-AB=AD即:2AE=AB+AD故②正确∵△ADC≌△AFC,△FEC≌△BEC∴S△ACE=S△BCE+S△ADC故③正确∵A、B、C、D四点不共圆∴∠DAB+∠DCB≠180°故选C14、【答案】B∵MN垂直平分线AB∴BN=AN△BCN的周长=BN+BC+NC=AN+NC+BC=AC+BC8+BC=15BC=7故选B15、【答案】D取ED 的中点为F ,连接BF∵BE=BD∴BF 是等腰三角形BED 的高即BF ⊥BE又∵AD ⊥AE∴∠EDA=∠ABF=∠ABD/2=45°/2=22.5°故选D16、【答案】C(1)当A 为底角=22°①B 为底角=22°②B 为顶角角=136° (2)当A 为顶角=22° B 为底角=79° 故选C17、【答案】A.(2,0)B .(3,0)C .(23,0)D .(33,0)设B (2a ,0),A 的横坐标=aA 的纵坐标=3aA 在函数y=3 上即:3a解得:a=1故:B (2,0)选A18、【答案】C等腰三角形△ABC 、△BOD,△EOC,△ADE,△BOC,共5个选C19、【答案】∵DE是AC边的垂直平分线∴AE=CE△BEC的周长=BE+EC+BC=AE+BE+BC=AB+BC=11+7=18故选B20、【答案】D21、证明连接AD,DE⊥AB,DF⊥AC,且DE=DF.∴△AED≌AEF∴AD是∠A的平分线又D为DC中点,故△ABC是等腰三角形22、【答案】AB=AC则三角形ABC为等腰三角形∠BAC=24°则∠C=78°∵AD∥BC∴∠CAD=∠C=78°则∠BAD=∠CAD+∠BAC=78°+24°=102°∵AB=AD∴∠D=(180°-102°)÷2=39°23、【答案】(1)∵AC=AB,DC=DB又AD=AD∴△ACD≌△ABD(2)∵△ACD≌△ABD∴∠ADC=∠ADB∴AD是∠CDB的平分线又△CDB是等腰三角形∴AD是的CB高故:AD垂直平分BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1. (广东珠海)若分式ba a+2的a 、b 的值同时扩大到原来的10倍,则此分式的值 ( ) A .是原来的20倍 B .是原来的10倍 C . 是原来的101倍 D .不变2. 计算-22+(-2)2-(- 12)-1的正确结果是( )A 、2B 、-2C 、6D 、10 3. (四川遂宁)下列分式是最简分式的( )A.ba a 232 B .aa a 32- C .22ba b a ++ D .222ba ab a --5.(丽江)计算10()(12-+= . 6. (江苏徐州)0132--= . 7. (江苏镇江常州)计算:-(-12)= ;︱-12︱= ; 01()2-= ;11()2--= .8. (云南保山)计算101()(12-+= . 9. (北京)计算:︒-++︒--)2(2730cos 2)21(1π.10. 计算:|-3|+20110+6×2-1. 11. (重庆江津区)下列式子是分式的是( )A 、2xB 、1x x + C 、2xy + D 、x π 12. (四川眉山)化简mm nm n -÷-2)(的结果是( )A .﹣m ﹣1B .﹣m+1C .﹣mn+mD .﹣mn ﹣n13.(南充)若分式12x x -+的值为零,则x 的值是( ) A 、0 B 、1 C 、﹣1 D 、﹣2 14. (四川遂宁)下列分式是最简分式的( )A.b a a 232 B .a a a 32- C .22b a b a ++ D .222b a aba --15. (浙江丽水)计算111aa a ---的结果为( )A 、11a a +-B 、1a a - C 、﹣1 D 、217. (天津)若分式211x x -+的值为0,则x 的值等于 .18. (郴州)当x= 时,分式的值为0.19. 如果分式23273x x --的值为0,则x 的值应为 .20. (北京)若分式xx 8-的值为0,则x 的值等于 . 21. (福建省漳州市)分式方程211x =+的解是( )A 、﹣1B 、0C 、1D 、3222. (黑龙江省黑河)分式方程11xx --=()()12m x x -+有增根,则m 的值为( )A 、0和3B 、1C 、1和﹣2D 、323. (新疆建设兵团)方程2x +11-x=4的解为 .24. (天水)如图,点A 、B 在数轴上,它们所对应的数分别是﹣4与2235x x +-,且点A 、B 到原点的距离相等.则x = .25. (海南)方程2+x x=3的解是 . (2)解分式方程一定注意要验根.26. (湖北潜江、天门、仙桃、江汉油田)化简)2()242(2+÷-+-m mm m 的结果是A .0B .1C .—1D .(m +2)227. (江苏苏州)已知1112a b -=,则ab a b -的值是( )A .12B .-12 C .2 D .-228. (山东济南)化简:22m n m n m n---的结果是( ) A .m +nB .m ﹣nC .n ﹣mD .﹣m ﹣n29. (南通)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. 3 36 D. 330. (湖北孝感)化简(x y -y x ) ÷x yx-的结果是( )A .1yB .x yy +C .x y y -D .y31.(广西来宾)计算11x x y--的结果是( ) A.()y x x y -- B.2()x y x x y -+ C.2()x y x x y -- D.()yx x y -32. (盐城)化简=--392x x .34. (德州)当x =2211x x x--=- 错误!未找到引用源。

. 35. (泰安)化简:4)222(2-÷--+x xx x x x 的结果为 . 36. (广西桂林)若111a m=-,2111a a =-,3211a a =-,… ;则2011a 的值为 .(用含m 的代数式表示) 37.(湖南长沙)化简:xx x 11-+=___________. 38. (福建福州)化简()1111-m+m+⎛⎫⎪⎝⎭的结果是 . 39.(包头)化简122-+a a ·4412++-a a a ÷21+a +122-a ,其结果是 . 40. 化简: a a 12-÷(1+a1)= .41. (江苏南京)计算221a ba b a b b a-÷-+-. 42. (江苏苏州)先化简,再求值:()22111a a a ⎛⎫-+÷+⎪+⎝⎭,其中1a =.43.(江苏扬州)计算:xx x 1)11(2-÷+44.(江苏镇江常州)化简:22142x x x ---. 45. (南昌)先化简,再求值:a a a a a ÷⎪⎭⎫⎝⎛-+-112,其中a =12+.46. (内蒙古呼和浩特)(1)计算:121181222-⎛⎫-+-+ ⎪⎝⎭ (2)化简:22()a b ab b a a b a a ⎛⎫--÷-≠ ⎪⎝⎭.47.(山东日照)化简,求值:)111(11222+---÷-+-m m m m m m ,其中m=3.48. (山西)先化简,再求值:1112112222+--+-⋅-+a aa a a a a ,其中21-=a ; 49. (四川广安)先化简22()5525x x x x x x -÷---,然后从不等组23,212.x x --⎧⎨<⎩≤的解集中,选取一个你认为符合题意....的x 的值代入求值. 50. (云南保山)先化简211111x x x x -÷-+-(),再从-1,0,1三个数中,选择一个你认为合适..的数作为x 的值代入求值.51. (重庆江津区)先化简,再求值:211122x x x -⎛⎫÷- ⎪++⎝⎭,其中13x =.52.(重庆市)先化简,再求值:2121(1)1a a a a++-⋅+,其中a 2 53. (2010重庆)先化简,再求值:22122121x x x x xx x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2-x -1=0. 54. (山东烟台)先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 55. (清远)先化简,再求值:21111xx x ⎛⎫-÷ ⎪+-⎝⎭,其中12+=x . 56.(南充)先化简,再求值:21x x -(1x x -﹣2),其中x=2.57.(黑龙江省黑河)先化简,再求值:(1﹣11a +)÷221aa a ++,其中a=sin60°.58.(广西百色)已知a =13+,b =3.求下列式子的值,()()b a ba b a b a ab b ab b a -+--+⋅+-22.59.(湖北黄石)先化简,后求值:)24(4442232x y x xy y xy x y y x +-⋅++-,其中⎪⎩⎪⎨⎧+=-=1212y x .60. (贵州毕节)先化简,再求值: aa a a a a 2)1)(2()21(22+-+÷-+ ,其中042=-a . 61. (贵阳)在三个整式x 2﹣1,x 2+2x+1,x 2+x 中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x=2时分式的值.62. (贵州遵义)先化简,再求值:⎪⎪⎭⎫⎝⎛--÷-x y xy x x y x 22,其中1,2-==y x 。

63. (湖南张家界)先化简,再把x 取一个你最喜欢的数代入求值:2)22444(22-÷+-++--x xx x x x x .65.(江西)先化简,再求值:2211()11a a a a++÷--,其中a =66.(辽宁本溪)先化简,再求值:232()224x x xx x x -÷-+-,其中4x =. 67.(辽宁阜新)先化简,再求值:(2x x-﹣2)÷22162x x x --,其中4.68. (2010河南)先化简22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,然后从﹣2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.69. (襄阳)先化简再求值:412)121(22-++÷-+x x x x ,其中x =tan 60°-1. 70. (湖南常德)先化简,再求值. 221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中72. (邵阳)已知1-x =1,求1-x +x ﹣1的值.73. (四川广安)先化简22()5525x x x x x x -÷---,然后从不等式组23,212.x x --⎧⎨<⎩≤的解集中,选取一个你认为符合题意....的x 的值代入求值. 74. (四川泸州)先化简,再求值: 1)12111(2-÷+-+-+x xx x x x ,其中 x=2. 75. (四川雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.242222x x x x x ⎛⎫++÷⎪--⎝⎭. 76. (黑龙江省哈尔滨)先化简,再求代数式22193x x ÷--的值,其中x=2cos45°﹣3.78. (福建龙岩)先化简,再求值:242a a ---,其中2a =-.(结果精确到). 78a. (重庆綦江)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( ) A .x10000-5010000+x =10 B .5010000-x -x 10000=10C .x 10000-5010000-x =10D .5010000+x -x 10000=1079. (吉林长春)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( )A .28002800304-=x x B .28002800304-=x x C .28002800305-=x x D .2800280030-=5x x80.(辽宁沈阳)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( ) A 、6010%)801(3025=+-x xB 、10%)801(3025=+-xxC 、601025%)801(30=-+x x D 、1025%)801(30=-+xx81. (湖南衡阳)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )A .3600x = 36001.8x B . 36001.8x -20=3600x C . 3600x - 36001.8x =20 D . 3600x + 36001.8x=20 82. (安顺)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 .83. (山东青岛)某车间加工120个零件后,采用了新工艺,工效是原来的倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .84. (辽宁阜新)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,根据题意列出的方程是 .85. (江苏淮安)七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100个,小月跳了140个.如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个?86. (江苏连云港)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)87. (南通)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?88.(江苏徐州)徐州至上海的铁路里程为650km.从徐州乘“C”字头列车A,“D”字头列车B都可到达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少.(1)设A车的平均速度是xkm/h,根据题意,可列分式方程:;(2)求A车的平均速度及行驶时间.89.(广东汕头)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了元,问该品牌饮料一箱有多少瓶?90.(河池)大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.(1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?(提示:利润=售价﹣成本,利润率=)91.(柳州)某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)求去年购进的文学羽和科普书的单价各是多少元?(2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?92.(德州)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.93.(莱芜)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.94.(泰安)某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的倍,求甲.乙两车间每天加工零件各多少个?95.(四川遂宁)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?96.(河北)甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?97.(广东肇庆)肇庆市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20%,结果提前两天完成.求原计划平均每天修绿道的长度.98.(广东)某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了元.问该品牌饮料一箱有多少瓶?99.(广东珠海)八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.100.(广西崇左)今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?101.(广西防城港)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利利润×100%)润率不低于26%,那么售价至少定为每千克多少元?(利润率=成本102.(广西来宾)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?103.(梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于万元且不少于万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?104.(玉林)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润/成本×100%)105.(黔南)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:(1)若剑江河首批需要清淤的淤泥面积大约为万平方米,平均厚度约为米,那么请哪个清淤公司进行清淤费用较省,请说明理由(体积可按面积@高进行计算)(2)若甲公司单独做了2天,乙公司单独做了3天,恰好完成全部清淤任务的一半;若甲公司先做2天,剩下的清淤工作由乙公司单独完成,则乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多1天,则甲、乙两公司单独完成清淤任务各需多少时间?106.(湖南张家界)湖南张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?107.(辽宁本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?108.(丹东)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元. (1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?109. (湖北十堰)A ,B 两地间的距离为15千米,甲从A 地出发步行前往B 地,20分钟后,乙从B 地出发骑车前往A 地,且乙骑车比甲步行每小时多走10千米。

相关文档
最新文档