最新中考数学模拟测试卷及答案(二)苏教版

合集下载

最新 中考数学二模试卷(含解析)苏科版 精品

最新 中考数学二模试卷(含解析)苏科版 精品

最新中考数学二模试卷(含解析)苏科版精品最新-中考数学二模试卷(含解析)苏科版精品2022江苏高中入学考试徐州第第三十六中学第二模拟试卷一、选择题:(本大题共8题,每题3分,满分24分)1.(3分)(2021?松江区模拟)下列运算正确的是()22325369222a.2xx=2b.(x)=xc.x?x=xd.(x+y)=x+y考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项对a进行判断;根据幂的乘方与积的乘方对b进行判断;根据同底数幂的乘法对c进行判断;根据完全平方公式对d进行判断.222解答:解:a、2xx=x,所以a选项错误;326b、(x)=x,所以b选项错误;369c、x?x=x,所以c选项正确;222d、(x+y)=x+2xy+y,所以d选项错误.故选c.222点评:本题考查了完全平方公式:(a±b)=a±2ab+b.也考查了合并同类项、同底数幂的乘法以及幂的乘方与积的乘方.2.(3分)(2021?松江区模拟)六个数6、2、3、3、5、10的中位数为()a.3b.4c.5d.6考点:中位数.分析:根据中位数的意义,将这组数据从小到大重新排列后,求出最中间两个数的平均数即可.解答:解:把6、2、3、3、5、10从小到大排列为:2、3、3、5、6、10,最中间两个数的平均数是:(3+5)÷2=4,则这组数据的中位数为4,故选:b.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3.(3分)(2021?包头)在rt△abc中,∠c=90°,若ab=2ac,则sina的值是()a.b.c.d.考点:特殊角的三角函数值;含30度角的直角三角形.专题:计算题.分析:在rt△abc中,根据ab=2ac,可得出∠b=30°,∠a=60°,从而可得出sina的值.解答:解:∵∠c=90°,ab=2ac,∴∠b=30°,∠a=60°,故可得sina=.故选c.点评:此题考查了特殊角的三角函数值及直角三角形中,30°角所对直角边等于斜边一半,属于基础题,这是需要我们熟练记忆的内容.4.(3点)如果⊙ o已知为8,在直线L上有一个点m,它满足om=4,即直线L和L之间的位置关系⊙ o是()A.交点B.分离或相交C.分离或相切D.相交或相切测试点:直线和圆之间的位置关系。

苏教版中考二模检测《数学试题》含答案解析

苏教版中考二模检测《数学试题》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.下列四个数中,最大的数是( ) A.B.C.12D.2.若三角形的三边长分别为3,4,x ,则x 的值可能是( ) A. 1B. 6C. 7D. 103.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A. 0.25×10﹣5B. 0.25×10﹣6C. 2.5×10﹣5D. 2.5×10﹣64. 一个几何体的三个视图如图所示,这个几何体是( )A. 圆柱B. 球C. 圆锥D. 正方体5.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A. x 1≠x 2B. x 1+x 2>0C. x 1•x 2>0D. x 1<0,x 2<06.下列运算中,正确的是( ) A. (﹣3a 3)2=9a 6B. a•a 4=a 4C. a 6÷a 3=a 2D. 3a+2a 2=5a 37.如图,在54⨯的正方形网格中,每个小正方形的边长都是,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A.43B.34C.35D.458.若关于x 一元一次不等式组0221x a x x->⎧⎨-<-⎩有解,则a 的取值范围为( )A. a>1B. a<1C. a≥1D. a≤19.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A. 1B. 1.5C. 2D. 2.510.如图,直线y=kx+b与曲线y=3x(x>0)相交于A、B两点,交x轴于点C,若AB=2BC,则△AOB的面积是( )A. 3B. 4C. 6D. 8二.填空题11.若3x在实数范围内有意义,则的取值范围是______.12.已知∠α=20°,则∠α的补角等于______度.13.将圆心角为90°,面积为4πcm2的扇形围成一个圆维的侧面,则此圆锥母线长为_____cm.14.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为90米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)15.元朝朱世杰的《算学启蒙》一书记载:”今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s关于行走的时间t和函数图象,则两图象交点P的坐标是_____.16.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且﹣2≤x ≤1时,y 的最大值为9,则a 的值为_____.17.数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD⊥BC 于点D .请借助直尺,画出△ABC 中∠BA C 的平分线.晓龙同学的画图步骤如下: (1)延长OD 交BC 于点M; (2)连接AM 交BC 于点N .所以线段AN 为所求△ABC 中∠BAC 的平分线. 请回答:晓龙同学画图的依据是__.18.在△ABC 中,∠A ,∠C 是锐角,若AB =2,且tan ∠C =2tan ∠A ,则△ABC 面积的最大值是_____.三.解答题19.(1)计算1031()13(3)82π-+--(2)化简2221412211a a a a a a --⋅÷+-+-. 20.学校计划为”我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.21.在”创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A 、B 两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息: 【信息一】A 小区50名居民成绩频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组成绩如下75 75 79 79 79 79 80 80 81 82 82 83 83 84 84 84【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A 75.1 79 40% 277B 75.1 77 76 45% 211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.22.在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个,黑球2个.(1)若先从袋中取出x(x>0)个红球,再从袋子中随机摸出1个球,将”摸出黑球”记为事件A,若A为必然事件,则x的值为;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用画树状图或列表法求这个事件的概率.23.如图,AB是⊙O的直径,D为⊙O上一点,过BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(2)若⊙O半径为5,CT=3,求AD的长.24.在平面直角坐标系中,函数y=ax2﹣2ax﹣4a(x≥0)的图象记为M1,函数y=﹣ax2﹣2ax+4a(x<0)的图象记为M2,其中a为常数,且a≠0,图象M1,M2合起来得到的图象记为M.(1)当图象M1的最低点到x轴距离为3时,求a的值.(2)当a=1时,若点(m,52)在图象M上,求m值,(3)点P、Q的坐标分别为(﹣5,﹣1),(4,﹣1),连结PQ.直接写出线段PQ与图象M恰有3个交点时a的取值范围.25.如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.(1)请判断线段AE和CD的数量关系,并说明理由;(2)当A、E、F三点在同一直线上时,求CD的长;(3)设AE的中点为M,连接FM,试求线段FM长的最小值.26.对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的”生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的”生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的”生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的”生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标Nx的取值范围.答案与解析一.选择题1.下列四个数中,最大的数是( ) A. B.C.12D.【答案】D 【解析】 分析】根据有理数的大小即可判断. 【详解】∵2>12>0>-2, ∴最大的数为2, 故选D.【点睛】此题主要考查有理数的大小,解题的关键是熟知有理数的性质. 2.若三角形的三边长分别为3,4,x ,则x 的值可能是( ) A. 1 B. 6C. 7D. 10【答案】B 【解析】试题分析:∵4﹣3=1,4+3=7,∴1<x <7,∴x 值可能是6.故选B . 考点:三角形三边关系.3.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A. 0.25×10﹣5 B. 0.25×10﹣6C. 2.5×10﹣5D. 2.5×10﹣6【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D .4. 一个几何体的三个视图如图所示,这个几何体是( )A. 圆柱B. 球C. 圆锥D. 正方体【答案】A【解析】【详解】根据题目给出的条件,主视图和左视图是一个相同的长方形,俯视图是一个圆,可判断出几何体是圆柱,故选A5.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是( )A. x1≠x2B. x1+x2>0C. x1•x2>0D. x1<0,x2<0【答案】A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记”当△>0时,方程有两个不相等的实数根”是解题的关键.6.下列运算中,正确的是( ) A. (﹣3a 3)2=9a 6B. a•a 4=a 4C. a 6÷a 3=a 2D. 3a+2a 2=5a 3【答案】A 【解析】 【分析】根据幂的乘方法则、同底数幂运算法则和幂的运算法则解答 【详解】()233a-=23()-×32a ()=96a ,故A 正确;14a a =()14a +=5a ,故B 错误;63a a ÷=()63a -=3a ,故C 错误;3a 和22a 的幂次不同故不可合并,D 错误. 【点睛】熟练掌握幂的运算法则是关键.7.如图,在54⨯的正方形网格中,每个小正方形的边长都是,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A.43B.34C.35D.45【答案】D 【解析】 【分析】过作CD AB ⊥于,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值. 【详解】如图,过作CD AB ⊥于,则=90ADC ∠︒,AC =222234=+=+AC AD CD =5.4sin 5CD BAC AC ∠==. 故选D .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.8.若关于x的一元一次不等式组221x ax x->⎧⎨-<-⎩有解,则a的取值范围为( )A. a>1B. a<1C. a≥1D. a≤1 【答案】B【解析】【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【详解】解:221x ax x->⎧⎨-<-⎩①②解不等式①得,x>a,解不等式②得,x<1,∵不等式组有解,∴a<1,故选B.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).9.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A. 1B. 1.5C. 2D. 2.5【答案】C【解析】【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.10.如图,直线y=kx+b与曲线y=3x(x>0)相交于A、B两点,交x轴于点C,若AB=2BC,则△AOB的面积是( )A. 3B. 4C. 6D. 8 【答案】B【解析】【分析】如图,作AH⊥OC于H,BT⊥OC于T.设A(a,3a).利用平行线分线段成比例定理,求出点B的坐标,再证明S △AOB =S 梯形AHTB ,利用梯形的面积公式求解即可. 【详解】解:如图,作AH ⊥OC 于H ,BT ⊥OC 于T .设A (a ,3a).∵AH ⊥OC 于H ,BT ⊥OC 于T , ∴AH ∥BT , ∴BT CBAH CA=, ∵AB =2BC , ∴13CB CA =, ∴AH =3BT , ∵AH =3a∴BT =1a , ∴B (3a ,1a), ∵OH =a ,OT =3a , ∴TH =2a ,∵S △AOB =S △AOH +S 梯形AHTB ﹣S △OBT ,S △AOH =S △BOT ,∴S △AOB =S 梯形AHTB =312a a +•2a =4,故选:B .【点睛】此题考查了反比例函数的性质,相似三角形的判定与性质以及三角形面积问题.此题综合性较强,注意数形结合思想的应用.二.填空题11.3x -在实数范围内有意义,则的取值范围是______. 【答案】x≤3 【解析】【分析】根据二次根式有意义的条件解答. 【详解】解:根据题意得:3-x≥0, 解得:x≤3, 故答案为x≤3.【点睛】本题考查二次根式的性质,熟记二次根式有意义被开方数非负是解题关键. 12.已知∠α=20°,则∠α的补角等于______度. 【答案】160. 【解析】试题分析:互补即两角的和为180°,若∠α=20°,则∠α的补角等于180°﹣20°=160°.故答案为160. 考点:余角和补角.13.将圆心角为90°,面积为4πcm 2的扇形围成一个圆维的侧面,则此圆锥母线长为_____cm . 【答案】4 【解析】 【分析】先利用扇形的面积公式计算出扇形的半径为4cm ,扇形的半径就是圆锥的母线. 【详解】解:设扇形的半径为Rcm ,则290360R π⨯=4π,解得R =4,即圆锥的母线长为4cm . 故答案为:4.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为90米,点A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)【答案】30390+【解析】【分析】根据题意可得∠CAD=60°,∠CBD=45°,CD=90,然后根据特殊角三角函数分别求得AD和BD的值,进而可求A、B两点间的距离.【详解】解:根据题意可知:∠CAD=60°,∠CBD=45°,CD=90,∴在Rt△ACD中,AD=CDtan60︒=303,在Rt△BCD中,BD=CD=90,∴AB=AD+BD=303+90.所以A、B两点间的距离是(303+90)米.故答案为:(303+90)【点睛】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.15.元朝朱世杰的《算学启蒙》一书记载:”今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s关于行走的时间t和函数图象,则两图象交点P的坐标是_____.【答案】(32,4800)【解析】【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.【详解】由题意可得,150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t=240(t﹣12)是解决问题的关键.16.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为_____.【答案】1【解析】【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣22aa=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故答案为:1.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17.数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:(1)延长OD交BC于点M;(2)连接AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是__.【答案】垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等.【解析】【分析】根据垂径定理和圆周角定理的知识画出图形即可.【详解】如图所示:线段AN为所求△ABC中∠BAC的平分线,画图的依据是垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等;故答案为垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等.【点睛】此题主要考查了基本作图,关键是掌握垂径定理和圆周角定理的知识.18.在△ABC中,∠A,∠C是锐角,若AB=2,且tan∠C=2tan∠A,则△ABC面积的最大值是_____.【答案】3 2【解析】【分析】如图,过B作BD⊥AC于D,根据三角函数定义和已知条件确定AD=2CD,设BD=h,CD=a,则AD=2a,利用勾股定理得h2=4﹣4a2,计算a2•h2的值并配方,知道当a2=12时,a2h2取最大值为1,最后根据三角形的面积公式可得结论.【详解】解:如图,过B作BD⊥AC于D,∴tan∠C=BDCD,tan∠A=BDAD,∵tan∠C=2tan∠A,∴AD=2CD,∵AB=2,∴AD 2+BD 2=4,设BD =h ,CD =a ,则AD =2a , Rt △ABD 中,h 2+4a 2=4, ∴h 2=4﹣4a 2,∵a 2•h 2=a 2(4﹣4a 2)=4a 2﹣4a 4=4[a 2(1﹣a 2)]=4[14﹣(a 2﹣12)2],当a 2=12时,a 2h 2取最大值为1, ∴a 2h 2≤1, ∴0<ah ≤1,∴32ah ≤33122⨯=,∵S △ABC =11322AC BD h a ⋅=⋅⋅=32ah ,∴△ABC 面积的最大值是32,故答案为:32.【点睛】此题主要考查了解三角形和特殊角的三角函数值以及三角形面积求法,正确表示出AC ,BD ,DC 的长是解题关键.三.解答题19.(1)计算101()1(3)2π-+--(2)化简2221412211a a a a a a --⋅÷+-+-.【答案】2;(2)22a a --. 【解析】【详解】(1)原式=2112+--2;(2)原式=12a a -+·2(2)(2)(1)(1)(1)a a a a a +-⋅+--=(2)(1)a a -+=22a a --. 考点:1.分式的乘除法;2.实数的运算.20.学校计划为”我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【答案】(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少 【解析】 【分析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品花费为W 元,根据题意得到由题意可知,1(30)3z z ≥-,3015(30)45015W z z z =+-=+,根据一次函数的性质,即可求解;【详解】解:(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩,A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-, 152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.21.在”创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A 、B 两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息: 【信息一】A 小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值); 【信息二】图中,从左往右第四组的成绩如下75 75 79 79 79 79 80 80 81 82 82 83 83 84 84 84【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A 75.1 79 40% 277B 75.1 77 76 45% 211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.【答案】(1)75;(2)A小区500名居民成绩能超过平均数的人数200人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【解析】【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×2460=200(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【详解】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为:75;(2)5002460⨯=200(人);答:A小区500名居民成绩能超过平均数的人数200人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【点睛】本题考查的是频数直方图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个,黑球2个.(1)若先从袋中取出x(x>0)个红球,再从袋子中随机摸出1个球,将”摸出黑球”记为事件A,若A为必然事件,则x的值为;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用画树状图或列表法求这个事件的概率.【答案】(1)3;(2)3 5【解析】【分析】(1)由在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,根据必然事件的定义即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从袋中随机摸出2个球,正好红球、黑球各1个的情况,再利用概率公式即可求得答案.【详解】(1)∵”摸出黑球”为必然事件,∴x=3,故答案为3;(2)3个红球记为A1,A2,A3,2个黑球记为B1,B2.画树状图得:∵共有20种等可能的结果,从袋中随机摸出2个球,正好红球、黑球各1个的有12种情况,∴从袋中随机摸出2个球,正好红球、黑球各1个的概率为=123 205=.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,AB是⊙O的直径,D为⊙O上一点,过BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(2)若⊙O半径为5,CT=3,求AD的长.【答案】(1)65°;(2)8【解析】【分析】(1)连接OT,根据切线的性质可得OT⊥CT,结合已知条件即可求出∠ATC的度数;(2)过点O作OE⊥AD于点E,则E为AD的中点,由TC⊥AC,OT⊥CT,可得四边形OECT是矩形,得OE=CT=3,再根据勾股定理即可求出AD的长.【详解】解:(1)如图,连接OT,∵CT为⊙O的切线,∴OT⊥CT,∵TC⊥AC,∴OT∥AC,∴∠DAT=∠OTA,∵OA=OT,∴∠OAT=∠OTA,∴∠DAT=∠OAT=12DAB=25°,∵TC⊥AC,∴∠ACT=90°,∴∠ATC=90°﹣25°=65°;(2)过点O 作OE ⊥AD 于点E ,则E 为AD 的中点,∵TC ⊥AC ,OT ⊥CT ,∴四边形OECT 是矩形,∴OE =CT =3,∵OA =5,∴在Rt △AOE 中,AE ,∴AD =2AE =8.【点睛】本题主要考查了切线的判定以及性质,证明切线时可以利用切线的判定定理把问题转化为证明垂直的问题.24.在平面直角坐标系中,函数y =ax 2﹣2ax ﹣4a(x≥0)的图象记为M 1,函数y =﹣ax 2﹣2ax+4a(x <0)的图象记为M 2,其中a 为常数,且a≠0,图象M 1,M 2合起来得到的图象记为M .(1)当图象M 1的最低点到x 轴距离为3时,求a 的值.(2)当a =1时,若点(m ,52-)在图象M 上,求m 的值, (3)点P 、Q 的坐标分别为(﹣5,﹣1),(4,﹣1),连结PQ .直接写出线段PQ 与图象M 恰有3个交点时a 的取值范围.【答案】(1)35;(2)12+或12--;(3)1154a ≤或a=14-. 【解析】【分析】(1)因为提到”最低点”,所以函数图象M 1对应的抛物线开口向上,a >0,令顶点纵坐标=3即求出a 的值.(2)把点在图象M 1或图象M 2进行分类讨论,把a =1和y =52-代入解析式即求出m 的值. (3)把a >0时图象M 的大致草图画出,根据图象观察和计算说明线段PQ 所在位置对交点个数的影响,得到a 的范围,同理可计算a <0时的情况.【详解】解:(1)∵y =ax 2−2ax−4a =a (x−1)2−5a ,且图象M 1的最低点到x 轴距离为3∴a >0,∴|−5a|=3,即−5a =−3∴a =35;(2)当a =1时,点(m ,52-)在图象M 上, ①若点在图象M 1上,即m≥0,m 2−2m−4=52-, 解得:m 1=1012+,m 2=1012-(舍去); ②若点在图象M 2上,即m <0,−m 2−2m +4=52-, 解得:m 3=3012-+(舍去),m 4=3012--, 综上所述,m 的值为1012+或3012--; (3)若a >0,则图象M 的大致形状如图1,若线段PQ 经过图象M 1的顶点(1,−5a )则−5a =−1,得a =15, 对于图象M 2,21241555x x --+=-时, 解得:1110x =-舍去),2110x =-∵1105-->-,∴直线PQ 与图象M 2的交点在点P 的右侧∴线段PQ 与图象M 2有一个交点,与M 有两个交点,而M 1与y 轴的交点为(0,-4a ),∴当−5a <-1≤-4a 时,线段PQ 与图象M 有三个交点,解得:1154a ≤; 同理当a <0时,同理可得5141-≤<-a ,而当a=14-即上图情况是,线段PQ 的交点恰好为Q 点,此时有三个交点,而5141-<<-a 时,图像线段PQ 的交点只有个,右侧没有交点,所以a=14-, 故线段PQ 与图象M 恰有3个交点时a 的取值范围是:1154a ≤或a=14-. 【点睛】本题考查了二次函数图象与性质,一元一次方程、一元二次方程的解法,数形结合和分类讨论是解决本题的关键.25.如图,在Rt △ABC 中,AC =BC =4,∠ACB =90°,正方形BDEF 的边长为2,将正方形BDEF 绕点B 旋转一周,连接AE 、BE 、CD .(1)请判断线段AE 和CD 的数量关系,并说明理由;(2)当A 、E 、F 三点在同一直线上时,求CD 的长;(3)设AE 的中点为M ,连接FM ,试求线段FM 长的最小值.【答案】(1)AE 2,理由见解析;(214214232【解析】【分析】(1)根据等腰直角三角形的性质可证△ABE ∽△CBD ,再由相似三角形的判性质即可得到结论.(2)根据相似三角形的性质得到AB 2BC 2,根据勾股定理得到AF 22AB BF -7,接下来分两种情形:如图1,当AE 在AB 左上方时,如图2,当AE 在AB 右下方时,即可得到结论;(3)如图3,延长EF 到G 使FG =EF ,连接AG ,BG ,求得△BFG 是等腰直角三角形,得到BG 2BF 2,设M 为AE 的中点,连接MF ,根据三角形中位线的定理得到AG =2FM ,根据三角形的三边关系即可得到结论.【详解】解:(1)结论:AE =2CD . 理由:∵在Rt △ABC 中,AC =BC =4,∠ACB =90°,∴∠ABC =∠EBD =45°,∴∠ABE =∠CBD ,∵四边形BDEF 是正方形,△ABC 是等腰直角三角形,∴AB BC =2,BE BD =2, ∴AB BE BC BD=, ∴△ABE ∽△CBD , ∴2AE AB CD BC ==, ∴AE =2CD .(2∵AC =BC =4,∠ACB =90°,∴AB =2BC =42,∵当A 、E 、F 三点在一直线上时,∵∠AFB =90°,∴AF =2222(42)2AB BF -=-=27,如图1,当AE 在AB 左上方时,AE =AF ﹣EF =27﹣2,∵AE 2CD ,∴CD 2142 如图2,当AE 在AB 右下方时,同理,AE=AF+EF=27+2,∴CD=22AE =14+2,综上所述,当A、E、F三点在一直线上时,CD的长为14﹣2或14+2.(3)如图3,延长EF到G使FG=EF,连接AG,BG,则△BFG是等腰直角三角形,∴BG2BF2,设M为AE的中点,连接MF,∴MF是△AGE的中位线,∴AG=2FM,在△ABG中,∵AB﹣BG≤AG≤AB+BG,∴2AG2,2≤FM2,∴FM2.【点睛】本题考查了相似形的综合题,考查了相似三角形的判定和性质,正方形的性质,等腰直角三角形的性质,三角形中位线定理,正确的作出辅助线是解题的关键.26.对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的”生成三角形”.(1)已知点A (4,0);①若以线段OA 为底的某等腰三角形恰好是点O ,A 的”生成三角形”,求该三角形的腰长;②若Rt △ABC 是点A ,B 的”生成三角形”,且点B 在x 轴上,点C 在直线y =2x ﹣5上,则点B 的坐标为 ; (2)⊙T 的圆心为点T (2,0),半径为2,点M 的坐标为(2,6),N 为直线y =x +4上一点,若存在Rt △MND ,是点M ,N 的”生成三角形”,且边ND 与⊙T 有公共点,直接写出点N 的横坐标N x 的取值范围.【答案】(1)①25;②(1,0),(3,0)或(7,0);(2)点N 的横坐标N x 的取值范围为60N x -≤≤.【解析】【分析】(1)①如图(见解析),设满足条件的三角形为等腰OAR ∆,过点R 作RH OA ⊥于点H ,由等腰三角形的性质得12HA OH OA ==,再根据”生成三角形”的定义可得RH OA =,最后利用勾股定理即可得; ②依题意,按点,,A B C 分别为直角顶点三种情况讨论,根据”生成三角形”定义和直线25y x =-的解析式分别建立等式,求解即可;(2)根据点,,M N D 分别为直角顶点三种情况讨论,根据”生成三角形”的定义、结合圆的切线性质列出等式,求解即可.【详解】(1)①如图,设满足条件的三角形为等腰OAR ∆,则OR AR =过点R 作RH OA ⊥于点H122HA OH OA ∴=== ∵以线段OA 为底的等腰OAR ∆恰好是点O ,A 的”生成三角形”4RH OA ∴==在Rt ORH ∆中,利用勾股定理得:22222425OR OH RH =+=+=故该三角形的腰长为25;②依题意,分以下三种情况讨论:当A 为直角顶点时,则AB AC =因点A 的坐标为(4,0A )令4x =代入25y x =-得2453y =⨯-=,即3AC =设点B 的坐标为(,0)B a 则43AB a =-=,解得1a =或7a =故点B 的坐标为(1,0)或(7,0)当B 为直角顶点时,则AB BC =设点B 的坐标为(,0)B b ,则4AB b =-令x b =代入25y x =-得25y b =-,即25BC b =- 则有425b b -=-两边平方化简得2430b b -+=,解得1b =或3b =故点B 的坐标为(1,0)或(3,0)当C 为直角顶点时,如图,过点C 作CD AB ⊥于点D设点D 的坐标为(,0)c ,则4AD c =-令x c =代入25y x =-得25y c =- 由”生成三角形”的定义得25AB CD c ==- 则254BD AB AD c c =-=---90ACD BCD ACD CAD ∠+∠=∠+∠=︒BCD CAD ∴∠=∠又90BDC CDA ∠=∠=︒BCD CAD ∴∆~∆CD BD AD CD∴=,即252544142525c c c c c c c -----==---- 令254c k c -=-,则11k k =- 化简得210k k -+=,此方程的根的判别式1430,方程没有实数根则点C 不能为Rt ABC ∆的直角顶点综上,点B 的坐标为(1,0),(3,0)或(7,0);(2)当N 为直角顶点时由点M 的坐标(2,6)M 可知,点M 在直线4y x =+上由直线4y x =+可知,45M ∠=︒则当点D 在MT 所在直线2x =时,Rt MND ∆是点M ,N 的”生成三角形”如图,点N 和'N 是符合条件的两个临界位置由图可知,点D 的坐标为(2,2)D ,624MD =-=Rt MND ∆中,2sin 4222MN DN MD M ==⋅=⨯=设点N 的坐标为(,)N N N x y 2222(2)(6)(2)(2)N N N N x y x y -+-=-+-解得4N y =,再代入直线4y x =+得0N x =当点N 在'N 处时,图中''Rt MN D ∆也是符合条件的”生成三角形”此时,''N D 恰好与圆T 相切,半径''TE N D ⊥则'TED ∆是等腰直角三角形,且2TE ='''222,22ED TE TD ED TE ∴==+=则点的坐标为'(2,22)D -,设点'N 的坐标为'''(,)N N N x y ''''2222(2)(6)(2)(22)N N N N x y x y -+-=-++。

苏教版中考第二次模拟检测《数学试题》含答案解析

苏教版中考第二次模拟检测《数学试题》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共8小题)1.12的倒数是()A. B. C. 12D.122.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A. 7.6×10﹣9B. 7.6×10﹣8C. 7.6×109D. 7.6×1084.小明在一次射击训练中,共射击10发,成绩如下(单位:环):8 7 7 8 9 8 7 7 10 8,则中靶8环的频率是()A 0.1 B. 0.2 C. 0.3 D. 0.45.若一个多边形的内角和等于1620°,则这个多边形的边数为( )A. 9B. 10C. 11D. 126.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是( )A. 60°B. 80°C. 120°D. 150°7.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A. 10πB. 15πC. 20πD. 30π8.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则DEAD的最大值为( )A. 12B.13C.34D.22二.填空题(共10小题)9.若代数式1x-在实数范围内有意义,则x的取值范围是_______.10.因式分解:a3b﹣ab3=_____.11.方程15x12x1=-+的解为____.12.关于x的方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是_____.13.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.14.点A(a,b)是一次函数y=x﹣2与反比例函数y=4x的交点,则a2b﹣ab2=________.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为_____.17.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(30),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.18.如图,已知点A 是第一象限内横坐标为3一个定点,AC ⊥x 轴于点M ,交直线y =﹣x 于点N .若点P是线段ON 上的一个动点,∠APB =30°,BA ⊥P A ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是_____.三.解答题(共10小题)19.(1)计算:(π﹣314)02﹣1|﹣2sin45°+(﹣1)2017.(2)解不等式组:513(1)2151132x x x x -<+⎧⎪-+⎨-⎪⎩. 20.先化简,再求值:232(1)11x x x x x --+÷++,其中-2x2,请从x 的范围中选入一个你喜欢的值代入,求此分式的值.21.”足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分﹣10分,B 级:7分﹣7.9分,C 级:6分﹣6.9分,D 级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是 度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?24.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.25.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm ,拉杆BC 伸长距离最大时可达35cm ,点A,B,C 在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A ,⊙A 与水平地面相切于点D ,在拉杆伸长到最大的情况下,当点B 距离水平地面34cm 时,点C 到水平地面的距离CE 为55cm.设AF ∥ MN.(1)求⊙A 的半径.(2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为76cm ,∠CAF=64°,求此时拉杆BC 的伸长距离(结果精确到1cm ,参考数据:sin64°≈0.9,cos64°≈0.39,tan64°≈2.1). 26.对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的”等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 的坐标为(3,),顶点C 、D 在x 轴上,且OC =OD.(1)当⊙P 的半径为4时,①在P 1(,3-),P 2(23,),P 3(23-,)中可以成为矩形ABCD 的”等距圆”的圆心的是 ; ②如果点P 在直线313y x =-+上,且⊙P 是矩形ABCD 的”等距圆”,求点P 的坐标; (2)已知点P 在轴上,且⊙P 是矩形ABCD 的”等距圆”,如果⊙P 与直线AD 没有公共点,直接写出点P 的纵坐标m 的取值范围.27.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.28.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=7,请直接写出当点C与点M重合时AC的长.答案与解析一.选择题(共8小题)1.12的倒数是()A. B. C. 12D.12-【答案】A【解析】【分析】根据乘积是1的两个数叫做互为倒数,求解.【详解】解:∵12=1 2⨯∴12的倒数是2故选:A.【点睛】本题考查倒数的概念,掌握概念正确计算是解题关键.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A. 7.6×10﹣9B. 7.6×10﹣8C. 7.6×109D. 7.6×108【答案】A【解析】【分析】绝对值小于1的正数用科学记数法表示,一般形式为a×10﹣n,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】根据科学记数法的形式,0.0000000076用科学记数法表示为7.6×10﹣9.故选:A.【点睛】本题考查用科学记数法表示较小的数,注意科学记数法也可以表示较大的数,形式为a×10n.4.小明在一次射击训练中,共射击10发,成绩如下(单位:环):8 7 7 8 9 8 7 7 10 8,则中靶8环的频率是()A. 0.1B. 0.2C. 0.3D. 0.4【答案】D【解析】试题分析:中靶8环的频数为4,所以中靶8环的频率为410=0.4.故选D.点睛:本题考查了频率的计算方法,应熟知频率=频数数据总数.5.若一个多边形的内角和等于1620°,则这个多边形的边数为( )A. 9B. 10C. 11D. 12【答案】C【解析】【分析】首先设多边形的边数为n,再根据多边形内角和公式可得方程180(n﹣2)=1620,再解即可.【详解】解:设多边形的边数为n,由题意得:180(n﹣2)=1620,解得:n=11,故选C.【点睛】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).6.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是( )A. 60°B. 80°C. 120°D. 150°【答案】C【解析】【分析】根据圆周角定理得出∠A=12∠DOB=60°,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.【详解】解:∵∠BOD=120°,根据圆周角定理,∴∠A=12∠DOB=60°,∵A、B、C、D四点共圆,∴∠A+∠BCD=180°,∴∠BCD=180°﹣60°=120°,故选C.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据定理求出∠A=12∠DOB和∠A+∠BCD=180°是解此题的关键.7.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A. 10πB. 15πC. 20πD. 30π【答案】B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B8.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则DEAD的最大值为( )A. 12B.13C.34D.22【答案】B【解析】【分析】如图1,过点E作EF⊥BC于F,先证明△ACD∽△EDF,继而证明A,B,E,C四点共圆,设AB的中点为O,连接OE,当OE⊥BC时,EF有最大值,如图2中先求出AB长,继而求出EF与AC长即可求得答案.【详解】如图1,过点E作EF⊥BC于F,∵∠C=90°,∴AC∥EF,∴△ACD∽△EDF,∴DE EF AD AC=,∵AE⊥BE,∴A,B,E,C四点共圆,设AB的中点为O,连接OE,当OE⊥BC时,EF有最大值,如图2,∵OE⊥BC,EF⊥BC,∴EF,OE重合,∵AC=6,BC=8,∴AB=10,∴OE=5,∵OE⊥BC,∴BF=12BC=4,∴OF=3,∴EF=2,∴21=63 DE EFAD AC==,∴DEAD的最大值为13,故选B.【点睛】本题考查了圆的综合题,相似三角形的判定与性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键..二.填空题(共10小题)9.1x-x的取值范围是_______.【答案】1x≥【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:1x-∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.因式分解:a 3b ﹣ab 3=_____.【答案】ab(a+b)(a ﹣b)【解析】【分析】先提取公因式ab ,然后再利用平方差公式分解即可.【详解】a 3b ﹣ab 3=ab(a 2﹣b 2)=ab(a+b)(a ﹣b),故答案为ab(a+b)(a ﹣b).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.11.方程15x 12x 1=-+的解为____. 【答案】x 2=.【解析】【分析】首先去掉分母,观察可得最简公分母是()()x 12x 2-+,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 【详解】152x 15x 53x 6x 2x 12x 1=⇒+=-⇒-=-⇒=-+, 经检验,x 2=是原方程的根.12.关于x 的方程kx 2﹣2x +1=0有两个不相等的实数根,则k 的取值范围是_____.【答案】k <1且k ≠0.【解析】【分析】根据一元二次方程的定义和△的意义得到k ≠0且△>0,即(﹣2)2﹣4×k ×1>0,然后解不等式即可得到k 的取值范围.【详解】解:∵关于x 的一元二次方程kx 2﹣2x +1=0有两个不相等的实数根,∴k ≠0且△>0,即(﹣2)2﹣4×k ×1>0,解得k <1且k ≠0.∴k的取值范围为k<1且k≠0.故答案为:k<1且k≠0.【点睛】本题考查一元二次方程根与系数的关系,注意,此题必须有前提条件k≠0,否则就不是一元二次方程了.13.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.【答案】24 5【解析】【分析】根据平均数确定出a后,再根据方差的公式S2=1n[(x1-)2+(x2-)2+…+(x n-)2]计算方差.【详解】解:由平均数的公式得:(1+a+3+6+7)÷5=4,解得a=3;∴方差=[(1-4)2+(3-4)2+(3-4)2+(6-4)2+(7-4)2]÷5=245.故答案为245.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以所有数据的个数.方差的公式S2=1n[(x1-)2+(x2-)2+…+(x n-)2].14.点A(a,b)是一次函数y=x﹣2与反比例函数y=4x的交点,则a2b﹣ab2=________.【答案】8 【解析】分析:把点A(a,b)分别代入一次函数y=x-2与反比例函数y=4x,求出a-b与ab的值,代入代数式进行计算即可.详解:∵点A(a,b)是一次函数y=x-2与反比例函数y=4x的交点,∴b=a-2,b=4a,即a-b=2,ab=4,∴原式=ab(a-b)=4×2=8.故答案为8.点睛:本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数与一次函数的交点坐标一定适合两函数的解析式是解答此题的关键.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.【答案】823 3π-【解析】【分析】先根据题意求出∠DCE=60°,再根据”阴影部分面积=扇形'CEC面积-直角三角形CDE面积”计算即可.【详解】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,在Rt△DEC中,22224223DE EC CD=-=-=,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=26041822323 36023ππ⨯-⨯⨯=-.故答案为:823 3π-【点睛】本题考查了不规则图形面积计算,解题关键是求出∠DCE度数.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为_____.【答案】-6.【解析】【分析】先由正方形ADEF的面积为4,得出边长为2,BF=2AF=4,AB=AF+BF=2+4=6.再设B点坐标为(t,6),则E点坐标(t﹣2,2),根据点B、E在反比例函数y=kx的图象上,利用根据反比例函数图象上点的坐标特征得k=6t=2(t﹣2),即可求出k=﹣6.【详解】解:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=kx的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.【点睛】本题考查反比例函数中k的几何意义,注意,此题函数图像在第二象限,则k<0.17.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.【答案】(32,12)【解析】【分析】连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;【详解】连接AB,OC,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=12OB,∠DCB=∠DCO=60°,∵B(-3,0),∴BD=OD=3 2在Rt△COD中.CD=OD•tan30°=12,∴C(-32,12),故答案为C(-32,12).【点睛】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.18.如图,已知点A是第一象限内横坐标为3的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.【答案】2.【解析】【分析】首先,需要证明线段B 1B 2就是点B 运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN ∽△AB 1B 2,列比例式可得B 1B 2的长.【详解】解:如图1所示,当点P 运动至ON 上的任一点时,设其对应的点B 为B i ,连接AP ,AB i ,BB i ,∵AO ⊥AB 1,AP ⊥AB i ,∴∠OAP =∠B 1AB i ,又∵AB 1=AO •tan30°,AB i =AP •tan30°,∴AB 1:AO =AB i :AP ,∴△AB 1B i ∽△AOP ,∴∠B 1B i =∠AOP .同理得△AB 1B 2∽△AON ,∴∠AB 1B 2=∠AOP ,∴∠AB 1B i =∠AB 1B 2,∴点B i 在线段B 1B 2上,即线段B 1B 2就是点B 运动的路径(或轨迹).由图形2可知:Rt △APB 1中,∠APB 1=30°,∴13AB APRt △AB 2N 中,∠ANB 2=30°,∴2AB AN =∴12AB AB AP AN == ∵∠P AB 1=∠NAB 2=90°,∴∠P AN =∠B 1AB 2,∴△APN ∽△AB 1B 2,∴121B B AB PN AP ==, ∵ON :y =﹣x ,∴△OMN 是等腰直角三角形,∴OM =MN∴PN,∴B 1B 2,综上所述,点B 运动的路径(或轨迹)是线段B 1B 2.【点睛】本题考查动点问题,用到了三角形的相似、和等腰三角形的性质,解题关键是找出图形中的相似三角形,利用对应边之比相等进行边长转换.三.解答题(共10小题)19.(1)计算:(π﹣3.14)0﹣1|﹣2sin45°+(﹣1)2017.(2)解不等式组:513(1)2151132x x x x -<+⎧⎪-+⎨-⎪⎩. 【答案】(1)-1;(2)﹣1≤x <2.【解析】【分析】(1)分别根据零指数幂、指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先求出两个不等式的解集,再求其公共解.【详解】解:(1)原式=﹣1﹣2×2﹣1 =1﹣1=﹣1; (2)513(1)2151132x x x x -<+⎧⎪⎨-+-⎪⎩①②, 由①得,x <2, 由②得,x ≥﹣1,所以,不等式组的解集是﹣1≤x <2.【点睛】本题考查指数的、特殊三角函数的求解和解一元一次不等式,需要注意,若不等式两边同时乘除负数时,不等号需要变号.20.先化简,再求值:232(1)11x x x x x --+÷++,其中-2x2,请从x 的范围中选入一个你喜欢的值代入,求此分式的值.【答案】2x x+-, 0 【解析】 试题分析:首先化简232-x+1x+11x x x ()-÷+,然后从x 的范围中选入一个值代入,求出化简后的分式的值是多少即可.试题解析:232-x+1x+11x x x ()-÷+=223-1211x x x x x +-÷++ =-2x x+ 当x=1时, 原式=-1+2=-31. 21.”足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分﹣10分,B 级:7分﹣7.9分,C 级:6分﹣6.9分,D 级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应扇形的圆心角是 度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?【答案】(1)117(2)见解析(3)B(4)30【解析】【分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B 等级,故答案为B.(4)估计足球运球测试成绩达到A级的学生有300×440=30人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【答案】(1)23;(2)见解析,13【解析】【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【详解】(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23.故答案为:23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为31 93 .【点睛】本题考查了列表法或树状图法求概率.用到知识点为:概率=所求情况数与总情况数之比.23.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x,根据”2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据”前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.24.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.【答案】(1)证明见解析;(2)3 2【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥DE ,∵D 点⊙O 上,∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,∴,,∴S △ABC =12AB•CD=12× ∵DE ⊥AC ,∴DE=12AD=12× AE=AD•cos30°=3,∴S △ODE =12OD•DE=12×,S △ADE =12AE•DE=12×3=2,∵S △BOD =12S △BCD =12×12S △ABC =14×∴S △OEC =S △ABC -S △BOD -S △ODE -S △ADE 25.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm ,拉杆BC 的伸长距离最大时可达35cm ,点A,B,C 在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A ,⊙A 与水平地面相切于点D ,在拉杆伸长到最大的情况下,当点B 距离水平地面34cm 时,点C 到水平地面的距离CE 为55cm.设AF ∥ MN.(1)求⊙A的半径.(2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为76cm,∠CAF=64°,求此时拉杆BC的伸长距离(结果精确到1cm,参考数据:sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).【答案】(1)4;(2)BC=30cm【解析】【分析】(1)作BK⊥AF于点H,交MN于点K,通过△ABH∽△ACG,根据相似三角形的性质可得关于x的方程,求解即可;(2)在Rt△ACG中利用正弦值解线段AC长,即可得.【详解】(1)解:作BK⊥AF于点H,交MN于点K,则BH∥CG, △ABH∽△ACG,设圆形滚轮半径AD长为xcm,∴BH AB CG AC即3450 555035xx解得,x=4∴⊙A的半径是4cm.(2)在Rt△ACG中,CG=76-4=72cm,则sin∠CAF=CG AC∴AC=7280sin640.9CGcm,∴BC=AC-AB=80-50=30cm.【点睛】本题考查相似三角形的判定与性质,锐角三角函数,构建相似三角形及建立模型是解答此题的关键. 26.对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的”等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 的坐标为(3,),顶点C 、D 在x 轴上,且OC =OD.(1)当⊙P 的半径为4时,①在P 1(,3-),P 2(23,),P 3(23-,)中可以成为矩形ABCD 的”等距圆”的圆心的是 ; ②如果点P 在直线313y x =-+上,且⊙P 是矩形ABCD 的”等距圆”,求点P 的坐标; (2)已知点P 在轴上,且⊙P 是矩形ABCD 的”等距圆”,如果⊙P 与直线AD 没有公共点,直接写出点P 的纵坐标m 的取值范围.【答案】(1) ①120,3,23,3P P ; ②(23,1)(23,3)P 或--(23,1)p 或(3,1)-(2)1-313,1m m 且<<+≠ 【解析】【分析】(1)①由点A 的坐标为3,2),顶点C 、D 在x 轴上,且OC=OD ,可求得点B ,C ,D 的坐标,继而可求得到此矩形四个顶点距离都相等的点E 的坐标,然后由⊙P 的半径为4,即可求得答案;②首先设P 的坐标为(x ,3),易得x 232=42,继而求得答案; (2)由题意可得|m-1|3,且|m-1|≠0,继而求得答案.【详解】解:(1)∵点A 的坐标为32),顶点C 、D 在x 轴上,且OC=OD ,∴点B 的坐标为(-3,2),点C 的坐标为(-3,0),点D 的坐标为(3,0),∴矩形ABCD 的中心E 的坐标为(0,1),当⊙P 的半径为4时,①若P 1(0,-3),则PE=1+3=4,若P 2(23,3),则PE=()22(23)31+-=4,若P 3(-23,1)则PE=()22(23)11=23+-,∴可以成为矩形ABCD 的”等距圆”的圆心的是:P 1(0,-3),P 2(23,3); 故答案为P 1(0,-3),P 2(23,3).②∵设P 的坐标为(x ,-33x+1), ∵E 为(0,1),∴x 232=42, 解得:x=±3 当33×3当333∴点P 的坐标为(3,-1)或(33);(2)∵点P 在y 上,且⊙P 是矩形ABCD 的”等距圆”,且⊙P 与直线AD 没有公共点,∴|m-1|3,且|m-1|≠0,解得:3m <1+3m≠1.∴点P 的纵坐标m 的取值范围为:3<m <3m≠1.【点睛】此题属于圆的综合题.考查直线与圆的位置关系、两点间的距离表示方法以及勾股定理.注意理解”等距圆”的意义是解此题的关键.27.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1) B(-1.2);(2) y=57x?66x;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB为等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP , ∴可知点P 在线段OA 的下方, 过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO 解析式为y=kx ,∵A (2,1),∴k=12, ∴直线AO 解析式为y=12x , 设P 点坐标为(t ,56t 2-76t ),则E (t ,12t ),。

苏州市中考数学模拟试卷(2)含答案

苏州市中考数学模拟试卷(2)含答案

江苏省苏州市中考数学模拟试卷(2)一、选择题(本大题共10小题,每小题2分,满分20分,每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)的相反数是()A. B.﹣C.D.﹣2.(2分)下列运算正确的是()A.a2•a3=a6 B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y23.(2分)下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.4.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠15.(2分)11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差6.(2分)下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等7.(2分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.πB.πC.D.8.(2分)当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.9.(2分)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+310.(2分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)提出了未来5年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700 000用科学记数法表示为.12.(3分)方程组的解是.13.(3分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为.14.(3分)如图,已知点B、E、C、F在同一条直线上,∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)15.(3分)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.16.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是.17.(3分)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.18.(3分)当a、b满足条件a>b>0时, +=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是.三、解答题(本大题共11小题,满分76分)19.(6分)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.20.(6分)先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=,b=.21.(6分)解不等式组:.22.(6分)在CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在频数分布表中,m=,n=.成绩频数频率60≤x<70600.3070≤x<80m0.4080≤x<9040n90≤x≤100200.10(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?23.(6分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)24.(6分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?25.(8分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.26.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.27.(7分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB 的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.28.(8分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;,BP=x(0≤x≤2),求y与x之间的函数解(3)在平移变换过程中,设y=S△OPB析式,并求出y的最大值.29.(9分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.江苏省苏州市中考数学模拟试卷(2)参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分,每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)的相反数是()A. B.﹣C.D.﹣【解答】解:的相反数是﹣,故选:B.2.(2分)下列运算正确的是()A.a2•a3=a6 B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.3.(2分)下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,俯视图是带圆心的圆,故本选项错误;B、圆柱的主视图是矩形、俯视图是矩形,故本选项正确;C、球的主视图、俯视图都是圆,故本选项错误;D、三棱柱的主视图为矩形和俯视图为三角形,故本选项错误.故选:B.4.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠1【解答】解:根据题意得k﹣1≠0且△=42﹣4(k﹣1)×1>0,解得:k<5,且k≠1.故选D.5.(2分)11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数.故选:B.6.(2分)下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【解答】解:A、两组对边分别平行的四边形是平行四边形,正确.B、有一个角是直角的平行四边形是矩形,正确.C、有一组邻边相等的平行四边形是菱形,正确.D、内错角相等,错误,缺少条件两直线平行,内错角相等.故选D.7.(2分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.πB.πC.D.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C8.(2分)当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.9.(2分)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选A.10.(2分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【解答】解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBE,设∠DCF=∠DBE=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B→D运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.=•AD•CF+•AD•BE=•AD(CF+BE),面积法:S△ABC∴CF+BE=,∵点D沿BC自B向C运动时,AD是增加的,∴CF+BE的值是逐渐减小.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)提出了未来5年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700 000用科学记数法表示为 1.17×107.【解答】解:11 700 000=1.17×107,故答案为:1.17×107.12.(3分)方程组的解是.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.13.(3分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(﹣1,﹣1).【解答】解:点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以点B的坐标是(﹣1,﹣1),故答案为(﹣1,﹣1).14.(3分)如图,已知点B、E、C、F在同一条直线上,∠A=∠D,要使△ABC ∽△DEF,还需添加一个条件,你添加的条件是∠B=∠DEC.(只需写一个条件,不添加辅助线和字母)【解答】解:当∠B=∠DEC时,∵∠A=∠D,∠B=∠DEC,∴△ABC∽△DEF.故答案为:∠B=∠DEC.15.(3分)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,∴取到的图形既是中心对称图形又是轴对称图形的概率为,故答案为:.16.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是70°.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故答案为:70°.17.(3分)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为13.【解答】解:∵将△ABC沿直线DE折叠后,使得点A与点C重合,∴AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故答案为:1318.(3分)当a、b满足条件a>b>0时, +=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是3<m<8.【解答】解:∵+=1表示焦点在x轴上的椭圆,a>b>0,∵+=1表示焦点在x轴上的椭圆,∴,解得3<m<8,∴m的取值范围是3<m<8,故答案为:3<m<8.三、解答题(本大题共11小题,满分76分)19.(6分)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.20.(6分)先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=,b=.【解答】解:(a﹣b)2+b(3a﹣b)﹣a2=a2﹣2ab+b2+3ab﹣b2﹣a2=ab,当a=,b=时,原式=×=2.21.(6分)解不等式组:.【解答】解:解不等式5x+2≥3(x﹣1),得:x≥﹣,解不等式1﹣>x﹣2,得:x<,故不等式组的解集为:﹣≤x<.22.(6分)在CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在频数分布表中,m=80,n=0.2.成绩频数频率60≤x<70600.3070≤x<80m0.4080≤x<9040n90≤x≤100200.10(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?【解答】解:(1)根据题意得:m=200×0.40=80(人),n=40÷200=0.20;故答案为:80,0.20;(2)根据(1)可得:70≤x<80的人数有80人,补图如下:(3)根据题意得:4000×(0.20+0.10)=1200(人).答:估计约有1200人进入决赛.23.(6分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)【解答】解:设DH=x米,∵∠CDH=60°,∠H=90°,∴CH=DH•tan60°=x,∴BH=BC+CH=2+x,∵∠A=30°,∴AH=BH=2+3x,∵AH=AD+DH,∴2+3x=20+x,解得:x=10﹣,∴BH=2+(10﹣)=10﹣1≈16.3(米).答:立柱BH的长约为16.3米.24.(6分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.25.(8分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.26.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.【解答】解:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为y=﹣,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;(2)∵A(2,﹣1),B(,﹣4),直线AB解析式为y=2x﹣5,∵C(0,2),直线BC解析式为y=﹣12x+2,将y=﹣1代入BC的解析式得x=,则AD=2﹣=.∵x C﹣x B=2﹣(﹣4)=6,=×AD×(y C﹣y B)=××6=.∴S△ABC27.(7分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB 的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.28.(8分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;,BP=x(0≤x≤2),求y与x之间的函数解(3)在平移变换过程中,设y=S△OPB析式,并求出y的最大值.【解答】解:(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,当x=2时,y有最大值为2.29.(9分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).。

最新江苏省苏州市中考数学二模试题附解析

最新江苏省苏州市中考数学二模试题附解析

江苏省苏州市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知△ABC ∽△DEF ,∠A =∠D =30°,∠B=50°,AC 与DF 是对应边,则∠F=( )A .50°B .80°C .100°D .150°2. 在同一直角坐标系中,函数k y x=与函数2(1)y k x =-的图象大致是( )A .B .C .D .3. 函数y kx k =-与k y x=-在同一坐标系中的大致图象是( )A .B .C .D .4.从正方形的铁片上,截去2 cm 宽的一条长方形铁片,余下铁片的面积是48cm 2,则原来正方形铁片的面积是( )A .6cm 2B .8 cm 2C .36 cm 2D .64 cm 25. 23,625-11651492326( )A .2 个B .3 个C .4 个D .5 个 6.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( )A .y>0B .y<OC .-2<y<OD .y<-27.已知点P (4,a+1)到两坐标轴的距离相等,则a 的值为( )A .3B .4C .-5D .3或-5 8.如图所示,AD ⊥BC 于D ,那么以AD 为高的三角形有( )A . 3个B .4个C . 5个D .6个9.下列各个变形正确的是( )A .由 7x=4x-3,移项,得 7x-4x=3B .由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C .由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D .由 2(x+1)=x+8,去括号,移项,合并,得x=610.已知|2006||2007|0x y -++=,则x 与y 的大小关系是( )A .x y <B .x y >C .0x y <-<D .0x y >->二、填空题11.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .12.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 . 13.某人从地面沿着坡度为3:1=i 的山坡走了100米,这时他离地面的高度是______米. 14.二次函数y=x 2-2x-3与x 轴两交点之间的距离为 . 15.已知:251 ,251+=-=y x ,求2xy y x ++的值. EOD C B A16.如图,某同学不小心把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.17.如图,在Rt△ABC中,∠C=Rt∠,AC=6,AB=BC+2,则斜边AB长为.18.若12xy=⎧⎨=⎩是关于 x,y 方程312mx y-=的一个解,则m= .19.如图是某中学就“月球上有水吗”这一问题调查结果的扇形统计图,则该统计图中,“不知道”部分的圆心角的度数为,已知认为“无水”的同学共有100位,那么参加这次调查的人数是.20.用代数式填空.(1)七年级全体同学,参加市教育局组织的国际教育活动,一共分成n个排,每排3个班,每班 10 人,那么七年级一共有名同学;(2)某班有共青团员 m 名,分成两个团小组,第一团小组有 x名,则第二团小组有名;(3)在 2005 年“世界献血日宣传周”期间,某市总计献血 4.483×lO5 mL,设献血人数为 n 人,则平均每人献血 ml.三、解答题21.如图,已知⊙O1与⊙O2外切于A,⊙O1的直径 CE 的延长线与⊙O2相切于B,过 C作⊙O1的切线与O2O1的延长线相交于D,⊙O1和⊙O的半径长分别是2和 3,求 CD 的长.A B CD M N D ′22.如图,在△ABC 中,AB=AC ,E 是AB 的中点,以点E 为圆心,EB 为半径画弧交 BC 于点 D ,连结 ED ,并延长 ED 到点 F ,使 DF =DE ,连结 FC . 求证:∠F=∠A .23.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.24.某乡镇企业中有20名工人在同一道工序生产同一零件,以下列出了20名工人在一个正常的工作日中的产量,请你列一个工人日产量的频率统计表.画出频数直方图,并指出多数工人的日产量在哪个范围内变动?220,222,219,230,228,220,236,212,227, 238,240,200,236,215,258,227,228,235, 240,21225.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?26.如图,是一个楼梯的侧面示意图.(1)如果用(4,2)来表示点D的位置,那么点A、C、H又该如何表示呢?(2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?27.如图,O是△ABC外一点,以点O为旋转中心,将△ABC逆时针方向旋转90°,作出经旋转变换后的像.O.B C28.如图所示,把方格纸上的四边形ABCD作相似变换,使所成的像是原图形的2倍.29.为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?30.把下列实数在数轴上表示,并比较它们的大小:-2 ,,3.3, π2 3.3π-<<【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.D5.B6.D7.D8.D9.D10.B二、填空题11.312. 21 13. 50 14.415.20.16.③17.1018.5319. 72°,400人20.(1)30n (2)m-x (3)448300n三、解答题21.连结O 2B ,则 O 2B ⊥BC ,∴2221122534BO O O O B =-=-=,又∵CD 为⊙O 1的切线,∴CD ⊥BC ,∴CD ∥O 2B ,∴211O B BO CD O C =, ∴342CD =,∴CD=1.5. 22.∵以点 E 为圆心,EB 为半径画弧交 BC 于点D ,∴EB=DE ,∵E 点是AB 的中点,且 AB=AC ,∴ ED=12AC .∵ DE= DF ,∴ EF=AC ,∵AB=AC ,∴∠ABC=∠ACB , ∵∵EB=DE ,∴∠EBD=∠EDB ,∴∠EDB=∠ACB ,∴EF ∥AC ,∵ EF=AC ,∴四边形AEFC 是平行四边形,∴∠.A=∠F.23.△AMD ′是正三角形.24.图略,多数工人的日产量在220~229之间25.长 40 cm ,宽 20 cm26.(1)A(0,0),C(2,2),H(8,6);(2)B ,F ,I27.略.28.图略29.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好30.2 3.3π-<<。

2023年江苏省苏州市中考数学二模试题附解析

2023年江苏省苏州市中考数学二模试题附解析

2023年江苏省苏州市中考数学二模试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中, 有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭 脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观 众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ) A .15 B .29 C .14 D .5182.如图所示,CD 是一个平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D .若AC=3,BD=6,CD=12,则tan α的值为( )A .34B .43C .54D .53 3.下列多边形一定相似的为( ) A .两个矩形B .两个菱形C .两个正方形D .两个平行四边形4.如图,在△ABC 中,AB=24,AC= 18,D 是AC 上一点,AD = 12,在AB 上取一点 E ,使A 、D 、E 三点组成的三角形与△ABC 相似,则AE 的长为( )A . 16B .l4C . 16 或 14D .16 或 95.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .55 6.下列条件中,能识别梯形ABCD 是等腰梯形的条件是 ( )A .一组对边相等B .有两个角相等C .对角线相等D .有两个角互补 7.下列说法错误的是( )A .x=1是方程x+1=2 的解B .x= -1 是不等式13x +<的一个解C .x=3 是不等式13x +<的一个解D .不等式13x +<的解有无数个8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )A .B .C .D . 9.下列几何体的左视图中不可能出现长方形的是( ) A .圆柱B .直三棱柱C .长方体D .圆锥 10.方程组2321x y x y +=⎧⎨-=⎩的解是( ) A .53x y =-⎧⎨=⎩ B .11x y =-⎧⎨=-⎩ C .11x y =⎧⎨=⎩ D .35x y =⎧⎨=-⎩ 11.下列实数中,无理数是( )A .4B .2πC .13D .12二、填空题12.如图,已知⊙O 半径为5,弦AB 长为8,点P 为弦AB 上一动点,连结OP ,则线段OP 的最小长度是 .13.扇形的圆心角是60°,半径是3cm ,则扇形的周长是 cm ,扇形的面积是 cm 2.14.某超市三月份的营业额为200万元,五月份 288万元,假设每月比上月增长的百分数相同,若设营业额平均每月的增长率为x ,可列出方程为: .15.判断命题“若a b >,则22a b >”是假命题,你举的反例是 .16.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .17.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.18.已知33y x =-,要使y x ≥,则x 的取值范围为 .19.如图,已知0C 是∠A0B 的平分线,直线DE ∥OB ,交0A 于点D ,交0C 于点E ,若OD=5 cm ,则DE= cm .20.填空:(1) 42× =72;(2) 8⨯= .22(3) ×27=7-;(7)(4)23⨯= .101021.请你写出两个在1~5之间的无理数 .三、解答题22.已知一个平行四边形可以剪开而拼成一个矩形,如图①所示,那么一个等腰梯形(如图②)是台能剪升拼成一个矩形?请画图说明.若在等腰梯形ABCD中,AD∥BC,AC=5 cm,梯形的高为4 cm,求梯形的面积.23.如图,已知四边形ABCD是等腰梯形,CD∥BA,四边形AEBC是平行四边形.求证:∠ABD=∠ABE.24.如图,AB∥DE.(1)猜测∠A,∠ACD,∠D有什么关系,并证明你的结论;(2)若点 C向右移动到线段AD 的右侧,此时∠A,∠ACD,∠D之间的关系,仍然满足(1)中的结论吗?若符合,请你证明;若不符合,请你写出正确的结论并证明(要求:画出相应的图形).25.已知方程21|28|(5)02x x y a -+--=.(1)当0y >时,求a 的取值范围;(2)当0y <时,求a 的取值范围.26.(1)你能找出几个使不等式2 2.515x -≥⋅成立的 x 的值吗?(2)x=3,5,7 能使不等式225 1.5x -⋅≥成立吗?27.甲、乙两战士各打靶5次,命中环数如下:甲:5,9,8,10,8;乙:6,10,5,10,9.求:(1)两战士平均每枪分别命多少环?(2)你认为哪一个战士发挥比较稳定.28.如图,某人从点A 出发欲横渡一条河,由于水流影响,实际上岸地点C 偏离欲到达的地点B 有140 m (AB ⊥BC ),结果他在水中实际游了500 m ,求这条河的宽度为多少米?29.如图所示的图案,此图案可由怎么样的基本图形通过平移得到?请你分析.30.求出绝对值大于 2 且小于 5 的所有整数的和.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.D5.C6.C7.C8.A9.D10.C11.B二、填空题12.313.(6)π+,32π 14.2700(1)288x +=15.如1a =,2b =-,∴a b >,而21a =,24b =,∴22a b <,即是假命题(不唯一) 16.10 17.32π18. 32x ≥19.520.(1)32;(2)92;(3)57-;(4)51021.三、解答题22.能,12 cm 223.证△ABD ≌△BAC24.(1)∠A+∠ACD+∠D=360° (2)不满足,∠A+∠D=∠ACD ;证明略25.(1)a<20;(2)a>2026.(1)能,x=2,3,4,…;(2)成立27.环;(2)甲发挥稳定(1)8x x==乙甲28.480m29.略30.。

最新江苏省苏州市中考数学第二次模拟考试试卷附解析

最新江苏省苏州市中考数学第二次模拟考试试卷附解析

江苏省苏州市中考数学第二次模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题中,是真命题的为( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形2.如果函数y=ax+b (a<0,b<O )和y=kx (k>0)的图象交于点P ,那么点P 应该位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列判断中,正确的是( )A .顶角相等的两个等腰三角形全等B .腰相等的两个等腰三角形全等C .有一边及锐角相等的两个直角三角形全等D .顶角和底边分别相等的两个等腰三角形全等4. 已知50ax by bx ay +=⎧⎨-=⎩的解是21x y =⎧⎨=⎩,则( ) A .21a b =⎧⎨=⎩ B .21a b =⎧⎨=-⎩ C .21a b =-⎧⎨=⎩ D .21a b =-⎧⎨=-⎩5.如图,在△ABC 中,已知∠ACB=90°,∠CAD 的角平分线交BC 的延长线于点E ,若∠B=50°,则∠AEB 的度数为( )A .70°B .20°C .45°D .50° 6.下列合并同类项正确的是( ) A .22523x x -= B .6713x y xy += C .2222a b a b a b -+=D .523x x -= 二、填空题7.音速表示声音在空气中传播的速度,实验测得音速与气温的一些数据如下表:(1)此表反映的是变量 随 而变化;(2)当气温为25℃时,某人看到烟花燃放6秒后才听到声响,那么此人与燃放烟花所在地约相距 m .8.在四边形ABCD 中.给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果…,那么…”的形式,写出一个你认为正确的命题 .9.写出一个以23xy=⎧⎨=⎩为解的二元一次方程组 .10.若3x y-=,则5x y-++= .11.在数轴上,在原点的左边与表示1-的点的距离是2的点所表示的数是.12.福顺路交通拥堵现象十分严重.上周末,陈新同学在福顺人行天桥处对3 000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥?供选择的答案有:A.是;(B)否;(C)无所谓.他将得到的数据处理后,画出了扇形统计图(如图).根据这个扇形统计图,可知被调查者中自觉走人行天桥的有人.13.一年期存款的年利率为 p,利息个人所得税的税率为 20%. 某人存入的本金为 a元,则到期支出时实得本利和为元.14.用计算器计算下列各题,并用图表示程序.5≈ (结果保留 4 个有效数字).程序显示(2)3131≈结果保留 3 个有效数字).程序显示(3)23≈ (结果保留 4 个有效数字).程序显示15.绝对值小于4的所有负整数的和是,积是.16.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有个黑球.三、解答题17.在△ABC 中,∠C=900,∠A=300, BD是∠B的平分线,如图所示.(1)如果AD=2,试求BD和BC的长;(2)你能猜想AB与DC的数量关系吗,请说明理由.18.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN ⊥CD,垂足分别为M、N.求证:EM=EN.19.分别用公式法和配方法解方程:2322=-xx.20.已知方程260x kx+-=的一个根是2,求它的另一个根及k的值.21.阅读下列解题过程,再回答问题:解方程:(2)(3)6x x-+=.解:26x-=,36x+=,得18x=,23x=.请你判断上述解题过程是否正确?.若不正确,请写出正确的解题过程.22.如图,已知△ABC的三个顶点分别是A(-1,4),B(-4,-l.5),C(1,1).(1)小明在画好图后,发现BC边上有一点D(-1,0),请你帮助小明计算△ABC的面积;(2)小王将△ABC的图形向左平移1个单位,得到△A′B′C′,发现原点0在B′C′边上,请你帮助小王写出△A′B′C′的三个顶点的坐标并计算△A′B′C′的面积.23.设4个连续正整数的和s满足30<s<37,求这些连续正整数中的最小的数和最大的数. 24.如图,画出△ABO绕点O逆时针旋转90°后的图形.25.当y=-1时,你能确定代数式[(x+2y)2-(x+y)(x-y)-5y2]÷(2x)的值吗?如果可以的话,请写出结果.26.如图,在△ABC中,∠A=110°,∠B=35°,请你应用变换的方法得到一个三角形使它与△ABC全等,且要求得到的三角形与原△ABC组成一个四边形.请角两种变换方法解决上述问题.27.在方程38x ay-=中,若32xy=⎧⎨=⎩是它的一个解,求a的值.12a=28.2004年7月至lO月间哈尔滨市和南京市的月平均气温如下表:月份78910哈尔滨(℃)2321146南京(℃)27292418(1)两市平均气温谁高?两市的气温哪个月最高?哪个月最低?(2)两市中哪个市的气温下降更快?29.不改变分式的值,把下列各式的分子与分母中的各项系数化为整数:(1)0.030.20.070.5x yx y-+;(2)23125m nm n+-30.某日小明在一条东西方向的公路上跑步;他从A地出发,每隔 10 分钟记录下自己的跑步情况( 向东为正方向,单位:米):- l008, 1100 , -976 , 1010 , -827 , 9461小时后他停下来,此时他在A地的什么方向?离A地有多远?这 1小时内小明共跑了多远?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.A5.B6.C二、填空题7.(1)音速,气温;(2)20768.略9.答案不唯一,如521x yx y+=⎧⎨-=⎩等10.211.-312.165913.125ap a +14. 略15.-6,-616.48三、解答题17.(1)BD=2,BC=3; (2)AB=32DC .18.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,在Rt △BME 和Rt △CNE 中,BME CNE B CBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △BME ≌ Rt △CNE ,∴EM =EN . 19.2,2121=-=x x . 20.1k =,3x =-21.错误,正确答案为14x =-,23x =,22.(1)10;(2)1023.设最小的正整数为x ,则30(1)(2)(3)37x x x x <++++++<,∴3164x <<∵x为正整数,∴7x=.∴这四个数中最小的整数是7,最大的整数是10.24.略25.-2.26.略.27.12a=28.(1)平均气温南京高.哈尔滨7月份最高,10月份最低;南京8月份最高,10月份最低.(2)两市中哈尔滨市的气温下降更快29.(1)320750x yx y-+;(2)150330m l nm n+-30.他在A地的东面,离A地245 米远,共跑了 5867 米。

苏教版中考二模考试《数学试卷》含答案解析

苏教版中考二模考试《数学试卷》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.1. 2-的值等于()A. 2B.12- C. 12D. ﹣22. 已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A. 8.9×10﹣5B. 8.9×10﹣4C. 8.9×10﹣3D. 8.9×10﹣23. 化简(﹣a)2a3所得的结果是()A. a5B. ﹣a5C. a6D. ﹣a64. 如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的实数是()A. 5+1B. 5-1C. 5D. 1-55. 已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A. 一、二B. 二、三C. 三、四D. 一、四6. 如图,在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A. 1B. 51357. 一元二次方程22310x x++=的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定8. 已知a≠0,下列计算正确的是()A. a 2+a 3=a 5B. a 2•a 3=a 6C. a 3÷a 2=aD. (a 2)3=a 59. 如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为DG ,若AB =1,BC =2,则阴影部分的面积为( )A. 23π+B. 12π+C. 2πD. 13π+ 10. 如图,将正六边形ABCDEF 放入平面直角坐标系后,若点A 、B 、E 的坐标分别为(a ,b )、(3,1)、(﹣a ,b ),则点D 的坐标为( )A. (1,3)B. (3,﹣1)C. (﹣1,﹣3)D. (﹣3,1) 二、填空题:本大题共8小题,每小题3分,共24分,不需写出解答过程,请把最后结果填在题中横线上.11. 分解因式:2242a a ++=__________________.12. 已知一组数据2,6,5,2,4,则这组数据的中位数是_____.13. 若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为_______.14. 如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC=50°,则∠CAD=________ .15. 如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.16. 如图,A (a ,b )、B (1,4)(a >1)是反比例函数y =k x (x >0)图像上两点,过A 、B 分别作x 轴、y 轴的垂线,垂足分别为C 、D 、E 、F ,AE 、BD 交于点G .则四边形ACDG 的面积随着a 的增大而_________.(填“减小”、“不变”或“增大”)17. 二次函数y=a (x ﹣b )2+c (a <0)的图象经过点(1,1)和(3,3),则b 的取值范围是________. 18. 如图,在△ABC 中,∠C=90°,AC =BC =1,P 为△ABC 内一个动点,∠PAB=∠PBC,则CP 的最小值为_________.三、解答题(共10小题)19. 计算:021120172(3)()4----. 20. 解不等式组513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上. 21. 先化简,再求值:(b b a b a b ++-) ÷ 22a ab -.其中2017,2a b == 22. 一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出2个球,2个都是红球.23. 某公司在某市五个区投放共享单车供市民使用,投放量分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.24. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D'处,折痕为EF.(1)求证:ABE AD F'≌;(2)连结CF,判断四边形AECF是什么特殊四边形?证明你的结论.25. 如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于点A、B,AB=25,(1)求k的值;(2)若反比例函数y=kx的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.26. 如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE 长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.(1)求证:AC 是⊙E 的切线;(2)若AF =4,CG =5,①求⊙E 的半径;②若Rt △ABC 的内切圆圆心为I ,则IE= .27. 如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.28. 如图,A (-5,0),B (-3,0),点C 在y 轴的正半轴上,∠CBO=45°,CD ∥AB .∠CDA=90°.点P 从点Q (4,0)出发,沿x 轴向左以每秒1个单位长度的速度运动,运动时时间t 秒.(1)求点C 的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内. 1. 2-的值等于( )A. 2B. 12-C. 12D. ﹣2【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2. 已知某种纸一张的厚度约为0.0089cm ,用科学记数法表示这个数为( )A. 8.9×10﹣5B. 8.9×10﹣4C. 8.9×10﹣3D. 8.9×10﹣2【答案】C【解析】试题解析:0.0089=8.9×10-3. 故选C. 考点:科学记数法—表示较小的数.3. 化简(﹣a )2a 3所得的结果是( )A. a 5B. ﹣a 5C. a 6D. ﹣a 6 【答案】A【解析】【分析】 根据同底数幂的乘法法则进行计算即可.【详解】原式235.a a a =⋅=故选A.【点睛】本题主要考查同底数幂的乘法,熟记法则是解题的关键.4. 如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( )A. 5 1B. 5 1C. 5D. 15【答案】B【解析】试题分析:首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.解:∵AD长为2,AB长为1,∴AC2222+=+=AD DC215∵A点表示−1,∴E5,故选B.5. 已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A. 一、二B. 二、三C. 三、四D. 一、四【答案】D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.6. 如图,在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A. 1B. 5C. 13D. 5【答案】D【解析】如图,以点A为圆心,AC为半径作⊙A,当点C在⊙A上移动时,∠B的大小在发生变化,观察可得当BC 和⊙A相切时,∠B最大,此时∠ACB=90°,∵AB=3,AC=2,∠ACB=90°,∴BC=22-=.325故选D.7. 一元二次方程2++=的根的情况是()x x2310A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】A【解析】-⨯⨯=>,∴方程有两个不相等的实数根.故选A.试题分析:∵△=2342110考点:根的判别式.8. 已知a≠0,下列计算正确的是()A. a2+a3=a5B. a2•a3=a6C. a3÷a2=aD. (a2)3=a5【答案】C【解析】【分析】结合选项分别进行同底数幂的乘法、同底数幂的除法、幂的乘方的运算,选出正确答案.【详解】A 、a 2和a 3不是同类项,不能合并,故本选项错误;B 、a 2•a 3=a 5,原式计算错误,故本选项错误;C 、a 3÷a 2=a ,计算正确,故本选项正确;D 、(a 2)3=a 6,原式计算错误,故本选项错误.故选:C .【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方等运算,掌握运算法则是解答本题的关键.9. 如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为DG ,若AB =1,BC =2,则阴影部分的面积为( )A. 23π+B. 12π+C. 2πD. 13π+【答案】A【解析】由旋转得:AG=AD,AE=AB, ∠AEF=∠B,∵四边形ABCD 是矩形,∴AD=BC=2∠B=90°, ∴∠AEF=90°∴AH=AG=2∴AH=2AE∴∠AHE=30°22213-=, ∵四边形AEFG 是矩形,∴EF∥AG,∴∠GAH=∠AHE=30°∴23021=+133602Sπ⨯⨯⨯阴影3=+3π故选A点睛;不规则图形面积的求法一般用割补法或转化法来求,这道题就是把阴影部分分成一个扇形和一个规则三角形,利用相应的面积公式即可求解.10. 如图,将正六边形ABCDEF放入平面直角坐标系后,若点A、B、E的坐标分别为(a,b)、(3,1)、(﹣a,b),则点D的坐标为()A. (1,3)B. (3,﹣1)C. (﹣1,﹣3)D. (﹣3,1)【答案】D【解析】【详解】∵A(a,b),E(-a,b),∴A,E关于y轴对称∵六边形ABCDEF是正六边形,∴y轴过C,F∴B,D关于y轴对称∵B(3,1)∴D(-3,1)故选D.【点睛】解决点的坐标问题关键在于利用数形结合思想,认真观察题中的条件确定坐标轴的位置.二、填空题:本大题共8小题,每小题3分,共24分,不需写出解答过程,请把最后结果填在题中横线上.11. 分解因式:2242a a++=__________________.【答案】22(1)a +【解析】【分析】原式提取2,再利用完全平方公式分解即可.【详解】原式()()22=221=21a a a +++ 【点睛】先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法.12. 已知一组数据2,6,5,2,4,则这组数据的中位数是_____.【答案】4【解析】把数据从小到大排列:2,2,4,5,6中间的数是4,∴中位数是4故答案为:413. 若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为_______.【答案】5【解析】∵关于x 的方程x 2+mx +5=0有一个根为1,∴设另一根为m,可得:15m ⨯= ,解得:m=5.故答案为:5.14. 如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC=50°,则∠CAD=________ .【答案】40°【解析】连接CD,则∠ADC =∠ABC =50°, ∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠CAD +∠ADC =90°,∴∠CAD =90°-∠ADC =90°-50°=40°,故答案为: 40°.15. 如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.【答案】16【解析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.16. 如图,A (a ,b )、B (1,4)(a >1)是反比例函数y =k x(x >0)图像上两点,过A 、B 分别作x 轴、y 轴的垂线,垂足分别为C 、D 、E 、F ,AE 、BD 交于点G .则四边形ACDG 的面积随着a 的增大而_________.(填“减小”、“不变”或“增大”)【答案】增大【解析】DC=a −1,AC=b ,则ACDG S 四边形=AC ⋅DC=(a −1)b=ab −b.∵B(1,4)、A(a,b)在函数y=k x(x>0)的图象上, ∴ab=k=4(常数).∴ACDG S 四边形=AC ⋅DC=4−n ,∵当a>1时,b 随a 的增大而减小,∴ACDG S 四边形=4−a 随a 的增大而增大.17. 二次函数y=a (x ﹣b )2+c (a <0)的图象经过点(1,1)和(3,3),则b 的取值范围是________.【答案】b >2【解析】∵二次函数y =a(x -b)2+c (a <0)的图像经过点(1,1)和(3,3)∴2(1)1a b c -+=2(3)3a b c -+=∴22(3)(1)2a b b ⎡⎤---=⎣⎦2(42)2a b -=(42)1a b -=∵a<0∴4-2b<0b>218. 如图,在△ABC 中,∠C=90°,AC =BC =1,P 为△ABC 内一个动点,∠PAB=∠PBC,则CP 的最小值为_________.【答案】2-1【解析】【详解】如图所示:在△ABC 中,=90C ∠︒,AC=BC=145CAB CBA ∴∠=∠=︒又∵∠PAB=∠PBC45PAB PBA ∴∠+∠=︒∴∠APB=135°∴点P 在以AB 为弦的⊙O 上,∵∠APB=135°∴∠AOB=90°45OAB OBA ∴∠=∠=︒90CAO ∴∠=︒∴四边形ACBO 为矩形OA OB =∴四边形AOBC 为正方形1OA OB ∴==12OP OC ∴==,当点O 、P 、C 在一条直线上时,PC 有最小值 ∴PC 的最小值=OC-OP=2-1.故答案为:2-1. 三、解答题(共10小题)19. 计算:021120172(3)()4----.【答案】-2【解析】分析:利用零次幂的性质,绝对值,二次根式的性质,负整指数幂的性质,依次计算即可.详解:()12012017234-⎛⎫--- ⎪⎝⎭ =1-2+3-4=-2点睛:此题主要考查了实数的运算,关键是熟记零次幂的性质,绝对值,二次根式的性质,负整指数幂的性质,灵活计算即可.20. 解不等式组513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上. 【答案】﹣1≤x <2【解析】 分析:分别解不等式,找出解集的公共部分即可.详解:()513121511,32x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 解不等式①,得 2x <;解不等式②,得1x ≥-; 把不等式①和②的解集在数轴上表示出来;原不等式组的解集为12x .-≤< 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可. 21. 先化简,再求值:(b b a b a b ++-) ÷ 22a a b-.其中2017,2a b == 【答案】2b ,2【解析】 【详解】分析:根据分式的混合运算的顺序,先把括号内的式子通分后再加减,然后再算除法,化简后再代入求值.详解:原式=()()()()b a b a b b a b a b a b a a b a+-+-⋅++- 22()()b a b b a b a a ab b ab b a -+=+-++= =2b当2017,2a b ===2点睛:本考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22. 一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出2个球,2个都是红球.【答案】(1)12;(2)16【解析】试题分析:(1)直接根据概率的概念求解;(2)根据题意展示所有6种等可能的结果,其中摸出两个球恰好是2个红球占1种,然后根据概率的概念计算即可.试题解析:(1)搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是红球”(记为事件A)的结果有2种,所以P(A)=24=12.(2)搅匀后从中任意摸出2个球,所有可能出现的结果有:(红1,红2)、(红1,黄)、(红2,黄)、(红1,白)、(红2,白)、(白,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是红球”(记为事件B)的结果只有1种,所以P(B)=16.点睛:用列举法计算概率时,要注意求出事件发生情况的数目及其中一个事件发生的数目,而且每一种情况发生的可能性都相同,需要一次操作即可完成的事件,用概率公式来求解;需要两次或两次以上的操作完成的事件,先用列表法或画树状图法列举所有等可能的情况,再利用概率计算公式求解.23. 某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.【答案】(1)4;(2)36 ;(3)C 区共享单车的使用量为0.7万辆,图见解析.【解析】试题分析:(1)根据D 区投放量除以占的百分比,求出总量数;(2)先求出C 区所占的百分比,再求出B 区所占的百分比,最后乘以360°;(3)求出共享单车的使用量,减去其余各区的就可求出C 区共享单车的使用量.试题解析:(1)125%4÷=(2)0.8125%20%25%10%4----=,10%36036⨯︒=︒ (3)4×85%-0.8-0.3-0.9-0.7=0.7(万辆)答:C 区共享单车的使用量为0.7万辆. 24. 将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【答案】(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.25. 如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于点A、B,AB=25,(1)求k的值;(2)若反比例函数y=kx的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.【答案】(1)k=2(2)当△ABC为直角三角形,点C的坐标为(﹣4,﹣12)、(4,12)、(﹣2,﹣1)或(2,1)【解析】分析:(1)过点A作AD⊥x轴,垂足为D,由点A、B的对称性可求出OA的值,根据点在直线上,设点A 的坐标为(a,2a),在Rt△OAD中,通过勾股定理即可求出A的坐标,由点A的坐标利用待定系数法即可求出结论;(2)由点A、B的对称性,结合点A的坐标求出点B的坐标,根据点C在反比例函数上,设出点C的坐标为(n,2n),分△ABC三个角分别为直角来考虑,利用“两直线垂直斜率之积为-1(斜率都存在)”求出点C的坐标.详解:(1)过点A作AD⊥x轴,垂足为D,如图1所示.由题意可知点A与点B关于点O中心对称,且55设点A的坐标为(a,2a),在Rt△OAD中,∠ADO=90°,由勾股定理得:a2+(2a)2=52,解得:a=1,∴点A的坐标为(1,2).把A(1,2)代入y=kx中得:2=1k,解得:k=2.(2)∵点A的坐标为(1,2),点A、B关于原点O中心对称,∴点B的坐标为(﹣1,﹣2).设点C的坐标为(n,2n),△ABC为直角三角形分三种情况:①∠ABC=90°,则有AB⊥BC,2222111nn----⋅----=﹣1,即n2+5n+4,解得:n1=﹣4,n2=﹣1(舍去),此时点C的坐标为(﹣4,﹣12);②∠BAC=90°,则有BA⊥AC,2222111nn---⋅---=﹣1,即n2﹣5n+4=0,解得:n3=4,n4=1(舍去),此时点C的坐标为(4,12);③∠ACB=90°,则有AC⊥BC,222211n nn n---⋅---=﹣1,即n2=4,解得:n5=﹣2,n6=2,此时点C的坐标为(﹣2,﹣1)或(2,1).综上所述:当△ABC为直角三角形,点C的坐标为(﹣4,﹣12)、(4,12)、(﹣2,﹣1)或(2,1).点睛:此题考查了正比列函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.26. 如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE 长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.(1)求证:AC是⊙E的切线;(2)若AF=4,CG=5,①求⊙E的半径;②若Rt△ABC的内切圆圆心为I,则IE=.【答案】(1)证明见解析;(2)①⊙E的半径为20;②IE130【解析】【分析】(1)证明△CDE ∽△CAB ,得∠EDC=∠A=90°,所以AC 是⊙E 的切线;(2)①如图1,作辅助线,构建矩形AHED ,设⊙E 的半径为r ,表示BH 和EC 的长,证明△BHE ∽△EDC , 列比例式代入r 可得结论;②如图2,作辅助线,构建直角△IME ,分别求IM 和ME 的值,利用勾股定理可求IE 的长.【详解】(1)∵CD•BC=AC•CE , ∴=CD CE AC CB, ∵∠DCE=∠ACB ,∴△CDE ∽△CAB ,∴∠EDC=∠A=90°, ∴ED ⊥AC ,∵点D 在⊙E 上,∴AC 是⊙E 的切线;(2)①如图1,过E 作EH ⊥AB 于H ,∴BH=FH ,∵∠A=∠AHE=∠ADE=90°, ∴四边形AHED 是矩形,∴ED=AH ,ED ∥AB ,∴∠B=∠DEC ,设⊙E 的半径为r ,则EB=ED=EG=r ,∴BH=FH=AH-AF=DE-AF=r-4,EC=EG+CG=r+5,在△BHE 和△EDC 中,∵∠B=∠DEC ,∠BHE=∠EDC=90°, ∴△BHE ∽△EDC ,∴BH BE ED EC =,即4=5r r r r -+, ∴r=20,∴⊙E 的半径为20;②如图2,过I 作IM ⊥BC 于M ,过I 作IJ ⊥AB 于J ,由①得:FJ=BJ=r-4=20-4=16,AB=AF+2BJ=4+2×16=36, BC=2r+5=2×20+5=45,∴AC=224536-=27,∵I 是Rt △ABC 的内心,∴IM=+-36+27-4522AB AC BC ==9, ∴AJ=IM=9,∴BJ=BM=36-9=27,∴EM=27-20=7,在Rt △IME 中,由勾股定理得:IE=2222=97=130IM EM ++.27. 如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.【答案】(1)213442y x x =--;(2)E 的坐标为(825-,5-)、(0,﹣4)、(112,54-);(3)28924,(173,16136-). 【解析】试题分析:(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC 的解析式为142y x =-,则可设E (m ,142m -),然后分三种情况讨论即可求得; (3)利用△PBD 的面积BOC PFD S S S S ∆∆=--梯形即可求得.试题解析:(1)∵二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、C (8,0)两点, ∴4240{64840a b a b --=+-=,解得:14{32a b ==-,∴该二次函数的解析式为213442y x x =--; (2)由二次函数213442y x x =--可知对称轴x=3,∴D (3,0),∵C (8,0),∴CD=5,由二次函数213442y x x =--可知B (0,﹣4),设直线BC 的解析式为y kx b =+,∴80{4k b b +==-,解得:1{24k b ==-,∴直线BC 的解析式为142y x =-,设E (m ,142m -), 当DC=CE 时,22221(8)(4)2ED m m CD =-+-=,即2221(8)(4)52m m -+-=,解得1825m =-,2825m =+(舍去),∴E (825-,5-); 当DC=DE 时,22221(3)(4)2ED m m CD =-+-=,即2221(3)(4)52m m -+-=,解得30m =,48m =(舍去),∴E (0,﹣4);当EC=DE 时,222211(8)(4)(3)(4)22m m m m -+-=-+-,解得5m =112,∴E (112,54-). 综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(825-,5-)、(0,﹣4)、(112,54-); (3)过点P 作y 轴的平行线交x 轴于点F ,∵P 点的横坐标为m ,∴P 点的纵坐标为:, ∵△PBD 的面积BOD PFD S S S S ∆∆=--梯形=221131131[4(4)](3)[(4)]342422422m m m m m m ---------⨯⨯=231784m m -+ =2317289()8324m --+, ∴当m=173时,△PBD 的最大面积为28924,∴点P 的坐标为(173,16136-). 考点:二次函数综合题.28. 如图,A (-5,0),B (-3,0),点C 在y 轴的正半轴上,∠CBO=45°,CD ∥AB .∠CDA=90°.点P 从点Q (4,0)出发,沿x 轴向左以每秒1个单位长度的速度运动,运动时时间t 秒.(1)求点C 的坐标;(2)当∠BCP=15°时,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.【答案】(1)C (0,3);(2)t 的值为33;(3)t 的值为1或4或5.6.【解析】试题分析:(1)由∠CBO=45°,∠BOC 为直角,得到△BOC 为等腰直角三角形,又OB=3,利用等腰直角三角形AOB 的性质知OC=OB=3,然后由点C 在y 轴的正半轴可以确定点C 的坐标;(2)需要对点P 的位置进行分类讨论:①当点P 在点B 右侧时,如图2所示,由∠BCO=45°,用∠BCO-∠BCP 求出∠PCO 为30°,又OC=3,在Rt △POC 中,利用锐角三角函数定义及特殊角的三角函数值求出OP 的长,由PQ=OQ+OP 求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t ;②当点P 在点B 左侧时,如图3所示,用∠BCO+∠BCP 求出∠PCO 为60°,又OC=3,在Rt △POC 中,利用锐角三角函数定义及特殊角的三角函数值求出OP 的长,由PQ=OQ+OP 求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t ;(3)当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,分三种情况考虑:①当⊙P 与BC 边相切时,利用切线的性质得到BC 垂直于CP ,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP 为等腰直角三角形,可得出OP=OC ,由OC=3,得到OP=3,用OQ-OP 求出P运动的路程,即可得出此时的时间t;②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t;③当⊙P与AD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.综上,得到所有满足题意的时间t的值.试题解析::(1)∵∠BCO=∠CBO=45°,∴OC=OB=3,又∵点C在y轴的正半轴上,∴点C的坐标为(0,3);(2)分两种情况考虑:①当点P在点B右侧时,如图2,若∠BCP=15°,得∠PCO=30°,故PO=CO•tan30°=3,此时t=4+3;②当点P在点B左侧时,如图3,由∠BCP=15°,得∠PCO=60°,故OP=COtan60°3此时,3,∴t的值为33(3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况:①当⊙P与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP=3,此时t=1;②当⊙P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4;③当⊙P与AD相切时,由题意,得∠DAO=90°,∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,解得:t=5.6,∴t的值为1或4或5.6.。

江苏省苏州市中考数学模拟试卷(二)含答案解析

江苏省苏州市中考数学模拟试卷(二)含答案解析

江苏省苏州市中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2|B.20C.2﹣1D.2.下列图形是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D. +=﹣14.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④5.函数y=中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x>﹣1 D.x<﹣16.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.7.在数轴上表示±5的两点以及它们之间的所有整数点中,任意取一点P,则P点表示的数大于3的概率是()A.B.C.D.8.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<39.如图,在平面直角坐标系中,x轴上一点A从点(﹣3,0)出发沿x轴向右平移,当以A为圆心,半径为1的圆与函数y=x的图象相切时,点A的坐标变为()A.(﹣2,0)B.(﹣,0)或(,0)C.(﹣,0)D.(﹣2,0)或(2,0)10.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B. +1 C.D.﹣1二、填空题(本大题共8小题,每小题3分,共24分)11.(﹣2)2+(﹣2)﹣2=.12.计算3.8×107﹣3.7×107,结果用科学记数法表示为.13.分解因式:2x2﹣4xy+2y2=.14.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表:年龄组13岁14岁15岁16岁参赛人数 5 19 12 14则全体参赛选手年龄的中位数是岁.15.如图,在正六边形ABCDEF中,连接AE,则tan∠1=.16.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.17.如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=.18.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.三、解答题(本大题共10小题,共76分)19.计算:|﹣5|﹣(﹣3)0+6×(﹣)+(﹣1)2.20.计算.21.解不等式组:22.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.23.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.24.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)25.如图,每个网格都是边长为1个单位的小正方形,△ABC的每个顶点都在网格的格点上,且∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△AB1C1;(2)试在图中建立直角坐标系,使x轴∥AC,且点B的坐标为(﹣3,5);(3)在(1)与(2)的基础上,若点P、Q是x轴上两点(点P在点Q左侧),PQ长为2个单位,则当点P的坐标为时,AP+PQ+QB1最小,最小值是个单位.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.27.如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是,点C的坐标是;(2)当t=秒或秒时,MN=AC;(3)设△OMN的面积为S,求S与t的函数关系式;(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.28.如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.江苏省苏州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2|B.20C.2﹣1D.【考点】实数大小比较;零指数幂;负整数指数幂.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.【解答】解:|﹣2|=2,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.下列图形是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,绕旋转中心旋转180°与原图形重合,可知A、C、D都不是中心对称图形,B是中心对称图形.故选B.【点评】本题主要考查中心对称图形的概念,掌握掌握中心对称图形的概念是解题的关键,注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.3.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D. +=﹣1【考点】分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.【专题】计算题.【分析】A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:A、原式=8a6,错误;B、原式=﹣3a3b5,错误;C、原式=,错误;D、原式===﹣1,正确;故选D.【点评】此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.4.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.5.函数y=中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x>﹣1 D.x<﹣1【考点】函数自变量的取值范围.【专题】函数思想.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故自变量x的取值范围是x≥﹣1.故选A.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.【点评】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.7.在数轴上表示±5的两点以及它们之间的所有整数点中,任意取一点P,则P点表示的数大于3的概率是()A.B.C.D.【考点】概率公式;数轴.【专题】计算题.【分析】列举出所有情况,看P点表示的数大于3的情况数占总情况数的多少即可.【解答】解:在数轴上表示±5的两点以及它们之间的所有整数点共有5,4,3,2,1,0,﹣1,﹣2,﹣3,﹣5,﹣5共11个点,只有4,5大于3,故概率为.故选D.【点评】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.8.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<3【考点】一次函数与一元一次不等式.【分析】根据函数图象知:一次函数过点(3,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣4)﹣2b>0中进行求解.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=﹣3k.将b=﹣3k代入k(x﹣4)﹣2b>0,得k(x﹣4)﹣2×(﹣3k)>0,去括号得:kx﹣4k+6k>0,移项、合并同类项得:kx>﹣2k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<﹣2.故选B.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.如图,在平面直角坐标系中,x轴上一点A从点(﹣3,0)出发沿x轴向右平移,当以A为圆心,半径为1的圆与函数y=x的图象相切时,点A的坐标变为()A.(﹣2,0)B.(﹣,0)或(,0)C.(﹣,0)D.(﹣2,0)或(2,0)【考点】直线与圆的位置关系;一次函数图象上点的坐标特征.【专题】分类讨论.【分析】当以A为圆心,半径为1的圆与函数y=x的图象相切时,圆心A到直线的距离为圆的半径,有因为直线y=x和坐标轴的夹角为30°,利用勾股定理求出AO的长,进而求出点A的坐标.【解答】解:①当圆A在x轴的负半轴和直线y=x相切时,由题意得,直线与x轴的交点为30°,点A到直线的距离为1,则OA=2,点A的坐标为(﹣2,0);②当圆A在x轴的正半轴和直线y=x相切时,由①得,点A的坐标为(2,0);故选:D.【点评】本题考综合性的考查了圆的切线性质以及勾股定理和一次函数相结合的题目,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B. +1 C.D.﹣1【考点】旋转的性质;四点共圆;线段的性质:两点之间线段最短;等边三角形的性质;勾股定理;相似三角形的判定与性质.【专题】压轴题.【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M 在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(﹣2)2+(﹣2)﹣2=.【考点】负整数指数幂.【分析】根据乘方的意义和负指数的意义解答即可.【解答】解:原式=,故答案为:.【点评】本题主要考查的是负指数的意义:负指数具有倒数的意义,即(a≠0).12.计算3.8×107﹣3.7×107,结果用科学记数法表示为1×106.【考点】科学记数法—表示较大的数.【分析】先根据乘法分配律计算,再根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3.8×107﹣3.7×107=(3.8﹣3.7)×107﹣3.7=0.1×107=1×106.故答案为:1×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律进行计算.13.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2,=2(x2﹣2xy+y2),=2(x﹣y)2.故答案为:2(x﹣y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用完全平方公式进行二次因式分解,分解因式要彻底.14.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表:年龄组13岁14岁15岁16岁参赛人数 5 19 12 14则全体参赛选手年龄的中位数是15岁.【考点】中位数.【分析】根据中位数的概念求解.【解答】解:参赛的人数为:5+19+12+14=50(人),则第25位和第26位年龄的平均数即为全体参赛选手年龄的中位数,则中位数为:=15.故答案为:15.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.如图,在正六边形ABCDEF中,连接AE,则tan∠1=.【考点】多边形内角与外角;等腰三角形的性质;特殊角的三角函数值.【分析】先求出正六边形内角的度数,根据AF=EF,得到∠1=∠AEF,利用三角形内角和为180°,求出∠1的度数,即可解答.【解答】解:正六边形内角的度数为:(6﹣2)×180°÷6=120°,∴∠F=120°,∵AF=EF,∴∠1=∠AEF=(180°﹣∠F)÷2=30°,∴tan∠1=.故答案为:.【点评】本题考查了多边形的内角与外角,解决本题的关键是明确正六边形的每条边相等,每个角相等.16.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为4.【考点】反比例函数综合题.【专题】代数几何综合题.【分析】设OM的长度为a,利用反比例函数解析式表示出AM的长度,再求出OC的长度,然后利用三角形的面积公式列式计算恰好只剩下k,然后计算即可得解.【解答】解:设OM=a,∵点A在反比例函数y=,∴AM=,∵OM=MN=NC,∴OC=3a,∴S△AOC=•OC•AM=×3a×=k=6,解得k=4.故答案为:4.【点评】本题综合考查了反比例函数与三角形的面积,根据反比例函数的特点,用OM的长度表示出AM、OC的长度,相乘恰好只剩下k是解题的关键,本题设计巧妙,是不错的好题.17.如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=4.【考点】翻折变换(折叠问题).【分析】由折叠的性质得到B′E=BE=5,BF=B′F,∠BFE═∠EFB′,∠C′FD=∠DFC,连接BB′,根据线段垂直平分线的性质得到EF⊥BB′,通过三角形全等可证得CF=AB′=4.【解答】解:由题意得:B′E=BE=5,BF=B′F,∠BFE═∠EFB′,∠C′FD=∠DFC,∴∠EFD=90°,∴∠3+∠2=90°,连接BB′,∴EF⊥BB′,∴∠1+∠3=90°,∴∠1=∠2,∵AE=3,四边形ABCD是矩形,∴∠A=∠C=90°,AD∥BC,∴∠AB′B=∠1,AB′==4,∴∠AB′B=∠2,∵CD=AB=8,在△ABB′与△CDF中,,∴△ABB′≌△CDF(AAS),∴CF=AB′=4.【点评】此题考查了折叠的性质,矩形的性质,等边三角形的判定与性质以及直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.18.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款838或910元.【考点】分段函数.【分析】根据题意知付款480元时,其实际标价为为480或600元,付款520元,实际标价为650元,求出一次购买标价1130元或1250元的商品应付款即可.【解答】解:由题意知付款480元,实际标价为480或480×=600元,付款520元,实际标价为520×=650元,如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130﹣800)×0.6=838元.如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250﹣800)×0.6=910元.故答案为:838或910.【点评】本小题主要考查函数模型的选择与应用,考查函数的思想.属于基础题.三、解答题(本大题共10小题,共76分)19.计算:|﹣5|﹣(﹣3)0+6×(﹣)+(﹣1)2.【考点】实数的运算;零指数幂.【专题】计算题.【分析】分别运算绝对值、零指数幂、及有理数的混合运算,最后合并即可得出答案.【解答】解:原式=5﹣1+(2﹣3)+1=4.【点评】此题考查了实数的运算及有理数的混合运算,注意掌握零指数幂的运算及有理数的混合运算法则,一定要细心解答.20.计算.【考点】分式的混合运算.【分析】先算括号里面的,再算除法即可.【解答】解:原式=÷=•=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.21.解不等式组:【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集为﹣1≤x<3.【解答】解:由①得2x+5≤3x+6,即x≥﹣1;由②得3(x﹣1)<2x,3x﹣3<2x,即x<3;由以上可得﹣1≤x<3.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【考点】列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.【解答】解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.23.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB ∥CD,可得一对内错角相等,则可证.(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB,∴△ABF∽△CEB;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AB平行且等于CD,∴△DEF∽△CEB,△DEF∽△ABF,∵DE=CD,∴=()2=, =()2=,∵S △DEF =2,∴S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE ﹣S △DEF =16,∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟悉相似三角形的性质和判定是解决问题的关键.24.如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【考点】解直角三角形;正方形的性质;相似三角形的判定与性质.【专题】几何综合题.【分析】作BE ⊥l 于点E ,DF ⊥l 于点F ,求∠ADF 的度数,在Rt △ABE 中,可以求得AB 的值,在Rt △ADF 中,可以求得AD 的值,即可计算矩形ABCD 的周长,即可解题.【解答】解:作BE ⊥l 于点E ,DF ⊥l 于点F .根据题意,得BE=24mm ,DF=48mm .在Rt △ABE 中,sin ,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.【点评】本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.25.如图,每个网格都是边长为1个单位的小正方形,△ABC的每个顶点都在网格的格点上,且∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△AB1C1;(2)试在图中建立直角坐标系,使x轴∥AC,且点B的坐标为(﹣3,5);(3)在(1)与(2)的基础上,若点P、Q是x轴上两点(点P在点Q左侧),PQ长为2个单位,则当点P的坐标为(,0)时,AP+PQ+QB1最小,最小值是2+个单位.【考点】作图-旋转变换;轴对称-最短路线问题.【分析】(1)根据旋转的性质,即可作出图形;(2)由使x轴∥AC,且点B的坐标为(﹣3,5),即可作出平面直角坐标系;(3)将点A向右平移2个单位到点A1,然后作点A1关于x轴的对称点A2,连接B1A2,交x轴于点Q,然后求得直线A2B1的解析式,即可求得点Q的坐标,继而求得答案.【解答】解:(1)如图1:(2)如图1:(3)将点A向右平移2个单位到点A1,然后作点A1关于x轴的对称点A2,连接B1A2,交x轴于点Q,(根据两点之间线段确定点Q的坐标)根据题意得点A2的坐标为:(2,﹣1),点B1的坐标为:(4,4),设直线A2B1的解析式为:y=kx+b,,解得:,∴直线A2B1的解析式为:y=x﹣6,∴点Q的坐标为:(,0),∵PQ=2,∴点P坐标:(,0);∴AP==,B1Q==,∴最小值:2+.故答案为:(,0),2+.【点评】此题考查了旋转的性质以及最短路径问题.注意找到点P与Q的位置是关键.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【考点】切线的性质;扇形面积的计算.【专题】证明题.【分析】(1)连接OE,如图,根据切线的性质由CD与⊙O相切得到OD⊥CD,而AD⊥CD,则OE∥AD,所以∠DAE=∠AEO,由于∠AEO=∠OAE,所以∠OAE=∠DAE;(2)根据圆周角定理由AB是直径得到∠AEB=90°,由于∠ABE=60°,则∠EAB=30°,根据含30度的直角三角形三边的关系,在Rt△ABE中,计算出BE=AB=2,AE=BE=2;在Rt△ADE中,∠DAE=∠BAE=30°,计算出DE=AE=,AD=DE=3;②先计算出∠AOE=120°,然后根据扇形面积公式和阴影部分的面积=S扇形AOE ﹣S△AOE=S扇形AOE﹣S△ABE进行计算.【解答】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,BE=AB=×4=2,AE=BE=2,在Rt△ADE中,∠DAE=∠BAE=30°,∴DE=AE=,∴AD=DE=×=3;②∵OA=OB,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S扇形AOE﹣S△AOE=S扇形AOE﹣S△ABE=﹣••2•2=π﹣.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心.也考查了扇形的面积公式和含30度的直角三角形三边的关系.27.如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是(4,0),点C的坐标是(0,3);(2)当t=2秒或6秒时,MN=AC;(3)设△OMN的面积为S,求S与t的函数关系式;(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)根据B点的坐标即可求出A、C的坐标.(2)当MN=AC时,有两种情况,①MN是△OAC的中位线,此时OM=OA=2,因此t=2;②当MN是△ABC的中位线时,OM=OA=6,因此t=6;(3)本题要分类进行讨论:①当直线m在AC下方或与AC重合时,即当0<t≤4时,可根据△OMN∽△OAC,用两三角形的相似比求出面积比,即可得出S与t的函数关系式.。

苏教版中考第二次模拟检测《数学卷》含答案解析

苏教版中考第二次模拟检测《数学卷》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1. -5的倒数是A. 15B. 5C. -15D. -52. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab3. 如图是一个由5个相同的正方体组成的几何体,它的左视图是()A. B.C. D.4. 如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A. 24B. 14C. 12D. 65. 生物学家发现了一种病毒,其长度约为0.00000032mm,将数据0. 00000032用科学记数法表示正确的是( )A. 73.210⨯B. 73.210-⨯C. 83.210⨯D. 83.210-⨯6. 某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( )A. 平均数是B. 中位数是C. 众数是D. 方差是7. 一元二次方程23410x x -+=的根的情况为( )A. 没有实数根B. 只有一个实数根C. 两个相等的实数根D. 两个不相等的实数根8. 如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作Rt △ABC ,使∠BAC=90°,∠ACB=30°,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A. B. C. D.二.填空题(共10小题)9. 若分式 11x - 有意义,则x 取值范围是_______________ . 10. 一元二次方程290x 的解是__.11. 分解因式3a 2-3b 2=__.12. 已知2a ﹣3b=7,则8+6b ﹣4a=_____.13. 若正多边形的一个外角是40°,则这个正多边形的边数是_____.14. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的母线长l 为6cm ,扇形的圆心角θ=120°,则该圆锥的侧面积为_____cm 2.(结果保留π)15. 从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 .16. 已知点A 是直线y=x+1上一点,其横坐标为﹣12,若点B 与点A 关于y 轴对称,则点B 的坐标为_____. 17. 如图,将▱ABCD 沿EF 对折,使点A 落在点C 处,若∠A =60°,AD =4,AB =8,则AE 的长为__.18. 已知抛物线y =x 2+2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m (m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧),若B ,C 是线段AD 的三等分点,则m 的值为__________.三.解答题(共10小题)19. 计算:(1)(﹣2017)0﹣(13)﹣19 (2)化简:(2a b ﹣a )÷22a b b-. 20. (1)解方程:22x x -=1﹣12x-; (2)解不等式组:12322x x x -≥⎧⎪⎨+<-⎪⎩. 21. 端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友. (1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.22. 在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A ﹣国学诵读”、“B ﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?23. 如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.24. 如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC,(1)求证:PA是⊙O切线;(2)若3,求⊙O的直径.25. 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?26. 如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A 处测得码头C 的船的东北方向,航行40分钟后到达B 处,这时码头C 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C 的最近距离.(结果精确的0.1海里,参考数据:2 1.413 1.73≈≈)27. 如图1和图2,在△ABC 中,AB =13,BC =14,513BH AB =. 探究:如图1,AH ⊥BC 于点H ,则AH =___,AC =___,△ABC 的面积ABC S ∆=___.拓展:如图2,点D 在AC 上(可与点A 、C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E 、F ,设BD =x ,AE =m ,CF =n ,(当点D 与A 重合时,我们认为ABD S ∆=0).(1)用含x 、m 或n 的代数式表示ABD S ∆及CBD S ∆;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现:请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.28. 如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.答案与解析一.选择题(共8小题)1. -5的倒数是A. 15B. 5C. -15D. -5【答案】C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 .故选C.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab 【答案】A【解析】【分析】根据单项式的乘法解答即可.【详解】-3a•(2b)=-6ab,故选A.【点睛】此题考查单项式的乘法,关键是根据法则计算.3. 如图是一个由5个相同的正方体组成的几何体,它的左视图是()A. B.C. D.【答案】B【解析】【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】解:从左面看是一列3个正方形.故选:B.【点睛】本题主要考查几何图形的三视图;增强空间想象能力是解决这类几何问题的关键.4. 如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A. 24B. 14C. 12D. 6【答案】C【解析】【分析】根据题意可知,DE是△ABC的中位线,知DE=12BC,进而推出△ABC的周长=2△ADE的周长,本题即解.【详解】解:∵D,E分别是△ABC的边AB,AC上的中点,∴DE是△ABC的中位线,AD=12AB,AE=12AC,∴DE=12 BC,∵△ADE的周长=6,∴AD+AE+DE=6,∴△ABC的周长=AB+AC+BC=2(AD+AE+DE)=12,故选:C.【点睛】本题主要考查三角形的中位线知识;根据中位线的性质推出所求三角形的周长与已知三角形的周长的数量关系是解题的关键.5. 生物学家发现了一种病毒,其长度约为0.00000032mm ,将数据0. 00000032用科学记数法表示正确的是( )A. 73.210⨯B. 73.210-⨯C. 83.210⨯D. 83.210-⨯【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-7. 故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6. 某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( )A. 平均数是B. 中位数是C. 众数是D. 方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D .7. 一元二次方程23410x x -+=的根的情况为( )A. 没有实数根B. 只有一个实数根C. 两个相等实数根D. 两个不相等的实数根 【答案】D【解析】【分析】先计算判别式的值,然后根据判别式的意义判断根的情况.【详解】解:∵△=b2-4ac=16−12=4>0,∴方程有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8. 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【答案】C【解析】分析:利用相似三角形的性质与判定得出y与x之间的函数关系式进而得出答案.详解:如图所示:过点C作CD⊥y轴于点D,∵∠BAC=90°,∴∠DAC+∠OAB=90°,∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB,又∵∠CDA=∠AOB=90°,∴△CDA∽△AOB,∴OB OA AB DA DC AC===tan30°,则1x y =-故(x >0),则选项C 符合题意.故选C .点睛:此题主要考查了动点问题的函数图象,正确利用相似得出函数关系式是解题关键.二.填空题(共10小题)9. 若分式 11x - 有意义,则x 的取值范围是_______________ . 【答案】1x ≠【解析】【分析】根据分式有意义的条件进行求解即可得.【详解】由题意得:x-1≠0,解得:x≠1,故答案为x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.10. 一元二次方程290x 的解是__.【答案】x 1=3,x 2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.11. 分解因式3a 2-3b 2=__.【答案】3(a+b)(a-b)【解析】【分析】提公因式3,再运用平方差公式对括号里的因式分解【详解】解:原式()()()22=33a b a b a b -=+-【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12. 已知2a ﹣3b=7,则8+6b ﹣4a=_____.【答案】-6【解析】试题分析:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为﹣6. 考点:代数式求值;整体代入.13. 若正多边形的一个外角是40°,则这个正多边形的边数是_____.【答案】9【解析】【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【详解】解:多边形的每个外角相等,且其和为360°,据此可得360n=40, 解得n =9.故答案为9.【点睛】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单. 14. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的母线长l 为6cm ,扇形的圆心角θ=120°,则该圆锥的侧面积为_____cm 2.(结果保留π)【答案】12π.【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,所以利用扇形面积公式计算即可.【详解】解:该圆锥的侧面积=21206360π⨯⨯=12π(cm2).故答案为12π.【点睛】本题考查了圆锥侧面积的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15. 从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.【答案】.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.16. 已知点A是直线y=x+1上一点,其横坐标为﹣12,若点B与点A关于y轴对称,则点B的坐标为_____.【答案】(12,12)【解析】分析:利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;详解:由题意A(-12,12),∵A、B关于y轴对称,故答案为(12,12).点睛:本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17. 如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=8,则AE的长为__.【答案】285【解析】【分析】过点C作CG⊥AB的延长线于点G,易证△D′CF≌△ECB(ASA),从而可知D′F=EB,CF=CE,设AE=x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】过点C作CG⊥AB的延长线于点G,在▱ABCD中,∠D=∠EBC,AD=BC,∠A=∠DCB,由于▱ABCD沿EF对折,∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,D′C=AD=BC,∴∠D′CF+∠FCE=∠FCE+∠ECB,∴∠D′CF=∠ECB,且∠D'=∠EBC,D'C=BC∴△D′CF≌△ECB(ASA)∴D′F=EB,CF=CE,∵DF=D′F,∴DF=EB,AE=CF设AE=x,则EB=8﹣x,CF=x,∵BC=4,∠CBG=60°,在Rt△BCG中,由勾股定理可知:CG=∴EG=EB+BG=8﹣x+2=10﹣x在Rt△CEG中,由勾股定理可知:(10﹣x)2+()2=x2,∴x=28 5∴AE=28 5故答案为:28 5【点睛】本题考查翻折变换,平行四边形的性质,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.18. 已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.【答案】2或8【解析】【分析】分两种情况:当点C在点B左侧时,如图,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,进一步即可求出m的值;当点C在点B右侧时,根据m=2AB 求解即可.【详解】解:①如图,当点C在点B左侧时,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2;当点C在点B右侧时,AB=BC=CD=4,∴m=AB+BC=4+4=8;故答案为:2或8.【点睛】本题考查了抛物线与x轴的交点、抛物线的平移及解一元二次方程等知识,属于常考题型,利用数形结合的思想和三等分点的定义解决问题是关键.三.解答题(共10小题)19. 计算:(1)(﹣2017)0﹣(13)﹣1+9;(2)化简:(2ab﹣a)÷22a bb-.【答案】(1)1;(2)aa b +.【解析】【分析】(1)根据零指数幂、负整数指数幂和算术平方根可以解答本题;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)(﹣2017)0﹣(13)﹣1+9=1﹣3+3 =1;(2)(2ab﹣a)÷22a bb-=2()()a ab bb a b a b-⋅+-=() ()() a a ba b a b-+-=aa b +.【点睛】本题考查分式的混合运算、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.20. (1)解方程:22xx-=1﹣12x-;(2)解不等式组:1232 2x xx-≥⎧⎪⎨+<-⎪⎩.【答案】(1)x=﹣1,(2)x<﹣10.【解析】【分析】(1)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)方程整理得:22xx-=1+12x-,去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)12322x xx-⎧⎪⎨+<-⎪⎩①②,由①得:x≤﹣1,由②得:x<﹣10,则不等式组解集为x<﹣10.【点睛】此题考查了解一元一次不等式组及解分式方程,利用了转化思想,解分式方程注意要检验.21. 端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.【答案】(1)详见解析;(2)13.【解析】试题分析:(1)画树状图或列表即可得,注意是每个人分两个,相当于摸球后不放回,即不能有以下情况出现:11221122(,),(,),(,),(,)A A A A B B B B ;(2)12种情况中,同一味道4种情况.试题解析:(1)设大枣味的两个粽子分别为1A 、2A ,火腿味的两个粽子分别为1B 、2B ,则:或(2)由(1)可知,在上述12种等可能的情况中,小红拿到的两个粽子是同一味道的共有12211221(,),(,),(,),(,),A A A A B B B B 4种情况,所以P=41123. 22. 在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A ﹣国学诵读”、“B ﹣演讲”、“C ﹣课本剧”、“D ﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C 占20%,希望参加活动B 占15%,则被调查的总人数为 人,扇形统计图中,希望参加活动D 所占圆心角为 度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A 有多少人?【答案】(1)60,72;图见解析;(2)360.【解析】【分析】(1)根据统计图中希望参加C的人数和所占的百分比可以求得被调查的总人数,进而可以求得参加活动B 和D的人数,计算出希望参加活动D所占圆心角的度数,将条形统计图补充完整;(2)根据统计图中的数据可以估算全校学生希望参加活动A有多少人.【详解】(1)由题意可得,被调查的总人数是:12÷20%=60,希望参加活动B的人数为:60×15%=9,希望参加活动D的人数为:60﹣27﹣9﹣12=12,扇形统计图中,希望参加活动D所占圆心角为:360°×(1﹣2760﹣15%﹣20%)=360°×20%=72°,故答案为60,72.补全的条形统计图如图所示;(2)由题意可得,800×2760=360. 答:全校学生希望参加活动A 有360人.考点:条形统计图;用样本估计总体;扇形统计图. 23. 如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,BD 平分∠ABF ,且交AE 于点D ,连接CD . (1)求证:四边形ABCD 是菱形;(2)若∠ADB=30°,BD=6,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB ,证出AB=AD ,同理:AB=BC ,得出AD=BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD=OB=12BD=3,再由三角函数即可得出AD 的长. 【详解】(1)∵AE ∥BF ,∴∠ADB=∠CBD ,又∵BD 平分∠ABF ,∴∠ABD=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,同理:AB=BC ,∴AD=BC ,∴四边形ABCD 是平行四边形,又∵AB=AD ,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD=6,∴AC ⊥BD ,OD=OB=12BD=3, ∵∠ADB=30°,∴cos∠ADB=32 ODAD,∴AD=23.24. 如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC,(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径.【答案】(1)见解析(2)23【解析】解:(1)证明:连接OA,∵∠B=600,∴∠AOC=2∠B=1200.∵OA=OC,∴∠OAC=∠OCA=300.又∵AP=AC,∴∠P=∠ACP=300.∴∠OAP=∠AOC﹣∠P=900.∴OA⊥PA.∵OA是⊙O的半径,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=300,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵3∴3∴⊙O的直径为3.(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=300,再由AP=AC得出∠P=300,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论.(2)利用含300的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=3,可得出⊙O的直径.25. 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,8.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为8m.考点:一元二次方程的应用题.26. 如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.123 1.73【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【详解】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×4060=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=12AB=10,由勾股定理可知:AD=103∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=103+10∵∠DAB=30°,∴CE=12AC=53+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里27. 如图1和图2,在△ABC中,AB=13,BC=14,513 BHAB.探究:如图1,AH ⊥BC 于点H ,则AH =___,AC =___,△ABC 的面积ABC S ∆=___.拓展:如图2,点D 在AC 上(可与点A 、C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E 、F ,设BD =x ,AE =m ,CF =n ,(当点D 与A 重合时,我们认为ABD S ∆=0).(1)用含x 、m 或n 的代数式表示ABD S ∆及CBD S ∆;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现:请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.【答案】探究:12,15,84;拓展:(1)ABD 1=2S mx ∆,12CBD S nx ∆=;(2)168m n x+=;x=565时,(m n +)的最大值为15;当14x =时,(m n +)的最小值为12;(3)565x =或1314x <≤;发现:565. 【解析】【分析】 探究:由513BH AB =,AB=13,可得BH 的长,即可求出CH 的长,利用勾股定理求出AH 、AC 的长即可;拓展:(1)由三角形的面积公式即可求解;(2)首先由(1)可得2ABD S m x∆=,2CBD S n x ∆=,再根据S △ABD +S △CBD =S △ABC =84,即可求出(m+n )与x 的函数关系式,然后由点D 在AC 上(可与点A ,C 重合),可知x 的最小值为AC 边上的高,最大值为BC 的长;根据反比例函数的性质即可得答案;(3)由于BC >BA ,所以当以B 为圆心,以大于565且小于13为半径画圆时,与AC 有两个交点,不符合题意,故根据点D 的唯一性,分两种情况:①当BD 为△ABC 的边AC 上的高时,D 点符合题意;②当AB <BD ≤BC 时,D 点符合题意;发现:由于AC >BC >AB ,所以使得A 、B 、C 三点到这条直线的距离之和最小的直线就是AC 所在的直线. 【详解】探究:∵513BH AB =,AB=13, ∴BH =5,∴12AH =,∴HC =9,15AC ==,∴S △ABC =12×12×14=84, 故答案为12,15,84;拓展:解:(1)由三角形面积公式得出:ABD 1=2S mx ∆,12CBD S nx ∆=; (2)∵2ABD S m x∆=,2CBD S n x ∆=, ∴CBD ABD 2S 2S 168m n x x x∆∆+=+=, ∵AC 边上的高为:22845615155ABC S ∆⨯==, ∴x 的取值范围为:56145x ≤≤, ∵(m n +)随x 的增大而减小, ∴565x =时,(m n +)的最大值为:15; 当14x =时,(m n +)的最小值为12;(3)∵BC >BA ,只能确定唯一的点D ,∴当以B 为圆心,以大于565且小于13为半径画圆时,与AC 有两个交点,不符合题意, ①当BD 为△ABC 的边AC 上的高时,即x=565时,BD 与AC 有一个交点,符合题意, ②当AB <BD ≤BC 时,即1314x <≤时,BD 与AC 有一个交点,符合题意,∴x 的取值范围是565x =或1314x <≤, 发现:∵AC >BC >AB ,∴AC 、BC 、AB 三边上的高中,AC 边上的高最短,∴过A 、B 、C 三点到这条直线的距离之和最小的直线就是AC 所在的直线,最小值为AC 边上的高的长565. 【点睛】本题考查了勾股定理,三角形的面积,反比例函数的性质等知识,综合性较强,熟练掌握相关性质及定理是解题关键.28. 如图,抛物线y=﹣x 2+bx+c 和直线y=x+1交于A ,B 两点,点A 在x 轴上,点B 在直线x=3上,直线x=3与x 轴交于点C(1)求抛物线的解析式;(2)点P 从点A 2个单位长度的速度沿线段AB 向点B 运动,点Q 从点C 出发,以每秒2个单位长度的速度沿线段CA 向点A 运动,点P ,Q 同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t 秒(t >0).以PQ 为边作矩形PQNM ,使点N 在直线x=3上.①当t 为何值时,矩形PQNM 的面积最小?并求出最小面积;②直接写出当t 为何值时,恰好有矩形PQNM 的顶点落在抛物线上.【答案】(1)抛物线解析式为y=﹣x 2+3x+4;(2)①当t=65时,面积最小是165;②t=231027±2.【解析】【分析】(1)利用待定系数法进行求解即可;(2)①分别用t 表示PE 、PQ 、EQ ,用△PQE ∽△QNC 表示NC 及QN ,列出矩形PQNM 面积与t 的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M 坐标,分别讨论M 、N 、Q 在抛物线上时的情况,并分别求出t 值.【详解】(1)由已知,B 点横坐标为3,∵A 、B 在y=x+1上,∴A (﹣1,0),B (3,4),把A (﹣1,0),B (3,4)代入y=﹣x 2+bx+c 得, 10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y=﹣x 2+3x+4;(2)①如图,过点P 作PE ⊥x 轴于点E ,∵直线y=x+1与x 轴夹角为45°,P 2 ∴t 秒时点E 坐标为(﹣1+t ,0),Q 点坐标为(3﹣2t ,0),∴EQ=4﹣3t ,PE=t ,∵∠PQE+∠NQC=90°, ∠PQE+∠EPQ=90°, ∴∠EPQ=∠NQC ,∴△PQE ∽△QNC , ∴12PQ PE NQ QC ==, ∴矩形PQNM 的面积S=PQ•NQ=2PQ 2,∵PQ 2=PE 2+EQ 2,∴S=2()2243t t +-2=20t 2﹣48t+32, 当t=625b a -=时, S 最小=20×(65)2﹣48×65+32=165; ②由①点Q 坐标为(3﹣2t ,0),P (﹣1+t ,t ),C (3,0),∴△PQE ∽△QNC ,可得NC=2QE=8﹣6t ,∴N 点坐标为(3,8﹣6t ),由矩形对边平行且相等,P (﹣1+t ,t ),Q (3﹣2t ,0),∴点M 坐标为(3t ﹣1,8﹣5t )当M 在抛物线上时,则有8﹣5t=﹣(3t ﹣1)2+3(3t ﹣1)+4,解得t=109±, 当点Q 到A 时,Q 在抛物线上,此时t=2,当N 在抛物线上时,8﹣6t=4,∴t=23,综上所述当t=23、109±或2时,矩形PQNM 的顶点落在抛物线上. 【点睛】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,熟练掌握相关知识以及应用数形结合和分类讨论的数学思想是解题的关键.。

最新江苏省中考数学二模试题附解析

最新江苏省中考数学二模试题附解析

江苏省中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( )A .76B .68C .52D .382.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( )A .4.5mB .4.6mC .6mD .8m3.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( )A 32)mB .(32)m C m D .4m 4.抛物线2(23)y x =-+的对称轴为( )A . 直线x=-3B .直线32x =-C .直线 y=3D .y 轴5.对于反比例函数y =2x,下列说法不正确...的是( ) A .点(―2,―1)在它的图象上B .它的图象在第三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小6.x 为实数,下列式子一定有意义的是( )A B C .211x - D .21x 7.暗箱中有大小质量都相同的红色、黑色小球若干个,随机摸出一个球是红球的概率是 0.6,已知黑色小球有12个,则红球的数量为( )A .30B .20C .18D .108.计算32)(x x ⋅-所得的结果是( )A .5xB .5x -C .6xD .6x - 9.下列各组多项式中,没有公因式的一组是( ) A .ax bx -与by ay -B .268xy y +与43y x --C .ab ac -与ab bc -D .3()a b y -与2()b a x -10.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( )A .1 个B . 2 个C .3 个D . 4 个11.下列图形中.成轴对称图形的是 ( )12.你看到的心电图可以看作是( )A .条形统计图B .折线统计图C .扇形统计图D .以上都对二、填空题13. 如图是置于水平地面上的一个球形储油罐,小明想测量它的半径. 在阳光下,他测 得球的影子的最远点 A 到球罐与地面接触点B 的距离是 10 m(如示意图,AB =10 m). 同一时刻,他又测得竖直立在地面上长为 lm 的竹竿的影子长为 2 m ,那么,球的半径是 m .14. 如图所示,是一个几何体的俯视图和左视图,则这个几何体是 .15.如图,点A ,B ,D 在⊙O 上,25A =∠,OD 的延长线交直线BC 于点C ,且40OCB =∠,直线BC 与⊙O 的位置关系为_________.16. ,则a-b b的值是 . 17.在等腰△ABC 中,BC=8,AB 、AC 的长度是关于x 的方程x 2-10x+m=0的两个根,则m 的值是 .18.如图所示,四边形ABCD 中,AB=AC=AD=BD .则∠BCD= .19.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别是C 、D ,若OE=4,∠AOB=60°,则DE=_______.20.若点M(1,2n 一1)在第四象限内,则a 的取范围是 .21.如图,根据下列物体的三视图,在右边横线上填出几何体的名称: .22.在一个布袋中,里面放着一些已经搅匀了的小球,其中有 2 个白球、3 个红球,这些小球除颜色不同外,其余均完全相同. 从中随机地取出 1 球,得到的是白球是 事件,得到的是黄球是 事件,得到的是白球或红球是 事件 ( 填“必然”、“不可能”或“随机)23.如图所示,将长方体沿着对角线用一个平面切开,所得截面中互相平行的线段有 组.24.方程1(1)3x x -=-的解是 . 25. 计算1422-÷⨯的结果为 . 三、解答题26.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.A OBEC D27.如图,已知在⊙O中,AB为弦,C、D 两点在 AB上,且 AC= BD.请你仔细观察后回答,图中共有几个等腰三角形?把它们写出来,并说明理由.28.某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).(1)这50名学生在这一天课外阅读所用时间的众数是多少?(2)这50名学生在这一天平均每人的课外阅读所用时间是多少?(3)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0 h以上(含1.0 h)的有多少人?29.如图所示为由6个面积为1的小正方形组成的矩形,点A,B,C,D,E,F,G是小正方形的顶点,以这7个点中的任意三个点为顶点,可组成多少个面积为1的三角形?请写出所有满足条件的三角形.30.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.B5.C6.A7.C8.A9.C10.D11.D12.B二、填空题13.2.514.圆柱15.相切16.2-17.525或1618.150°19.220.1a<21.2直六棱柱22.随机,不可能,必然23.224.1x=25.4-16三、解答题26.解:(1)∵在△ABO中,OA=OB,∠OAB=30°∴∠AOB=180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=共有 2 OCD . ∵OA=OB ,∴∠A=∠B .∵AC=BD ..∴△,∴△OCD 是等腰三角形. 28.(1)1.0 h ;(2)1.05 h ;(3)1400人29. 共l4个三角形,具体表示略30.如图所示:C 图①。

2023年江苏省苏州市中考数学第二次模拟考试试卷附解析

2023年江苏省苏州市中考数学第二次模拟考试试卷附解析

2023年江苏省苏州市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果用□表示1个立方体,用表示两个立方体叠加,•用■表示三个立方体叠加,那么下图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()B CA D2.如图,在直角三角形AOB中,AB⊥OB,且OB=AB=3,设直线l:x=t,截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为()3.在反比例函数3kyx-=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>3 B.k>0 C.k<3 D.k<04.式x+4x-2中,x的取值范围是()A.x≥-4 B.x>2 C.x≥-4且x≠2D.x>-4且x≠25.如图,已知在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,则BC的长为()A.8 cm B.6cm C.4cm D.2cm6.已知方程组234(1)21(2)x yy x-=⎧⎨=-⎩,把②代入①,正确的是()A.4234y y--=B.2614x x-+=C.2614x x--=D.2634x x-+=7.下列叙述中正确的个数是()①三角形的中线、角平分线都是射线;②三角形的中线、角平分线都在三角形内部;③三角形的中线就是过一边中点的线段;④三角形三条角平分线交于一点.A.0个B.1个C.2个D.3个8.当43a=-时,代数式3 (a + 1) + 4的值是()A . -3B . 13-C . 3D .1739.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( )A .1个B .2个C .3个D .4个 10.下列合并同类项正确的是( ) A .22523x x -=B .6713x y xy +=C .2222a b a b a b -+=D .523x x -=11.下列命题中①带根号的数是无理数;②无理数是开不尽方的数;③无论x 取什么值,④绝对值最小的实数是零.正确的命题有( )A .1 个B .2 个C .3 个D . 4 个12.若0a b +>,0a b >,则( ) A .0a >,0b >B .0a <,0b <C .a 、b 中一正一负,且正的绝对值较大D .a 、b 中一正一负,且负的绝对值较大13. 在-2,38-,0,31 各数中,有理数有( )A .4 个B .3 个C .2 个D .1 个 二、填空题14.在-9,-6,-3,-1,2,3,6,8,11这九个数中,任取一个作为a 值,能够使关于x 的一元二次方程290x ax ++=有两个不相等的实数根的概率是____________.解答题15.已知⊙O 1和⊙O 2的半径分别是2和4,01O 2=6,则⊙O 1与⊙O 2的位置关系是 .16.已知一个样本的最大值是182,最小值是130,样本容量不超过100.若取组距为10,则画频数分布直方图时应把数据分成 组.17.如图,Rt △ABC 中,∠BAC=90°,E ,D ,F 分别是三边中点,则AD EF(填“=”或“>”或“<”).18.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,线段BC= .19.若x ,y 互为倒数,则20083()xy -= .三、解答题20.曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD 和直杆EC 都与BC 垂直,BC =2.8米,CD =1.8米,∠ABD =40°,求斜杆AB 与直杆EC 的长分别是多少米?(结果精确到0.01米)21.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.已知直角三角形两个锐角的正弦sin sin A B ,是方程222210x x -+=的两个根,求A B ∠∠,的度数.23.画出如图所示的几何体的三视图.24.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围);(2)当销售量为30件时,销售收入为 元,销售成本为 元;(3)当销售量为60件时,销售收入为 元,销售成本为 元;(4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.25.已知动点P 以每秒2 cm 的速度沿图①边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S(cm 2)关于时间t(s)的函数图象如图②.若AB=6 cm ,试解答下列问题:(1)图①中BC 的长和图②中的a 各是多少?(2)图①中的图形面积是多少?图②中的b 是多少?26.计算:(1)()()()24321223x y x y xy -÷⋅- (2)(15x 3y 5-10x 4y 4-20x 3y 2)÷(-5x 3y 2)27.下列数据是某班数学测验成绩:63 84 91 53 69 81 61 69 80 6776 81 79 94 61 69 81 86 90 8885 67 71 82 53 65 74 77 91 7875 81 89 70 70 87 87 75 87 95请你将成绩按l0分的距离分段制作统计表.28.借助计算器计算下列各题.31=33+=12333++=1233333+++=1234从上面计算结果,你发现了什么规律?你能把发现的规律进行拓展吗?29.出租车司机小李某天下午营运全是在东西方向的人民大道上行驶. 若规定向东为正,则这天下午出租车行驶情况(单位:km)如下:+15 ,-2 ,+5 , -1 , +l0 ,-3 , -2 , +12 , +4,-5,+6,求(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为 0. 2L/km,这天下午小李的车共耗油多少?30.(1)利用一副三角尺的拼合,分别画出75°,120°,l35°,l50°的角;(2)利用一副三角尺,你能画出几个不同的角(小于l80°)?分别是多少度的角?用一副三角尺所画的这些角的大小有什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.A4.B5.B6.D7.C8.C9.B10.C11.B12.A13.A二、填空题14.3115. 外切16.617.=18.5cm19.-3三、解答题20.解:在Rt △BAD 中 ∵ABDB B =∠cos ,∴00.640cos 6.4cos ≈=∠= B DB AB (米). 在Rt △BEC 中, ∵CBEC B =∠tan ,∴35.240tan 8.2tan ≈⨯=∠⋅= B CB EC (米). 则斜杆AB 与直杆EC 的长分别是2.35米和6.00米. 21.解:(1)P (抽到奇数)=34. (2)解法一:列表所以组成的两位数恰好是13的概率为21126P ==. 解法二:树状图开始1 12 31 2 3 1 2 3 1 1 3 1 1 2所以组成的两位数是13的概率为21126P ==. 22.解:2210x -+=,标准式为:2102x += 2x ⎛-= ⎝∴,12x x ==∴sin sin A B ==∵,45A B ∠=∠=∴° 23.略24.(1)1l :100t x =,2l :751000t x =+;(2)3000,3250;(3)6000,5500;(4)40;(5)大于40,小于4025.(1)8 cm ,24cm 2 ;(2)60cm 2 ,17 s26.(1)9xy 2 ,-3y 3+2xy 2+427.分段时应注意避免同一数据同时落在两个分数段,方法是多取一位有效数字,作表略 28.(1) 1 (2) 3 (3) 6 (4) 10 3123n n ++=++++29.(1)距出发点东面 39 km 处 (2)13L30.(1)画图略 (2)11个,15°,30°,45°,60°,75°,90°,l05°,l20°,l35°,l50°,165°规律:l5°的倍数。

中考二模数学试题(word解析版)苏科版

中考二模数学试题(word解析版)苏科版

中考第二次质量检测数学试题及解析一、选择题1.-3的绝对值是( )A. 3B. -3C.D.【答案】A【分析】本题主要考查有理数的绝对值,根据一个负数的绝对值等于它的相反数化简即可.【解答】解:-3的绝对值是3.故选A.2.下列运算正确的是( )A. B. C. 2(a+b)=2a+b D.【答案】D【分析】本题考查了同底数幂的乘法,幂的乘方与积的乘方,单项式乘以单项式.根据同底数幂的乘法,幂的乘方与积的乘方及单项式乘以单项式的法则进行运算即可.【解答】解:A.,a少平方,故本选项错误;B.,不是同类型,不能合并,故本选项错误;C.2(a+b)=2a+b ,b少系数2,故本选项错误;D. ,故本选项正确.故选D.3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果质量只有0.000000076克。

将0.000000076用科学汇数法表小为( )A.7.6×108B.0.76×10-9C. 7.6×10-8D.0.76×109【答案】C【分析】本题主要考查科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数,此时n的值为第一个有效数字前面所有0的个数.【解答】解:0.000000076克=7.6×10-8克.故选C.4.已知等腰三角形的一个底角的度数为70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°C. 55°,55°或70°,40°D. 以上都不对【答案】B【分析】本题考查了三角形内角和定理和等腰三角形的性质,根据定理和性质,答案可得.【解答】解:70°为底角,另一底角也为70°.由三角形内角和为180°,所以顶角为40°;故选B.5.已知一次函数y=kx+3经过点(2,1),则一次函数的图像经过的象限是( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限【答案】B【分析】本题主要考查函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.把点(2,1)代入y=kx+3,即可求出k的值,从而可确定一次函数图象的位置.【解答】解:∵一次函数y=kx+3经过点(2,1),∴1=2k+3,∴k=-1,∴一次函数y=kx+3图象经过二、四象限,又∵b=3>0,∴∴直线y=kx+3与y轴交点在y轴的正半轴上,所以一次函数y=kx+3图象经过一、二、四象限.故选B.6.五张标有2、2、3、4、5的卡片,除数字外,其他没有任何区别现将它们背面朝上,从中任取张,得到卡片的数宁为偶数的概率是( )A. B. C. D.【答案】C【分析】本题考查等可能条件下的概率的计算方法,P(A)=,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果数;根据公式,答案可得.【解答】解:在本题中,出现偶数的结果数是3,那么从中任取一张,得到卡片的数宁为偶数的概率是,故选C.7.下列几何体中,其主视图不是中心对称图形的是( )A. B.. C. D.【答案】B【分析】本题主要考查简单几何体的三视图和中心对称图形的定义.画出各个几何体的主视图,根据中心对称图形的定义进行判断.【解析】解:A.主视图是矩形,矩形是中心对称图形,故A不合题意;B.主视图是三角形,三角形不是中心对称图形,故B合题意;C.主视图是圆,圆是中心对称图形,故C不合题意;D.主视图是正方形,正方形是中心对称图形,故D不合题意.故选B.8.如图,AB是⊙O的直径,弦CD⊥AB于点C,点F是CD上一点,且满足,连接AF并延长交。

2024年江苏省南京市鼓楼区中考二模数学试卷+答案解析

2024年江苏省南京市鼓楼区中考二模数学试卷+答案解析

2024年江苏省南京市鼓楼区中考二模数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个数中,最小的数是()A. B.0 C.2 D.2.如图,一辆汽车的轮胎因为漏气瘪掉了,将轮胎外轮廓看作一个圆,则这个圆和与它在同一平面内的地面看作一条直线的位置关系是()A.相交B.相切C.相离D.包含3.刚刚过去的“五一”假期,南京全市景区景点、文博场馆、乡村旅游等监测点接待游客量约为108250000人次.用科学记数法表示108250000是()A. B. C. D.4.计算的结果是()A. B. C. D.5.若一个正n边形的内角和为,则它的每个外角度数是()A. B. C. D.6.如图,O是的外心,,垂足分别为D,E,F,连接的中点H,I,J,则与的面积之比是()A. B. C. D.二、填空题:本题共9小题,每小题3分,共27分。

7.16的平方根是______,27的立方根是______.8.式子在实数范围内有意义,则x的取值范围是______.9.分解因式:__________.10.计算的结果是__.11.无人机正在飞行,某时刻控制界面显示“H:14m,D:48m”代表无人机离起飞点的垂直距离,D代表无人机离起飞点的水平距离,则此时无人机到起飞点的距离为_____12.如图,四边形ABCD是的内接四边形,BE是的直径,连接CE,若,则____13.用图中两块相同的含的三角板拼成一个四边形,在所有拼成的四边形中,两条对角线的所有比值的最大值为___.14.在平面直角坐标系中,直线与双曲线交于,两点,则的值为_____.15.如图,正方形ABCD边长为12,E为BC上一点,动点P,Q从E出发,分别向点B,C运动,且若PD和AQ交于点F,连接BF,则BF的最小值为_____.三、计算题:本大题共2小题,共12分。

16.计算:17.解方程:;解不等式组:四、解答题:本题共10小题,共80分。

最新苏科版中考数学第二次仿真模拟卷含答案

最新苏科版中考数学第二次仿真模拟卷含答案

最新苏科版中考数学第二次仿真模拟卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.5-的相反数是.2.计算:2)21(=.3.如图,a ∥b ,直线c 与直线a ,b 相交,已知︒=∠1101,则=∠2︒.4.当a =时,式子a 的值为2.5.如果从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,那么恰好抽到九年级(1)班的概率是.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是.7.如图,半径为3cm 的扇形纸片的周长为10cm ,,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm .(结果保留π)8.如图,P 是菱形ABCD 对角线BD 上的一点,PE ⊥BC 于点E ,PE =4cm ,则点P 到直线AB 的距离等于cm .9.如图,△ABC 内接于⊙O ,∠BAC =30°,3=BC ,则⊙O 的半径等于.10.在直角坐标系中有两点A (6,3)、B (6,0).以原点O 为位似中心,把线段AB 按相似的1:3缩小后得到线段CD ,点C 在第一象限(如图),则点C 的坐标为.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回,设x 秒后两车之间的距离为y 米,y 关于x 的函数关系如图所示,则a =米.12.如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点。

(2)点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是.(第9题)(第8题)(第10题)3(第7题)(第11题)(第12题)二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A .0.1072×106B .1.072×105C .1.072×106D .10.72×10414.如图是几何体的三视图,该几何体是()A .正三棱柱B .正三棱锥C .圆锥D .圆柱15.已知实数0<a ,则下列事件中是必然事件的是()A .03<+a B .03<-a C .03>a D .03>a 16.已知点E (2,1)在二次函数m x x y +-=82(m 为常数)的图像上,则点A 关于图像对称轴的对称点坐标是()A .(4,1)B .(5,1)C .(6,1)D .(7,1)17.如图,正方形ABCD 边长为2,点P 是线段CD 边上的动点(与点C ,D 不重合),︒=∠45PBQ ,过点A 作AE ∥BP ,交BQ 于点E ,则下列结论正确的是()A .22=⋅BE BP B.24=⋅BE BP C .2=BPBED .223=BP BE 三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(本小题满分8分)(1)计算:()()234520-+-+⋅︒πsin ;(2)化简:11)1(+÷+-a a a a .19.(本小题满分10分)(1)解方程组:⎩⎨⎧=+=+3320y x y x ;(2)解不等式:12+x≥3-x .20.(本小题满分6分)如图,E 、F 分别是□ABCD 的边BC 、AD 上的中点.(1)求证:△ABE ≌△CDF ;(第17题)(第14题)。

2023年江苏省南京市中考数学第二次模拟考试试卷附解析

2023年江苏省南京市中考数学第二次模拟考试试卷附解析

2023年江苏省南京市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( )A .52B .56C .2D .5 2.某电视台综艺节日从接到的 5000 个热线电话中,抽取 10 名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是( )A .1500B .15000C .1200D .12000 3.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于( )A .310B .70l C .37 D .17 4.抛掷一枚普通的骰子(各个面分别标 12、3、4、5、6),朝上一面是偶数的概率为( ) A .16 B .12 C .13 D .145.随机掷两枚硬币,落地后全部正面朝上的概率是( )A .1B .21C .31D .41 6.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( )A .南偏东50°B .南偏东40°C .北偏东50°D .北偏东40° 7.把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形中,较长的边与较短的边之比是( )A .5:2B .(13):2+C .(15):2+D .(16):2+8.下列各式计算:正确的是( )A .2243431-=-=B .3(23)235+=+=C .(26)(26)462+-=--D .2(13)13-=- 9.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是 ( )10. 在边长为a 的正方形中挖掉一个边长为b 的小正方形 (a b >),把余下的部分剪拼成 一个矩形 (如图). 根据图示可以验证的等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=-11.已知a 、b 两数在数轴上的对应点的位置如图所示,那么化简代数式12a b a b +--++结果是( )A . 1B .23b +C .23a -D .-112.有理数:-7,3. 5,12-,112,0,π,1317中正分数有( ) A .1 个 B . 2 个 C .3 个 D .4 个二、填空题13.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是__________.14.如图,图中有两圆的多种位置关系,还没有的位置关系是 .15.若函数y=(m+1)231m m x++是反比例函数,则m 的值为 .-2 A B C D16.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个四边形各角为 . 17.如图,在由16个边长为1的正方形拼成的方格内,A 、B 、C 、D 是四个格点,则线段AB 、CD 中,长度是无理数的线段是________. 18.已知关于x 的分式方程4333k x x x-+=--有增根,则k 的值是 . 19.买 5 斤桔子需5a 元钱,则字母a 表示 .20.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2米的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一直线上,如果测得BD =20米,FD =4米,EF =1.8米,则树的高度为__________米.三、解答题21.用小正方体木块搭一个几何体,使得它的主视图、俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小正方体木块?最多需要多少个小正方体?22.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,•梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点,已知∠BAC=65°,∠DAE=45°,点D 到地面的垂直距离DE=32m ,求点B 到地面的垂直距离BC (精确到0.1m ).23.如图,∠ACB =∠ADC =900,AC =6,AD =2.问当AB 的长为多少时,这两个直角三角形相似?A B C D M N D ′24.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.25.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6. 求旗杆高度的平均数,中位数,众数各是多少?26.如图所示,是一个三棱柱的模型,其底面是边长为3 cm 的等边三角形,侧棱长为5 cm , 若给你一张长为12 cm ,宽为5 cm 的长方形纸片,能否糊出一个有底无盖符合条件的三棱柱模型?若能,按l :2的比例画出下料图;若不能,请说明理由.27.有一种正方形模板如图所示,边长是 a(m),成本价为每平方米 10 元. 现根据客户需求,需将边长增加 0.5 m,问现在这块模板的成本价是多少?28.已知△ABC中,以点A为顶点的外角为120°,∠B=30°,求∠C的度数.29.观察“工”“田”“土”等汉字,我们能找到直线与直线的哪几种位置关系?请你再举几个这样的汉字?30.检查一个商店里 10 袋白糖的重量,以 5 g 为基准,超出记为“+”,不足记为“-”,情况如下:-30 g,+20 g,-20 g,-10 g,-50 g,+30 g, -20 g, +30 g, +10 g, -10 g.(1)总的情况是超出还是不足?超出或不足的数量为多少?(2)最多的与最少的相差多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.B4.B5.D6.D7.C8.C9.C10.A11.B12.C二、填空题13.5214.外离15.16.60°,120°,60°,120°17.AB18.119.桔子的单价20.3三、解答题21.这样的几何体不唯一,它最少需要l0个小正方体木块,最多需要l6个小正方体木块,其中,从下数第一层7块,第二层至少2块,至多6块,第三层至少1块,至多3块.22.在Rt△ADE中,,∠DAE=45°,∴sin∠DAE=DEAD,∴AD=•6.•又∵AD=AB,在Rt△ABC中,sin∠BAC=BCAB,∴BC=AB·sin∠BAC=6·sin65°≈5.4.23.3,23.24.△AMD′是正三角形. 25.平均数:22.12 m ,中位数:20.0 m ,众数:20.0 m 26.能,理由略27.面积为221(0.5)4a a a +=++,成本价为 (2510102a a ++)元 28.∠C=90°29.垂直、平行、中、丰、王、圭等 30.(1)不足 50g (2)80 g。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考模拟测试卷(二)(满分:130分 考试时间:120分钟)一、填空题(本大题共12小题,每小题3分,共36分) 1.3的平方根是_________.2.国家游泳中心“水立方”是北京奥运会场馆之一,它的外层膜的展开面积约为26万m 2将26万m 2用科学记数法表示应为________________. 3.函数y =中自变量x 的取值范围是__________. 4.分解因式:x 3-4x=__________________.5.已知圆锥的底面直径为4cm ,其母线长为3cm ,则它的侧面积为________cm 2. 6.如图,已知在⊙O 中,半径OC 垂直于弦AB 垂足为D ,若CD=2,OA=5,则AB=________. 7.2009年,江苏省实施初中英语听力口语自动化考试.为更好地适应自动化考试,某校组织了一次模拟考试,某小组12名学生成绩如下:28,21,26,30,28,27,30,30,18,28,30,25.这组数据的中位数为________. 8.将一副学生用三角板按如图所示的方式放置.若AE ∥BC ,则∠AFD 的度数是_________.9.已知二次函数y=2x+b 的图像如图所示,当x <0时,y 的取值范围是_________.10.按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24,第2次得到的结果为12,……,请你探索第2009次得到的结果为________.11.已知△ABC 为等腰三角形,由点A 作BC 边的高恰好等于BC 边长的一半,则∠BAC 的度数为_____________.12.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上 的中线BD 反向延长线交y 轴负半轴于E ,双曲线ky x=(x >0)的图像经过点A , 若S △BEC =8,则k 等于________.二、选择题(本大题共6小题,每小题3分,共18分.每题的四个选项中,只有一个选项是符合要求的.) 13.已知⊙O 1与⊙O 2的半径分别为3cm 和4cm ,O 1O 2=6cm ,则两圆的位置关系为 ( ) A .内切 B .相交 C .外切 D .外离第17题14.下列运算正确的是 ( ) A .x 2+x 2=x 4 B .(a -1) 2=a 2-1 C .a 2·a 3=a 5 D .3x+2y=5xy 15.不等式组112x x ≤⎧⎨+>-⎩,的解集在数轴上可表示为 ()16.下列方程中,有实数根的是 ( )A .x 2-x+2=0B .x 4-1=0C1=- D .111x x x =-- 17.如图,在矩形ABCD 中,由8个面积均为1的小正方形组成的 L 型模板如图放置,则矩形ABCD 的周长为 ( ) A. B. C. D.182①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧; ③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小.从表可知,下列说法正确的个数有( ) A .1个 B .2个 C .3个 D .4个三、解答题(本大题共11小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.) 19.(本题5分)()20092sin 601-︒--.20.(本题5分)先化简,再求值:2111211a a a a a a +⎛⎫+÷ ⎪--+-⎝⎭,其中112a a -=.21.(本题5分)解方程:2212313x x x x--=-.22.(本题6分)如图,在平面直角坐标系中,点A ,B ,C ,P的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;(3)请求出△ABC 外接圆的半径.23.(本题6分)某中学准备举行一次球类运动会,在举行运动会之前,同学们就该校学 生最喜欢哪种球类运动问题进行了一次调查,并将调查结果制成了表格、条形图和 扇形统计图,请你根据图表信息完成下列各题: (1)此次共调查了_________位学生? (2)24.(本题6分)已知:关于x 的一元二次方程x 2-(2m+1)x+m 2 +m -2=0. (1)求证:不论m 取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足12211m x x m +-=+-,求m 的值.25.(本题8分)周六下午,小刚到小强家玩.休息之余,两人进入校园网,研究起了本校 各班的课程表……现已知初一(1)班周四下午共安排数学、生物、体育这三节课.(1)请你通过画树状图列出初一(I)班周四下午的课程表的所有可能性;(2)小刚与小强通过研究发现,学校在安排课务时遵循了这样的一个原则——在每天的课表中,语文、数学、英语这三门学科一定是安排在体育课之前的.请问你列出的初一(1)班周四下午的课程表中符合学校课务安排原则的概率是多少?(3)在小刚与小担两人得出学校课务安排原则之后,小强告诉小刚:初二(2)班周五下午共安排有体育、英语、历史这三节课,然后请小刚猜想这三节课的安排顺序,则小刚猜对的概率为________(直接写出答案).26.(本题8分)点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,BD 是⊙O 的切线,且AB=AD .(1)求证:点A 是DO 的中点;(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且△BEF 的面积为8,2cos 3BFA ∠=,求△ACF 的面积.27.(本题9分)一列火车由A 市途经B 、C 两市到达D 市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?( 1.4≈ 1.7≈)28.(本题9分)已知抛物线y=ax 2+bx(a ≠0)的顶点在直线112y x =--上,且过点A(4,0). (1)求这个抛物线的解析式; (2)设抛物线的顶点为P ,是否在抛物线上存在一点B ,使四边形OPAB 为梯形?若存在,求出点B 的坐标;若不存在,请说明理由. (3)设点C(1,-3),请在抛物线的对称轴上确定一点D ,使AD CD -的值最大,请直接写出点D的坐标.29.(本题9分)如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出AE和FG的长度.(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与-x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3).(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).参考答案一、1. 2.2.6×105m 2 3.x >2 4.x(x+2)(x -2) 5.6π 6.8 7.28 8.75° 9.y <-2 10.8 11.90°或75°或15° 12.16 二、13.B 14.C 15.A 16.B 17.B 18.C三、19.1 20.1a a -;1221.x=4或x=-122.(1)图略 (2)()()1212y x x =-+(3)外接圆圆心O ′坐标为3322⎛⎫ ⎪⎝⎭,,'AO ==半径23.(1)24.(1)△=[-(2m+1)] 2-4(m 2+m -2)=4m 2+4m+1-4m 2-4m+8=9>0 ∴不论m 取何值,方程总有两个不相等实数根(2)由原方程可得x 1,2=()()2121322m m ++±=,∴x 1=m+2.x 2=m -1 ∴123x x -=又∵12211m x x m +-=+-, ∴2311m m +=+-, ∴m=4 经检验:m=4符合题意. ∴m 的值为4.25.(1)(2)三门功课共有6种排法,其中符合课务安排原则的有3种 ∴P(符合学校要求)=3162= (3)P(小刚猜对)=1326.(1)连接OB ,∵BD 是O ⊙的切线,∴∠OBD=90°,∵AB=AD ,∴∠D=∠ABD , ∴∠AOB=∠ABO ,∴AB=AO ,∴AO=AD . (2) ∵AC 是直径,∴∠ABF=90°,2cos 3FB BFA FA ∠==, ∵∠E=∠C ,∠FAC=∠FBE ,∴△FA C ∽△FBE ,∴△FAC 的面积为18. 27.过点B 分别作B E ⊥CD 于E ,B F ⊥AD 于F .由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.∴DE=50,BE =,CE =.∴50BC =∵50BF =∴100AB =∴50394AB BC CD km ++==. ∴该火车从A 市到D 市共行驶了394km .28.(1) ∵抛物线过点(0,0)、(4,0),∴抛物线的对称轴为直线x=2∵顶点在直线112y x =--上,∴顶点坐标为(2,-2).故设抛物线解析式为y=a(x -2) 2-2.∵过点(0,0).∴12a =.∴抛物线解析式为2122y x x =-.(2)当A P ∥O B 时,如图(图略),∠BOA=∠OAP=45°,过点B 作B H ⊥x 轴于H ,则OH=BH .设点B(x ,x),故2122x x x =-,解得x=6或x=0(舍去). ∴B(6,6). 当OP ∥AB 时,同理设点B(4-y ,y) 故()()214242x y y =---,解得y=6或y=0(舍去).∴B(-2,6) (3)D(2,-6).29.(1)过B 作BM ⊥AE 于M .由AB=BE=5,BC=40.∴CE=3.∴DE=2.∴AE =由AB=BE ,B M ⊥AE ,∴EM =.∴BM =BE M ∽△FEB ,FG BMBE EM=,∴FG=10. (2)当0≤x ≤4时,2154y x x =-+;当4<x ≤10时,y=-2x+24,当y=10时,x=7或10x =-(3)当0≤x ≤4时,()22115102544y x x x =-+=--+,顶点为(10,25),∴当0≤x ≤4时,0≤y ≤16.当4<x ≤10时,y=-2x+24,4≤y <16.∴当4≤y<16时,平移的距离不等,两纸片重叠的面积y 可能相等.当0≤y <4或y=16时,平移的距离不等,两纸片重叠部分的面积也不可能相等.。

相关文档
最新文档