综合评价方法灰色评价法案例讲解
灰色关联度评价法例子
灰色关联度评价法例子
灰色关联度评价法是一种系统分析方法,用于评估多个指标对某一目标的影响程度。
下面是一个关于选择高中学校的例子:
假设我需要选择一所高中学校,但是有以下几个指标需要考虑:
1. 学校内部教育质量排名
2. 学校师资力量情况
3. 学校设施和硬件条件
4. 学校的学科特长
为了确定以上指标对学校的选择影响的程度,我们可以进行如下的灰色关联度评价:
步骤1:收集数据
收集各个高中学校的教育质量排名、师资力量情况、设施和硬件条件以及学科特长的数据。
步骤2:归一化处理
将不同指标的数据进行归一化处理,使得不同指标的取值范围相同。
步骤3:确定参考数列
选取一组参考数列,用于评价不同指标之间的关联程度,并考虑指标的重要性。
步骤4:计算关联度
根据灰色关联度评价法的公式,计算每个指标与目标的关联度。
步骤5:确定权重
通过对每个指标的关联度进行归一化处理后,结合专家意见确定各个指标的权重。
步骤6:综合评价
根据各个指标的权重和关联度,进行综合评价,得出最终的评价结果。
通过这样的灰色关联度评价,我们可以对不同高中学校的教育质量、师资力量、设施和硬件条件、学科特长等指标进行客观的评估,并选择最符合自己需求的学校。
灰度评价法
本文研究的城市广场旅游功能的评价系统即属于一个灰色系统。
首先,由于关于广场旅游功能的影响要素、层级分类及指标选定均具有“信息不完全性”;其次,所选取的评价指标数据,有些是已知的,即可以从现有的统计资料中获得,而另一些数据却是未知的,无法从统计资料中获得;再则,本文建立的评价指标中既有定性(灰色)指标,也有定量(白化)指标,各因素指标之间本质上是一种灰色关系。
因此,该系统具有信息不完全的“灰色”特征。
鉴于该系统的灰色特征,本文拟采用灰色模型对城市广场旅游功能进行综合评价。
灰色综合评价方法的原理为:首先将各评价指标分为不同的灰类型,然后建立隶属于各灰类的权函数,以定量地描述某一评价对象隶属于某个灰类的程度。
对具有多层次评价指标的体系,在子系统评价的基础上再对上一层次加权综合,以反映系统的整体状况。
运用这种方法进行综合评价的课题有物流中心选址、风险企业投资价值综合评价、商业银行竞争力综合评价、科研项目综合评价等,该方法取得了比较好的评价效果。
具体计算步骤如下:1(l)确定评价指标集根据设计的指标体系,有两层指标集,U=(U1,U2,U3,U4,U5,U6),其中U1=(U11,U12,U13),U2=(U21,U22,U23,U24,U25,U26),U3=(U31,U32,U33,U34,U35,U36),U4=(U41,U42,U43,U44,U45),U5=(U51,U52),U6=(U61,U62,U63)(2)确定指标评分等级在本文中,所有指标分为很好(大)、较好(大)、一般、较差(小)四个等级,分别为4、3、2、1分,指标等级介于两相邻等级之间,相关评分为3.5、2.5、1.5分,具体等级标准由专家根据经验确定。
(3)层次分析法确定各评价指标的权重常见的确定权重的方法有,德尔菲法、层次分析法、熵值法、模糊聚类分析法等。
本文采用层次分析法确定权重,本文在运用层次分析法时做了两点优化:①采用9/9-9/1标度法。
灰色关联度评价方法(10)讲解
01 (t )
x0 (t ) x2 (t )
0.0492 0.0704 0.0785 0.0112 0.0477 0.1392
02 (t )
x0 (t ) x3 (t )
0.0119 0.0289 0.0694 0.0278 0.0006 0.0832
首 页 上 页 下 页 尾 页
式中分辨系数 在(0,1)内取值,一般情况下依据 (6.10)中数据情况多在0.1至0.5取值, 越小越能 提高关联系数间的差异.关联系数 0i (k ) 是不超 过1的正数, 0i (k ) 越小, 0i (k ) 越大,它反映第i 个比较序列Xi与参考序列X0在第k个期关联程度.
首 页 上 页 下 页 尾 页
0i (t )
首 页 上 页 下 页 尾 页
上式可变形为
(min) (max) 0i (t ) 0i (t ) (max) i 1, 2,3; t 2000, , 2005
(6.1)
0i (t )称为序列xi和序列x0在第t期的灰色关联系 数(或简称为关联系数). 由(6.1)式可以看出, 取值的大小可以控制(max) 对数据转化的影响, 取较小的值,可以提高关联 系数间差异的显著性,因而称 为分辨系数. 利用(6.1)对表6-3中绝对差值0i (t ) 进行规范化,取 0.4, 结果见表6-4,以01 (2000)计算为例:
首 页 上 页 下 页 尾 页
表6-1是某地区2000-2005年国内生产总值的统计 资料.现在提出这样的问题:该地区三次产业中, 哪一产业的变化与该地区国内生产总值(GDP)的 变化态势更一致?也就是哪一产业与GDP的关联 度最大呢? 表6-1 某地区国内生产总值统计资料(百万元)
综合评价方法灰色评价法案例讲解
5
灰色关联法
1989年度西山矿务局五个生产矿井技术经济指标如表 6-3
By 杜小二
指标
白家庄矿 杜儿坪矿 西铭矿 官地矿 西曲矿
原煤成本
99.89 103.69 97.42 101.11 97.21
企业利润
96.91 124.78 66.44 143.96 88.36
原煤产量
102.63 101.85 104.39 100.94 100.64
1
灰色关联法
By 杜小二
1、煤矿企业经济效益的灰色关联分析法 (1)应用灰色关联分析法评价煤矿企业效益,首先要构成各个系 统的技术经济指标数据列: {X1}={X1(1),X1(2)……X1(n) } {X2}={X2(1),X2(2)……X2(n) }
∶ ∶ {Xm}={Xm(1),Xm(2)……Xm(n) }
第二步,确定个指标的重要性系数,如表6-4所示。
表6-4 各指标的重要性—权重
指标
权重
原煤成 企业利 产量 销售量 灰分 全员 周转 回收 百万吨
本
润
效率 天数 率 死亡
0.111 0.143 0.098 0.112 0.108 0.096 0.068 0.072 0.192
8
灰色关联法
By 杜小二
第三步,计算各矿井中指标数据列对于最优参考数据列的关联度。个矿井 指标数据列为:
{X1}= { 99.89,96.91,102.63,98.47,87.51,108.35,71.67,103.25,171.20} {X2}= {103.69,124.78, 101.85,103.16,90.27,106.39,137.16,100.00,51.35} {X3}= { 97.42,66.44,104.39,109.17,93.77,142.35,97.65,100.00,15.90 } {X4}= {101.11,143.96,100.94,104.39,94.33,121.91,171.31,99.13,53.72} {X5}= {97.21,88.36,100.64,91.90,85.21,158.61,204.52,100.22,20.78}
灰色综合评价法在城市投资环境评价中的应用——以中原城市群7个地市为例
1 投 资 环境 和 灰色 综 合 评 价法
投 资环境就 是指 围绕着 投资 主体存 在和 变化发 展 的并 足 以影 响或制 约投资 活动及 其结 果 的各 种 自然 、 技术 、 经济和社 会条件 的 总称 , 包括 与一定 投资 项 目相 关 的政 治 、 济 、 其 经 自然 、 社会 、 法律 等各 方 面 的因素 ,
某一 层次 的观测资 料加 以数 学处 理 , 到在更高 层次 上 了解 系统 内部 变化趋 势和相 互关 系[ 达 6 1 中 , 色关 。其 灰
联度 分析是灰 色 系统 理论 应用 的 主要方 面之一 。 由于关联 度分 析方法 是按发 展趋势 作 出分析 , 因此 对样 本 量 的多少没有 要求 , 不 需要 有典 型的分 布规律 , 系统数 据资 料较 少和条件 不满足 统计要 求 的情况 下 , 也 在 更
第 2 2卷
20 0 9年 6月
第 2期
苏州 科技 学 院学报 ( 工程 技 术版 )
V 12 o. 2
N . o2
J u a fS z o iest fS in ea d T c n lg ( gn eiga d T c n lg ) o r l u h uUnv ri o ce c n e h oo y En ie rn n e h oo n o y y
具有实用性 。
本研究 以中原城 市群 的 7个地级市 为例 ,对 灰色综 合评 价法 在城市投 资环境 评价 中的应 用进 行 阐述 。 中原城市群 是河南 省政府 于 2 0 0 6年发 布的《 中原 城市群 总体发 展规划 纲要》 中正式提 出 , 包括 郑州 、 阳 、 洛 开 封、 平顶 山、 乡 、 昌 、 河 、 新 许 漯 焦作 和济源 等 9个城 市 ( 中济源 是省辖 县级市 ) 其 。根据行 政级别 的 一致性 , 研 究对象 为除 去郑州 和济源 的其 他 7个地 级市 。
第三节灰色综合评价法
二、灰色综合评价法的模型和步骤
对事物的综合评价,多数情况是研究多对象的排序问题,即在各个评价对象之间排出优选 顺序
灰色综合评判主要是依据以下模型:R=E×W
式中:R=[r,r2,…,rm]'为m个被评对 象的综合评判结果向量;W=[w,W2,…, Wm]为n个评价指标的权重分配向量,其中 ∑w=1;E为各指标的评判矩阵 (k)为第i种方案的第k个指标与第k个最优指 标的关联系数 根据R的数值,进行排序
三、灰色综合评价法的实例分析
若k为指标或观测对象序号, 而且X也为单项,对于X项目的 运动员来说,应以X为最重要
的辅助训练项目
而对于学生来说,在X项目成 绩比较好的情况下,为提高其 身体素质的全面发展,应抓住 弱势,积极进行X和X项目的锻
炼
灰色关联分析主要着重研究" 外延明确、内涵不明确"的对 象,解决"小样本、贫信息、 不确定"问题,是一种解决不
三、灰色综合评价法的实例分析
某个体或某群体的行为数据如下(表12-5) (二)计算步骤 第
一步:求初值像(或均值像) 第二步:求差序列 第三步:求两极差 第四步:求关联系数(表12-6) 第五步:计算关联度(表12-7) (三)结果与分析 若k为时间序号,X与X(总分)的关联度最 大,为0.717,它们关联度程度的大小顺 序依次为X>X>X,这说明三个项目成绩的 好差排序也应如此,体育工作者在教学 或运动训练中,应根据具体情况进行针 对性教学或训练
第三节灰色综合 评价法
第三节灰色综合评价法
目录
二、灰色综合评价法的模型和步骤 三、灰色综合评价法的实例分析
灰色综合评价和模煳评价的主要步骤(精)
∑==
n
k k 1
k
k
ωω (5
(6)计算综合评判结果并排序
根据W E R ×
=计算,即:∑==
n
k i i k r 1
k
× (ω
ξ (6
其中,m i ,..., 2, 1=,若i r最大,则说明i
C与最优指标*
C最接近,亦即第i个方案优于其它方案,据此便可以对各方案进行排序,具体到本研究,便可对各省、自治区、
直辖市的生态环境质量进行排序。
1多层模糊综合评价
1.1构建模糊评判矩阵
设{}m u u u U ,..., , 21=为因素集,在本文中特指各评价指标,{}n v v v V ,..., , 21=为评判集,本文中指山东省17地市,模糊关系用~
R表示,u与v所具有的模糊关系的程度记为[]1, 0 , (~
min(1j ij j ij j j j j ij j ij ij x x x x x x x x x x x r (7根据式(6、(7可以计算得到评判矩阵~
R。
1.2分层作综合评判
模糊合成的一般形式如式(8所示:E
A R
W B -=~ (8本文中W表示指标的权重向量,E
A R
-~为相应指标所对应的模糊评判矩阵中
i k
k
k
i
i k k
i k k k i
i k k k
i
i C
C C C C C C C k -+--+-=
***
*max max min min (ρρξ (3
其中,[]1, 0∈ρ,一般取5. 0=ρ。
模糊综合评判和灰色评价法的应用实例分析
模糊综合评判和灰色评价法的应用实例分析一、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, kii j i UU U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层:第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
灰色关联分析法(灰色综合评价法)
灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。
设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。
(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。
(3) 确定各指标值对应的权重。
可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。
(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。
灰色关联度评价方法(10)讲解共31页文档
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
பைடு நூலகம்
灰色关联度评价方法(10)讲解
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
综合评价之层次分析法与灰色评价法
层次分析法AHP(Analytic Hierarchy Process)AHP的基本原理假设有n 个物体A, A2 , …, A n , 它们的重量1分别记为W, W2,…,W n. 现将每个物体的重量1两两进行比较如下:A1 A2 …AnA1 W1 /W1 W1 / W2 …W1 /W2A2 W1 /W2 W1 /W2 …W1/W2……………An Wn /W1 Wn /W2 Wn /WnAHP 的基本原理111212122212/////////n n n n n n W W W W W W W W W W W W A W W W W W W ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭L L M M M M L 若以矩阵来表示各物体的这种相互重量关系,判断矩阵由线性代数知识可以证明:矩阵A 最大特征根是n ,对应的特征向量是12[,,]Tn W W W W =L AHP 的基本原理例如,若购买一台设备, A 1为功能, A 2为价格,A 3为维修服务.1531/511/31/331A 1A 2A 2A 3A 3A 1x i 比x ja ij 值同样重要1稍重要3重要5很重要7极重要9AHP 的基本原理Matlab 编程A=[1,5,3;1/5,1,1/3;1/3,3,1];[x,y]=eig(A)W=x(:,1)/sum(x(:,1))AHP 的基本步骤建立递阶层次结构.构造出各层次中的所有判断矩阵.层次单排序及其一致性检验.层次总排序.下面通过实例来说明各步骤中所做的工作.AHP 的基本步骤2. 构造出各层次中的所有判断矩阵首先构造各准则A 1,A 2,…, A 5对目标O 的判断矩阵首先构造O-A i 的判断矩阵A 1 A 2 A 3 A 4A 5OA 1 A 2 A 3 A 4A 5x i 比x ja ij 值同样重要1稍重要3重要5很重要7极重要911/2433217551/41/711/21/31/5211/31/53111/3111/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦由上表, 可得O -A i 的判断矩阵ijji ij n n ij a a a a A 1,0,)(=>=⨯正互反阵任务:要由A 确定A 1,…, A 5对O 的权向量(权重)AHP 的基本步骤AHP 的基本步骤111212122212/////////n n n n n n W W W W W W W W W W W W W W W W W W ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭L L M M M M L 11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦nj i ,,2,1, =ijkj ik a a a =⋅一致阵允许不一致但要确定不一致的允许范围AHP 的基本步骤3. 层次单排序及其一致性检验即A 的最大特征根是n ,n 阶判断矩阵A 是一致的一致性的判别⇔max nλ=AHP 的基本步骤一致性比率查表: RI计算: CI 当CR <0.1时, 认为成对比较阵具有满意的一致性.当CR >0.1时, 必须重新调整成对比较阵.max ()1A nCI n λ-=-CI CR RI=n3 4 5 6 7 8 9RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45一致性指数5072.5)(max ≠=A λ018.0155)(max =--=A CI λ12.1=RI 016.012.1018.0===RI CI CR CR<0.1结论:A 虽不是一致阵, 但它具有满意的一致性.A 的不一致程度是可以接受的.AHP 的基本步骤验证一致性(以旅游地为例){}0.264, 0.476, 0.054, 0.098, 0.109W =AHP 的基本步骤求A 1,…, A 5对O 的权向量(权重)所对应的归一化特征向量.矩阵A 的max λAHP 的基本步骤桂林B 1黄山B 2北戴河B 3选择旅游地O景色A 1费用A 2居住A 3饮食A 4旅途A 50.4760.2640.0540.0980.109AHP 的基本步骤先成对比较三个旅游地的景色, 得成对判断矩阵B 111251/2121/51/21B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦类似可得211/31/8311/3831B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦31131131/31/31B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦41341/3111/411B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5111/4111/4441B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦AHP 的基本步骤k123451k ω2k ω3k ω0.595277.0129.0082.0236.0682.0429.0429.0142.0633.0193.0175.0166.0166.0668.0kλ005.3002.33009.33k CI 003.0001.000005.0kRI 58.058.058.058.058.0k v 计算可知通过一致性检验.k CR 54321,,,,B B B B B桂林B 1黄山B 2北戴河B 3选择旅游地O景色A 1费用A 2居住A 3饮食A 4旅途A 50.4760.2640.0540.0980.1090.5950.1290.2770.0820.2360.6820.1420.1750.1660.4290.4290.1930.6330.1660.668B 1对总目标的权重为:3.0110.0166.0099.0633.0055.0429.0475.0082.0263.0595.0=⨯+⨯+⨯+⨯+⨯故最后的决策应为去北戴河.B 1对总目标的权重为:0.5950.2640.0820.4760.4290.0540.6330.0980.1660.1090.3⨯+⨯+⨯+⨯+⨯=0.246, 0.456.同理得B2, B3对总目标的权值分别为:312B B B >>即各方案的权重排序:123B , B , B 又分别表示桂林, 黄山, 北戴河.优点:缺点:存在着较大的主观性.对AHP 的简单评价计算简便, 结果明确, 便于决策者直接了解和掌握.灰色综合评价法3. 灰色综合评价法的步骤(1) 根据评价目的确定评价指标体系, 收集评价数据.12n x x x 12111212122212mm m n n nm f f f a a a a a a a a a ⎛⎫ ⎪⎪ ⎪⎪⎝⎭ (2) 确定最优指标集( )*F ****12[,,]m F a a a = 式中*(1,2)i a i n = 为第i 个指标的最优值.设2. 灰色系统的应用范畴(1) 灰色关联分析.(2) 灰色预测: 人口预测、初霜预测、灾变预测等. (3) 灰色预测控制.应用灰色关联分析方法对受多种因素影响的事物和现象从整体观念出发进行综合评价是一个被广为接受的方法. 该方法不仅可以充分利用原始数据所提供的信息, 而且计算比较简便.选定最优指标集后,可构造矩阵D :确定最优指标集时, 要考虑可行性. 若最优选的过高, 则不现实, 评价的结果也就不可能正确.***12111212122212m m m n n nm a a a a a a D a a a a a a ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(3) 对指标数据进行无量钢化无量纲化后的数据序列形成如下矩阵:***12111212122212mm m nnnma a a a a a a a a a a a ⎛⎫''' ⎪''' ⎪ ⎪''' ⎪ ⎪ ⎪'''⎝⎭(4) 求差数列i j∆它表示第i 个评价对象第j 个指标数据与最优指标集中第j 个指标数据的绝对差。
灰色关联度评价法例子
灰色关联度评价法例子灰色关联度评价法例子什么是灰色关联度评价法灰色关联度评价法是一种评价指标的方法,用于分析不同因素之间的关联程度。
它可以帮助我们量化分析和比较各种因素的重要性和关系,从而为决策提供依据。
例子1:学生综合素质评价•因素1:学生学习成绩•因素2:体育锻炼时间•因素3:课外活动参与度•因素4:社会实践经历通过灰色关联度评价法,可以将以上四个因素与一个评价指标(例如综合素质评价得分)进行比较,评估每个因素对于综合素质的贡献程度。
评价结果可以帮助学校制定更为客观和科学的学生综合素质评价指标。
例子2:产品质量评价•因素1:产品外观•因素2:产品功能•因素3:产品耐用性•因素4:产品售后服务通过灰色关联度评价法,可以将以上四个因素与产品质量进行关联度分析,评估每个因素对于产品质量的影响程度。
评价结果可以帮助企业了解产品质量存在的问题,以及针对不同因素采取相应的改进措施。
例子3:城市交通拥堵评价•因素1:道路容量•因素2:车辆密度•因素3:交通信号灯设置•因素4:城市公共交通系统通过灰色关联度评价法,可以将以上四个因素与城市交通拥堵进行关联度分析,评估每个因素对于交通拥堵的影响程度。
评价结果可以帮助政府和交通管理部门有针对性地解决交通拥堵问题,提高城市的交通效率。
结论灰色关联度评价法提供了一种有效的工具,可以帮助我们理清因素之间的关联程度,从而更好地进行评价和决策。
通过以上例子,我们可以看到该方法在不同领域都有广泛的应用价值,为各种评估和分析工作提供帮助。
例子4:金融风险评估•因素1:利率变动•因素2:股市波动•因素3:政策影响•因素4:经济景气度通过灰色关联度评价法,可以将以上四个因素与金融风险进行关联度分析,评估每个因素对于金融风险的影响程度。
评价结果可以帮助机构和投资者识别风险因素并制定相应的风险管理策略。
例子5:客户满意度评价•因素1:产品质量•因素2:服务态度•因素3:交付时效•因素4:价格合理性通过灰色关联度评价法,可以将以上四个因素与客户满意度进行关联度分析,评估每个因素对于客户满意度的贡献程度。
应用灰色综合评判法评价玉米杂交新组合
色综合评判值 。据此值 ,排定各参试组合的优劣顺
序 ( 5。 表 )
由于各 因素 量 纲 不一 致 需 进 行 无 量 纲 化 处 理 。 如 数据 是取 最 大值 的 , 用 数列 中的数据 分别 去
除 数列中的数据 ; 如 数据是取最小值的, 用 数 列 中的数 据分 别 去除 置 数列 中 的数据 ; 如 数 据
是取 适 中值 的 , 用 数 列 中的数 据 分 别 去 除 以
l 个性状均 为比较数列 ,首先求各性状与产 量的 2 差序 列值 与两 极差 。 由无 量 纲化 结 果 计 算 得 出 ,
=
095 ,z = 0 根 据 公 式 [ = ( + .7 6 r t ; C , n
21 0 2年 第 2 6卷
p / A ( )+ M) [ M) ( ik p ] 其中P为分辨系数( 0<P < 1 , 般取 P =0 5 , )一 . ] 即可得 到各 性状 与产 量 的关
合分析和评价 ,排 出了各参 试杂 交种 的优 劣 ,评 价结果 客观 、真实 、可靠 ,评价 方 法可 减少 对育 种经 验 的依
赖 ,符合未来数字育种 发展方向 。 关键词 :玉米 ;品种 ;综合评价
中图 分 类 号 :¥ 1. 3 5 30 7 文 献标 识 码 : A
文章编号 : 0 15 8 (0 2 20 3 - 10 —2 0 2 1 )0 -190 4
1 材 料 与 方 法
1 1 材 料 .
枯病 、黑粉病 、倒折率中均有 0出现,在数据运算
过程 中 ,会 出 现 “ 效 应 ”,因此 将 0化 为 1 零 。其 余数 字亦 依 次加 1 ,结果 见表 l 。
1 3 2 原始数 据 无量 纲化 处理 ..
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
灰色关联法
1989年度西山矿务局五个生产矿井技术经济指标如表 6-3
By 杜小二
指标
白家庄矿 杜儿坪矿 西铭矿
官地矿
西曲矿
原煤成本
企业利润 原煤产量 原煤销售量 商品煤灰分 全员效率
99.89
96.91 102.63 98.47 87.51 108.35
103.69
124.78 101.85 103.16 90.27 106.39
第二步,确定个指标的重要性系数,如表6-4所示。
表6-4 各指标的重要性—权重 指标
权重
原煤成 企业利 产量 销售量 灰分 全员 周转 回收 百万吨 本 润 效率 天数 率 死亡 0.111 0.143 0.098 0.112 0.108 0.096 0.068 0.072 0.192
8
灰色关联法
灰色关联法
By 杜小二
在煤矿企业经济效益评价中的应用
灰色关联法
By 杜小二
目前煤矿企业无论是国家对企业的评价,还是企业内部自我评价, 往往是利用某几个主要单项指标完成计划的相对数,或与历史同期相 比的相对数来进行评价。但是一个企业甲指标完成较好,乙指标较差; 另一企业甲指标较差,乙指标较好。这时得到的综合评价也很难明确 评出谁比谁更好些。为解决这些问题,近几年来国内外学者提出了一 些新方法,如模糊综合评判等,有的已应用于实际工作中。
3
灰色关联法
By 杜小二
因此,数据列{X0(1)}的各项元素是最优技术经济指标的数据列 (3)确定各指标的重要性系数。 (4)至此,余下的问题就是计算以各项技术经济指标为元素构成的 数据列参对考数据列的关联度,所得关联度就是被比各企业经济效 益优劣的次序。
4
灰色关联法
By 杜小二
2. 实例计算 对西山矿务局五个生产矿井1989年度的企业经济效益综合评价。 1989年度西山矿务局五个生产矿井实际资料如表6-3所示。
11
灰色关联法
By 杜小二
谢谢!
第五组 王佰计 穆鵬 张沥丹 吴洪娴 韦屹 官敏 韦心兰 周丽梅
12
100.00 51.35
97.65
100.00 15.90
171.31
99.13 53.72
204.52
100.22 20.78
7
灰色关联法
By 杜小二
第一步,确定最优参考数据列。
{X0}= { 97.21,143.96,103.60,109.17,85.21,158.61,71.67,103.25,15.90 }
经计算各矿井的关联度及其优劣顺序如表6—5所示
9
灰色关联法
By 杜小二
表6-5 各矿井关联度及其优劣次序
白家庄 矿
关联度
优劣次 序
杜儿坪 矿 0.7749 5
西铭矿
官地矿
西曲矿
0.8419 3
0.8916 1
0.8097 4
白家庄 矿 0.8734 2
10
灰色关联法
By 杜小二
3.结论 (1)用灰色关联分析法评价煤炭企业经济效益是一种行之有效且简单易 行的新方法。 (2)灰色关联分析法只是对评判对象的优劣做出鉴别,并不反映某个 企业经济效益的绝对水平。
By 杜小二
第三步,计算各矿井中指标数据列对于最优参考数据列的关联度。个矿井 指标数据列为:
{X1}= { 99.89,96.91,102.63,98.47,87.51,108.35,71.67,103.25,171.20} {X2}= {103.69,124.78, 101.85,103.16,90.27,106.39,137.16,100.00,51.35} {X3}= { 97.42,66.44,104.39,109.17,93.77,142.35,97.65,100.00,15.90 } {X4}= {101.11,143.96,100.94,104.39,94.33,121.91,171.31,99.13,53.72} {X5}= {97.21,88.36,100.64,91.90,85.21,158.61,204.52,100.22,20.78}
97.42
66.44 104.39 109.17 93.77 142.35
101.11
143.96 100.94 104.39 94.33 121.91
97.21
88.36 100.64 91.90 85.21 158.61
流动资金周转天数
资源回收率 百万吨死亡
71.67
103.25 171.20
137.16
2Байду номын сангаас
灰色关联法
By 杜小二
(2)确定参考数据列,确定原则为:参考数据列各项元素是以各系统技 术经济指标数据列里选出最佳值组成的,即参考数据列{X0}为: {X0}={X0(1),X0(2)……X0(n) } ={Xi (1),,Xj(2)……..Xk(m) } 式中:即,I,j,k € [1,m ]的自然区域 {X0}中的Xi (1), Xj(2)……..Xk(m) 是被比数列中的最佳值,如企业利润指 标,人们希望越高越好,生产成本指标越低越好。若Xi (r)表示企业利润, Xj(s)表示生产成本,那么: Xi (r) =max{X1(r),X1(r)………Xn(r) } Xj(s) =min{Xi (s),,Xj(s)……..Xn(s) }
1
灰色关联法
By 杜小二
1、煤矿企业经济效益的灰色关联分析法 (1)应用灰色关联分析法评价煤矿企业效益,首先要构成各个系 统的技术经济指标数据列: {X1}={X1(1),X1(2)……X1(n) } {X2}={X2(1),X2(2)……X2(n) } ∶ ∶ {Xm}={Xm(1),Xm(2)……Xm(n) } 式中:X1,X2,……,Xm分别表示1到m个系统 n表示技术经济评价指标数