(完整word版)人教版高一数学必修一和必修四公式
高一数学必修一公式大全
高一数学必修一公式大全1. 代数篇1.1 代数基本性质•加法交换律:$\\displaystyle a+b=b+a$;•加法结合律:$\\displaystyle (a+b)+c=a+(b+c)$;•加法单位元:$\\displaystyle a+0=a$;•加法逆元:$\\displaystyle a+(-a)=0$;•乘法交换律:$\\displaystyle a\\cdot b=b\\cdot a$;•乘法结合律:$\\displaystyle (a\\cdot b)\\cdot c=a\\cdot (b\\cdot c)$;•乘法单位元:$\\displaystyle a\\cdot 1=a$;•乘法逆元:$\\displaystyle a\\cdot \\frac{1}{a}=1$。
1.2 一次函数•一次函数的一般式:$\\displaystyle y=ax+b$;•一次函数的斜率:$\\displaystyle a$;•一次函数的截距:$\\displaystyle b$;•一次函数的图像为直线。
1.3 二次函数•二次函数的一般式:$\\displaystyle y=ax^2+bx+c$;•二次函数的顶点坐标:$\\displaystyle \\left( -\\frac{b}{2a},-\\frac{D}{4a}\\right)$,其中$\\displaystyle D=b^2-4ac$;•二次函数的对称轴方程为$\\displaystyle x=-\\frac{b}{2a}$;•二次函数的图像为抛物线。
1.4 指数与对数•指数运算的基本性质:–$\\displaystyle a^m\\cdot a^n=a^{m+n}$;–$\\displaystyle (a^m)^n=a^{mn}$;–$\\displaystyle \\left( \\frac{a}{b}\\right)^n=\\frac{a^n}{b^n}$;–$\\displaystyle \\left( ab\\right) ^n=a^nb^n$;–$\\displaystyle (a^n)^m=a^{nm}$;–$\\displaystyle a^{0}=1$;–$\\displaystyle a^{-n}=\\frac{1}{a^n}$。
人教版高一教学数学必修一至必修四公式
适用标准文档初高中连接:和平方:a2b2(a b)(a b)和、差平方:(a b)2a22ab b2立方和、立方差:a3b3(a b)(a2abb2)和、差立方:(ab)3a3b33a2b3ab2 (a b c)2a2b2c22ab2bc2ac;(a b c)2a2b2c22ab2bc2ac(a b c)2a2b2c22ab2bc2ac;(a b c)2a2b2c22ab2bc2acx1x2bx1和x2为ax 2bxc0的两根,那么a韦达定理:设cx1x2a必修一:(1)元素与会合的关系:属于()和不属于()(2)会合中元素的特征:确立性、互异性、无序性会合与元素(3)会合的分类:按会合中元素的个数多少分为:有限集、无穷集、空集(4)会合的表示方法:列举法、描绘法(自然语言描绘、特点性质描绘)、图示法、区间法子集:若x A x B,则A B,即A是B的子集。
1、若会合A中有n个元素,则会合A的子集有2n个,真子集有(2n-1)个。
关系注2、任何一个会合是它自己的子集,即A AC.3、对于会合A,B,C,假如AB,且BC,那么A4、空集是任何会合的(真)子集。
会合真子集:若且(即起码存在但),则是的真子集。
ABAB x0Bx0A AB会合相等:A B且AB A B会合与会合定义:A B x/xA且x B交集A A,A,A B B A,A B A,A B B,A B A B A性质:A定义:A B x/xA或x B并集A A,AA,A B B A,A BA,A B B,A B A B B运算性质:ACard(AB)Card(A)Card(B)-Card(AB)定义:CA x/xU且x A AU补集性质:,,,,(CUA)A(CUA)AU CU(CUA)ACU(AB)(CUA)(CUB)C U(A B) (C U A) (C U B)恒建立问题:ax2bxc0(a0)在R上恒建立的条件a0且△0;ax2bxc0(a0)在R上建立的条件为a0且△0指数函数:n当n为奇数时:n a n a;当n为偶数时:n a n a,0;a m m a n(a0,m、n N*,且m1) aa n1a,a0a m na mr a s a rs(a,、;r s a r(a,、;r a r r(a,;Q)sa0r sQ)(a)0r sQ)(ab)b0b0r对勾函数单一区间公式:对勾函数基本形式:y xp,在(,0)(0,)上单一递加:(,p)(p,)x单一递减:,)(,(p00p)文案大全适用标准文档对数函数:log a a1,log a b?log b a1 ,log a 1 0 ,1(a 、b0且a 、b1), log bd log ad log b log a bcclog b aabaalog aNN(N 、a 0且a1),clogb acddlog a (M?N)log a Mlog a Na ≠1)lnxlog e x(x0),lnelog e e1log a Mlog a M log a N(a、 M 、N>0, 且Nlog a m n nlog a m(a 、b 、m0,nR,且a1), log a blog c b(a 、b 、c0,且a 、c 1)(换底公式)log a m bnnlog a blog c am函数图像(一定熟)表1 指数函数ya xa0,a1定义域x R 值域y0,图象对数数函数ylog axa0,a1x0,yR过定点(0,1)过定点(1,0)减函数增函数减函数增函数x (,0)时,y (1,)x(,0)时,y (0,1)时,y (0, )x 时,y (,0)时,x(0,1)(0,1) x (0,时,(0,1)x (0,)y (1,)时,时,)yx (1, ( ,0) x (1,y(0,))y) 性质abababab表2幂函数yx(R)文案大全适用标准文档p111qp 为奇数 奇函数q 为奇数p 为奇数 q 为偶数为偶数p偶函数为奇数q第一象限性减函数增函数过定点质(01,)判断奇偶函数:若f(x)f( x)则为偶函数,若 f( x) f(x)则为奇函数(奇函数f(0) 0)判断单一函数:○1在定义域内设x 1 x 2,化简f(x 1) f(x 2),若f(x 1) f(x 2) 0即f(x 1) f(x 2)则以为该函数在其定义域内单一递减,若f ( x 1 ) f ( x 2 ) 0 ( x 1)f ( x 2 )则以为该函数在其定义域内单一递加。
人教版高一数学必修一和必修四公式
人教版高中数学必修一至必修四公式(必会)初高中连接:和平方: a 2 b 2 (ab)(ab) 和、差平方: (a b)2 a 2 2ab b 2立方和、立方差: a 3 b 3(a b)(a 2 ab b 2 ) 和、差立方: (a b)3 a 3 b 3 3a 2b 3ab 2(a b c)2 a 2 b 2 c 2 2ab 2bc 2ac ; (a b c) 2 a 2 b 2 c 2 2ab 2bc 2ac (a bc) 2 a 2 b 2 c 22ab 2bc 2ac ; (ab c) 2 a 2 b 2c 2 2ab 2bc 2acx 1 x 2bx 1和x 2为ax 2bx c 0的两根,那么 a韦达定理:设cx 1 x 2a恒建立问题:ax 2 bx c 0( a 0)在 R 上恒建立的条件 a0且△ 0; ax 2bx c 0( a 0)在 R 上建立的条件为 a 0且△ 0指数函数:na , a 0 a m m an当 n 为奇数时:na na ;当 n 为偶数时:na n a; n 1 ( a 0, m 、 n N *,且 m 1)a , a 0 a mna mra sa r s(a, 、s ; r ) s a rs( a , 、 s ; ra rr( a,b ; Q)a 0 r Q ) (a0 r Q) ( ab)b 0 0 r对勾函数单一区间公式:对勾函数基本形式: yxp ,在 ( ,0)(0, 单一递加:( ,p ) ( p,)x) 上单一递减: ,)(,( p 0 0 p ) 对数函数 :log a a1,log a b ? log b a 1 ,log a 1, alog a N N ( N 、 a 0且 a 1),log a b1(a 、 b且 a 、 bddlog bclog ac log b 1) , log blog addaacbcablog a ( M ? N ) log a M log a Nlog a M log a M log a N (a 、 M 、 N>0, 且a ≠ 1)ln x log e x( x 0), ln e log e e 1Nlog a m nn log a m ( a 、 b 、 m 0, n R,且 a 1) , log a b log c b (a 、 b 、 c0,且 a 、 c 1) (换底公式 )nnlog a m blog a b log c am函数图像(一定熟)表1指数函数y a xa 0,a 1对数数函数ylog a x a0, a 11定义域值域图象人教版高中数学必修一至必修四公式(必会)x R x0,y 0,y R过定点 (0,1) 过定点 (1,0)减函数增函数减函数增函数x ( ,0)时, y (1, ) x ( ,0)时, y (0,1) 时,y (0, ) 时,x (0,1)x y ( ,0) x (0,时,(0,1)x (0, ) 时,y (1, ) (0,1)时,时,)yx (1, ( ,0)x (1, y (0, ))y )性质a b a b a ba b表 2 幂函数 y x ( R)p0 1 1 1qp为奇数奇函数q为奇数p为奇数q为偶数p为偶数偶函数q为奇数第一象限性增函数(01,)减函数质过定点2人教版高中数学必修一至必修四公式(必会)判断奇偶函数:若 f ( x) f ( x) 则为偶函数,若 f ( x)f ( x) 则为奇函数(奇函数 f (0) 0 )1x1 x2,化简 f (x1 ) f ( x2 ) ,若 f ( x1 ) f ( x2 ) 0即 f ( x1 ) f (x2 ) 则以为该函数在其判断单一函数:○ 在定义域内设定义域内单一递减,若 f ( x1 ) f ( x2 ) 0即f (x1 ) f (x2 ) 则以为该函数在其定义域内单一递加。
高一数学必修一公式大全
高一数学必修一公式大全一名高中生,要有最科学的学习方法,才能事半功倍。
比如,在数学学习当中,高一同学要能够学会检查和分析,要掌握自己学习的进度,还要愿意动脑记忆,高一的数学也是如此,小编在这里整理了相关资料,希望能帮助到您。
一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B, B?C ,那么 A?C④如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修一所有公式归纳
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载
2.过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想.
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(8)不等式 的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.
§1.1.2集合间的基本关系
一.教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
第一章集合与函数
§1.1.1集合的含义与表示
一.教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
高中数学必修一到必修五公式.doc
高中数学必修一到必修五公式篇一:人教版高一数学必修一至必修五教材目录必修一、二、四、五章节内容必修一必修四第一章集合与函数的概念第一章三角函数1.1集合1.1任意角和弧度制1.2函数及其表示1.2任意角的三角函数1.3函数的基本性质第二章基本初等函数2.1指数函数2.2对数函数2.3幕函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修五第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示方法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列前n项和第三章不等式3.1不等关系与不等式3.2 一元一次不等式及其解法3.3二元一次不等式(组)及其解法3.4基本不等式1.3三角函数的诱导公式1.4三角函数的图像与性质1.5函数y=Asin(?x+?)1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦3.2简单的三角恒等变换必修二第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间体的表面积与体积第二章点、直线、平面间的关系2.1空间点、直线、平面之间的位2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式篇二:高中数学必修1到必修5的重点公式口诀一高中数学必修1到必修5的重点公式口诀一、《集合与函数》内容子交并补集,还有幕指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
(完整word版)高中数学必修1-2知识点归纳及公式大全(1)(1)
高一数学常用公式及结论必修1:一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;6。
常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 〈=> f (– x ) = – f ( x ) ,偶函数 〈=〉 f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D,且x 1 〈 x 2① f ( x 1 ) < f ( x 2 ) 〈=〉 f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) 〉 f ( x 2 ) <=〉 f ( x 1 ) – f ( x 2 ) 〉 0 〈=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠。
(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)
三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。
o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。
新课标高中数学必修1必修四公式大全
数学必修1必修4常用公式及结论一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)两根式12()()()(0)f x a x x x x a =--≠.四、指数与指数函数 1、幂的运算法则:(1)a m • a n = a m + n ,(2)nm nmaa a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n m na a =(9)m n m na a 1=-2、根式的性质 (1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(15.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…)2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .例如: y = x 2 2x x y ==1-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减八. 平均增长率的问题:如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学必修一公式大全
高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。
在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。
在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。
一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。
高一数学必修1,2的所有公式
高一数学必修1,2的所有公式必修1 2三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-co sA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))积化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsin某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)。
新人教高一上必修一、四数学公式大全加精.doc
三角函数、向量公式结论'正角:按逆时针方向旋转形成的角1、任意角〈负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角Q的顶点与原点重合,角的始边与X轴的非负半轴重合,终边落在第几象限,则称。
为第几象限角.第一象限角的集合为360° <a<k-360° +90°,ke z}第二象限角的集合为同如360° + 90° <如360°+180°,沱z}终边在x轴上的角的集合为同口 =们180。
,沱Z}终边在y轴上的角的集合为回勿欤• 180。
+ 90。
,沱Z}3、与角。
终边相同的角的集合为[j3\j3 = k-360° + a,ke z}4、已知。
是第几象限角,确定-(ne N*)所在象限的方法:先把各象限均分〃等份,再从x轴的正ry半轴的上方起,依次将各区域标上一、二、三、四,则a原来是第几象限对应的标号即为竺终边所n落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为广的圆的圆心角a所对弧的长为/,则角a的弧度数的绝对值是|a| = 4.r7、弧度制与角度制的换算公式:2^ = 360°, 1°= —, l = f—«57.3\180 \ 71 )8、若扇形的圆心角为。
(。
为弧度制),半径为r,弧长为/,周长为C,面积为S ,则/ =「|用,C = 2r + l, S=-lr = -\a\ r~.2 21 19、设a是一个任意大小的角,a的终边上任意一点P的坐标是(x,y),它与原点的距离是r\r- y]x~ + y" > 0) - KO sin a = —, cosa- — , tan(z = — (x0).\ ' r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11> 三角函数线:sin a = MP, cos a = OM, tan a - AT.1 一Cos a Sina 12、 同角三角函数的基本关系:(l )sin 2 cr+cos 2cr = l ; (2)'ina = tanacos a13、 三角函数的诱导公式:(1) sin (2A7T+cr ) = sina , COS (2A TT +。
人教版高一数学必修一至必修四公式
初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方: 2222)(b ab a b a +±=± 立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题:指数函数:⎩⎨⎧<-≥===00n a a a a a a n a a nn n n ,,为偶数时:;当为奇数时:当;⎪⎪⎭⎪⎪⎬⎫==-m n mnm n mn a a a a1)10*>∈>m N n m a ,且、,( 对勾函数单调区间公式:对勾函数基本形式:xpx y +=,在),0()0,(+∞⋃-∞上⎪⎩⎪⎨⎧⋃-+∞⋃--∞)00(),(),(p p p p ,(),单调递减:单调递增:对数函数:1log =a a ,1log log =∙a b b a ,01log =a ,)10(log ≠>=a a N N aNa 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-=⎪⎭⎪⎬⎫-=+=∙N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e⎪⎭⎪⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、,)1,0(log log log ≠>=c a c b a abb c c a 、且、、(换底公式)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f ) 判断单调函数:○1在定义域内设21x x <,化简)()(21x f x f -,若)()(0)()(2121x f x f x f x f >>-即则认为该函数在其定义域内单调递减,若)()(0)()(2121x f x f x f x f <<-即则认为该函数在其定义域内单调递增。
人教版高中数学必修一必修四公式大全,推荐文档(K12教育文档)
人教版高中数学必修一必修四公式大全,推荐文档(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版高中数学必修一必修四公式大全,推荐文档(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版高中数学必修一必修四公式大全,推荐文档(word版可编辑修改)的全部内容。
1、集合12{,,,}n a a a 的子集个数共有_____个;真子集有_____个;非空子集有____个.2、定义: 奇函数 〈=〉 f (– x ) = _________ ,偶函数 <=〉 f (–x ) =_________(注意定义域)3、幂的运算法则(1)a m • a n= _____________(2)=m n a a ÷ _____________ (3)( a m ) n = _____________ (4)( ab ) n =_____________(5) na b ⎛⎫= ⎪⎝⎭_____________ (6)a 0( a ≠0) =_____________(7)n a -= _____________ (8)_____________(9)nm a -= _____________4、根式的性质(1)n =_____________(2)当n 为奇数时=_____________当n =_____________=_____________5、指数式与对数式的互化: log a N b =⇔_____________ (0,1,0)a a N >≠>.6、对数的运算法则(1)log a N b =⇔_____________ (0,1,0)a a N >≠>.(2)log a 1 = _______ (3)log a a = _______(4)log a a b= _______ (5)a log N a =_______ (6)log a (MN) = _____________ (7)log a (N M ) =_____________ (8)log a N b =_____________ (9)换底公式(以b 为底,b 〉0且b 1≠):log aN = _____________ (10)log m n a b =_____________ (0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >)。
人教版高一数学必修一至必修四公式之欧阳数创编
高中衔接:和平方:))((22b a b a b a -+=- 和、差平方:2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a cx x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题: 指数函数:⎩⎨⎧<-≥===00n a a a a a a n a a nn n n ,,为偶数时:;当为奇数时:当;⎪⎪⎭⎪⎪⎬⎫==-m n m nmnmna a a a 1)10*>∈>m N n m a ,且、,(对勾函数单调区间公式:对勾函数基本形式:xpx y +=,在),0()0,(+∞⋃-∞上⎪⎩⎪⎨⎧⋃-+∞⋃--∞)00(),(),(p p p p ,(),单调递减:单调递增:对数函数:1log =a a ,1log log =•a b b a ,1log =a ,)10(log ≠>=a a N N a N a 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-=⎪⎭⎪⎬⎫-=+=•N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e ⎪⎭⎪⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、,)1,0(log log log ≠>=c a c b a abb c c a 、且、、(换底公式) 函数图像(必须熟)表1 指数函数()0,1xy a a a =>≠ 对数数函数()log 0,1a y x a a =>≠定义域 x R ∈()0,x ∈+∞值域()0,y ∈+∞y R ∈图象性质过定点(0,1)过定点(1,0)减函数增函数减函数增函数(,0)(1,)(0,)(0,1)x yx y∈-∞∈+∞∈+∞∈时,时,(,0)(0,1)(0,)(1,)x yx y∈-∞∈∈+∞∈+∞时,时,(0,1)(0,)(1,)(,0)x yx y∈∈+∞∈+∞∈-∞时,时,(0,1)(,0)(1,)(0,)x yx y∈∈-∞∈+∞∈+∞时,时,a b<a b>a b<a b>表2 幂函数()y x Rαα=∈pqα=0α<01α<<1α>1α=pq为奇数为奇数奇函数pq为奇数为偶数pq为偶数为奇数偶函数第一象限性质减函数增函数过定点01(,)判断奇偶函数:若)()(xfxf-=则为偶函数,若)()(xfxf-=-则为奇函数(奇函数0)0(=f)判断单调函数:○1在定义域内设21xx<,化简)()(21xfxf-,若)()()()(2121xfxfxfxf>>-即则认为该函数在其定义域内单调递减,若)()()()(2121xfxfxfxf<<-即则认为该函数在其定义域内单调递增。
人教版高一数学必修一至必修四公式之欧阳引擎创编
高中衔接:欧阳引擎(2021.01.01)和平方:))((22b a b a b a -+=- 和、差平方:2222)(b ab a b a +±=± 立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a cx x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题: 指数函数:⎩⎨⎧<-≥===00n a a a a a a n a a nn n n ,,为偶数时:;当为奇数时:当;⎪⎪⎭⎪⎪⎬⎫==-m n m nmnmna a a a 1)10*>∈>m N n m a ,且、,( 对勾函数单调区间公式:对勾函数基本形式:xpx y +=,在),0()0,(+∞⋃-∞上⎪⎩⎪⎨⎧⋃-+∞⋃--∞)00(),(),(p p p p ,(),单调递减:单调递增:对数函数:1log =a a ,1log log =•a b b a ,01log =a ,)10(log ≠>=a a N N a Na 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-=⎪⎭⎪⎬⎫-=+=•N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e ⎪⎭⎪⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、, )1,0(log log log ≠>=c a c b a abb c c a 、且、、(换底公式)函数图像(必须熟)表1 指数函数()0,1x y a a a =>≠对数数函数()log 0,1a y x a a =>≠定义域 x R ∈ ()0,x ∈+∞值域()0,y ∈+∞y R ∈图象性质过定点(0,1)过定点(1,0)减函数增函数减函数增函数(,0)(1,)(0,)(0,1)x y x y ∈-∞∈+∞∈+∞∈时,时,(,0)(0,1)(0,)(1,)x y x y ∈-∞∈∈+∞∈+∞时,时,(0,1)(0,)(1,)(,0)x y x y ∈∈+∞∈+∞∈-∞时,时,(0,1)(,0)(1,)(0,)x y x y ∈∈-∞∈+∞∈+∞时,时,a b <a b >a b <a b >表2幂函数()y x R αα=∈p qα=0α< 01α<< 1α> 1α=p q 为奇数为奇数奇函数p q 为奇数为偶数p q 为偶数为奇数偶函数第一象限性质减函数增函数过定点01(,)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f )判断单调函数:○1在定义域内设21x x <,化简)()(21x f x f -,若)()(0)()(2121x f x f x f x f >>-即则认为该函数在其定义域内单调递减,若)()(0)()(2121x f x f x f x f <<-即则认为该函数在其定义域内单调递增。
高一数学公式必修一整理
高一数学公式必修一整理为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可的独立人格。
下面给大家分享一些关于高一数学公式必修一整理,希望对大家有所帮助。
第一章集合与函数概念一、集合有关概念1. 集合的含义(研究对象的全体)2. 集合的中元素的三个特性:(1) 元素的确定性,互异性,无序性3.集合的表示:用一个大写字母表示,列举法,描述法,自然语言法,区间法,韦恩图法 (Venn图)非负整数集(即自然数集) 记作:N正整数集 N-或 N+ 整数集Z 有理数集Q 实数集R 复数集C4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合二、集合间的基本关系包含,包含于A?B,真包含,真包含于,等于=3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合其子集有2n个,真子集有2n-1个三、集合的运算并(全要),交(重合),补(剩余)第二章、函数的有关概念1.函数的概念:非空、数集、x的全体、y的唯一。
x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域是B的子集.定义域:1式子有意义的条件(1)分母不等于零;(2)偶次方根的被开方数大于等于零;(3)对数式的真数大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)零次幂底数不为02生活实际3抽象函数定义域的求法(由定义域求房间范围,再由房间范围求定义域)2.值域 : 观察法,几何法,公式法,图像法,不等式法,导数法,3. 函数图象知识归纳画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方: 2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=±μ 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 恒成立问题:00)0(0ax ;00)0(0ax 22<<≠<++<>≠>++且△上成立的条件为在且△上恒成立的条件在a R a c bx a R a c bx指数函数:⎩⎨⎧<-≥===00n a a a a a a n a a n n n n ,,为偶数时:;当为奇数时:当;⎪⎪⎭⎪⎪⎬⎫==-m n m n mnmna aa a 1)10*>∈>m N n m a ,且、,( )00()()0()()0(Q rb a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+;,;、,;、,对勾函数单调区间公式:对勾函数基本形式:x p x y +=,在),0()0,(+∞⋃-∞上⎪⎩⎪⎨⎧⋃-+∞⋃--∞)00(),(),(p p p p ,(),单调递减:单调递增:对数函数:1log =a a ,1log log =•a b b a ,1log =a ,)10(log ≠>=a a N N a N a 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-=⎪⎭⎪⎬⎫-=+=•N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e⎪⎭⎪⎬⎫==b m n b m n m a na a n a m log log log log )1,0(≠∈>a R n mb a 且,、、, )1,0(log log log ≠>=c a c b a ab bc c a 、且、、(换底公式) 函数图像(必须熟)定义域x R∈()0,x∈+∞值域()0,y∈+∞y R∈图象性质过定点(0,1) 过定点(1,0)减函数增函数减函数增函数(,0)(1,)(0,)(0,1)x yx y∈-∞∈+∞∈+∞∈时,时,(,0)(0,1)(0,)(1,)x yx y∈-∞∈∈+∞∈+∞时,时,(0,1)(0,)(1,)(,0)x yx y∈∈+∞∈+∞∈-∞时,时,(0,1)(,0)(1,)(0,)x yx y∈∈-∞∈+∞∈+∞时,时,a b<a b>a b<a b>表2 幂函数()y x Rαα=∈pqα=0α<01α<<1α>1α=pq为奇数为奇数奇函数pq为奇数为偶数pq为偶数为奇数偶函数第一象限性质减函数增函数过定点01(,)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f )判断单调函数:○1在定义域内设21x x <,化简)()(21x f x f -,若)()(0)()(2121x f x f x f x f >>-即则认为该函数在其定义域内单调递减,若)()(0)()(2121x f x f x f x f <<-即则认为该函数在其定义域内单调递增。
○2若在定义域内设21x x >,化简)()(21x f x f -,若)()(0)()(2121x f x f x f x f >>-即则认为该函数在其定义域内单调递增,若)()(0)()(2121x f x f x f x f <<-即则认为该函数在其定义域内单调递减。
(具体情况具体定)函数的周期:若)()(x f T x f =+,则T 为函数周期。
必修四:4、关于扇形的计算公式:Rl R R S R R l 2121222222==•==•=ααααππ;ππ弧度制与角度制的换算公式:2360π=o ,1180π=o,180157.3π⎛⎫=≈ ⎪⎝⎭ooααααααααπααπαπαsin sin(cos )2sin(cos )2sin(sin )sin(sin )sin(sin )2sin(-=-=-=+-=+=-=•+);;;;;k ααααπααπααπααπαπαcos )cos(sin )2cos(sin )2cos(cos )cos(cos )cos(cos )2cos(=-=--=+-=+-=-=•+;;;;;k ααααπααπαπαtan )tan(tan )tan(tan )tan(tan )2tan(-=-=+-=-=•+;;;k的横坐标2ππ+k 求出的x 即为对称轴的横坐标2)(ππϕω+=+k x 求出的x 即为对称中心的横坐标函数形式单调递增区间单调递减区间奇偶性x y sin =)(2222Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ, )(23222Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ, 奇x y cos = [])(22Z k k k ∈+πππ,[])(222Z k k k ∈++ππππ,偶 x y tan =)(22Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ, 无单调递减区间奇βαβαβαβαβαβαβαβαβαtan tan 1tan tan )tan(sin cos cos sin )sin(sin sin cos cos )cos(μμ±=±±=±=±;;)4tan(tan 1tan 1απαα±=±μ )cos sin (cos sin 222222ααααba b b a a b a b a ++++=+(辅助角公式) 设()11,a x y =r ,()22,b x y =r ,则12120a b x x y y ⊥⇔+=rr .设()11,a x y =r,()22,b x y =r,则01221=-⇔y x y x ∥设a r、b r 都是非零向量,()11,a x y =r ,()22,b x y =r ,θ是a r 与b r 的夹角,则121222221122cos a b a bx yx yθ⋅==++r r r rsin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,当()2x k k π=∈Z 时,既无最大值也无最小值max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。