八年级上册数学 【几何模型三角形轴对称】试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 【几何模型三角形轴对称】试卷培优测试卷

一、八年级数学 轴对称解答题压轴题(难)

1.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.

(1)求边AD 的长;

(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.

【答案】(1)6;(2)y=-3x+10(1≤x <

103);(2)1769

或32 【解析】

【分析】

(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;

(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;

(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可.

【详解】

(1)如下图,过点D 作BC 的垂线,交BC 于点H

∵∠C=45°,DH ⊥BC

∴△DHC 是等腰直角三角形

∵四边形ABCD 是梯形,∠B=90°

∴四边形ABHD 是矩形,∴DH=AB=8

∴HC=8

∴BH=BC -HC=6

∴AD=6

(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G

∵EF ∥AD,∴EF ∥BC

∴∠EFP=∠C=45°

∵EP ⊥PF

∴△EPF 是等腰直角三角形

同理,还可得△NPM 和△DGF 也是等腰直角三角形

∵AE=x

∴DG=x=GF,∴EF=AD+GF=6+x

∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162

x + 同理,PR=

12y ∵AB=8,∴EB=8-x

∵EB=QR

∴8-x=

()11622

x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103

当点N 与点B 重合时,x 可取得最小值

则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1

∴1≤x <103

(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=

83=AE

∴188176662339

ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:

与(2)相同,可得y=3x -10

则当y=2时,x=4,即AE=4

∴()16644322

ABCD S =

⨯++⨯=梯形 【点睛】

本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.

2.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.

(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;

(2)如图2,若点A 的坐标为()

23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-化,请说明理由;

(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.

【答案】(1) C(-6,-2);(2)不发生变化,值为3-;(3)EN=

12

(EM-ON),证明见详解. 【解析】

【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;

(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-的值不变为3-.

(3)作BH ⊥EB 于点B ,由条件可以得出

∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12

(EM-ON).

【详解】

(1)如图(1)作CQ ⊥OA 于Q,

∴∠AQC=90°

, ∵ABC △为等腰直角三角形,

∴AC=AB,∠CAB=90°

, ∴∠QAC+∠OAB=90°,

∵∠QAC+∠ACQ=90°,

∴∠ACQ=∠BAO,

又∵AC=AB,∠AQC=∠AOB,

∴AQC BOA ≅(AAS),

∴CQ=AO,AQ=BO,

∵OA=2,OB=4,

∴CQ=2,AQ=4,

∴OQ=6,

∴C(-6,-2).

(2)如图(2)作DP ⊥OB 于点P ,

∴∠B PD=90°,

∵ABD △是等腰直角三角形,

∴AB=BD,∠ABD=∠ABO+∠OBD=90°, ∵∠OBD+∠BDP=90°,

∴∠ABO=∠BDP ,

又∵AB=BD,∠AOB=∠BPD=90°,

∴AOB BPD ≅

∴AO=BP ,

∵BP=OB -PO=m-(-n)=m+n, ∵A ()23,0-,

∴OA=3

∴m+n=23

∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23

∴整式2253m n +-3-

(3)()12

EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.

相关文档
最新文档