不等式的若干证明方法

合集下载

关于不等式的若干证明方法

关于不等式的若干证明方法

关于不等式的若干证明方法一、初等数学中不等式的证明方法(一)、比较法比较法是证明不等式中最常用的方法,包括求差比较法和求商比较法。

求差比较法就是把要比较的两个式子相减,判断差的符号;求商比较法一般就是对两个大于零的式子相除后,判断商是大于1,还是小于1。

例1 已知 0,,,>∈b a R y x 且1=+b a 求证 ()222by ax by ax +≥+证明 ()222ax by ax by +-+2222222ax by a x abxy b y =+---)()(222222abxy y b by abxy x a ax --+--= ])1[(])1[(ax y b by by x a ax --+--= 因为,1=+b a 所以a b b a =-=-1,1则()222ax by ax by +-+()()ax bx by by ay ax =-+- )()(y x aby y x abx ---= ))((y x y x ab --= 2)(y x ab -= 因为 ,0,>b a 所以0>ab又因为 ,0)(2≥-y x 所以0)(2≥-y x ab ,故原不等式成立。

例2 已知 +∈R b a , 求证 a b b a b a b a ≥证明 因为b a a b b a b aba b a -=)( ,+∈R b a ,所以当b a >时,1)(,0,1>>->-b a ba b a b a 当b a ≤时,1)(,0,1≥≤-≤-b a ba b a ba于是,1≥a b ba ba b a 即a b b a b a b a ≥(二)、分析法分析法是从证不等式出发,不断用充分条件替换前面不等式,直到找到成立的不等式,也就是“执因索果”。

利用分析法证明例1证明 为了证明 ()222by ax by ax +≥+ 只需证明 abxy y b by x a ax 2222222≥-+- 也即证明 abxy y b b x a a 2)1()1(22≥-+- 因为 1=+b a ,所以a b b a =-=-1,1 也即证明 abxy aby abx 222≥+ 因为 0,>b a ,所以0ab > 即需要证明 xy y x 222≥+因为 ,x y R ∈,所以 222x y xy +≥恒成立,故原不等式成立。

不等式的几种证明方法

不等式的几种证明方法

不等式证明的几种常用方法一、比较法(1)差值比较法要证明a >b ,只要证明a -b >0。

①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变 形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。

应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

【例一】求证:233x x +>证明:()()()222233223333x x x x +-=-+-+23330244x ⎛⎫=-+≥> ⎪⎝⎭233x x ∴+>(2)商值比较法已知a ,b 都是正数,要证明a >b ,只要证明a/b >1 ①作商:将左右两端作商; ②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。

应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

【例二】已知a,b>0,求证a b b a a b a b ≥证明: =∵a,b>0+,当a >b 时,>1,a-b >0,>1;当a≤b 时,≤1,a -b≤0, ≥1.∴≥1, 即a b b aa b a b ≥二、综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。

其逻辑关系为:A-B1- B2- B3… Bn -B ,即从已知A 逐步推演不等式成立的必要条件从而得出结论B 。

重点:基本不等式【例三】已知a ,b ,c 是不全等的正数,求证 a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .证明: 222a b ab +≥ ,222a c ac +≥,222c b bc +≥()222a b cabc ∴+≥,()222b acabc +≥,()222c ababc +≥∴a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)≥6abc .又因为a ,b ,c 是不全等的正数所以有a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .三、分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。

证明不等式的八种方法

证明不等式的八种方法
比较法:比较法是证明不等式的最基本、最 重要的方法之一,它是两个实数大小顺序和 运算性质的直接应用,比较法可分为差值比 较法和商值比较法。
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b

2022考研数学:不等式证明的7种方法总结

2022考研数学:不等式证明的7种方法总结

2022考研数学:不等式证明的7种方法总结
不等式证明的7种方法总结
1. 拉格朗日中值定理适用于已知函数导数的条件,证明涉及函数(值)的不等式;
2. 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式;
3. 应用函数的单调性定理证明:(1)对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;(2)对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;
4. 利用函数最大值、最小值证明不等式。

把待证的不等式转化为区间上任意一点函数值与区间上某点x出的函数值大小的比较,然后证明(fx)为最大值或最小值,即可证不等式成立;
5. 利用函数取到唯一的极值证明不等式。

把待证的不等式转化为区间上任意一点函数值与区间内某点x处的函数值大小的比较,然后证明(fx)为唯一的极值且为极大值或极小值,即(fx)为最大值或最小值,即可证不等式成立;
6. 用柯西中值定理证明不等式;
7. 利用曲线的凹凸性证明不等式。

数学中不等式的证明方法

数学中不等式的证明方法

·1·数学中不等式的证明方法王贵保一、利用拉格朗日中值定理1.拉格朗日中值定理:设)(x f 满足:(1)在闭区间[a , b ]上连续;(2)在开区间(a , b )内可导,则有一点∈ξ(a , b ),使得)()()(ξf ab a f b f '=--2.从上式可以看出,如果能确定了)(ξf '介于某两个数m 与M 之间,则有如下形式的不等式: m ≤ab a f b f --)()(≤M因此,欲证形如ab a f b f --)()(或构造成为ab a f b f --)()(形式的不等式,可用该方法。

例1:证明,当x >0时,有1-x e >x . 证明:由原不等式,因为x >0,可改写为xe x1->1的形式,或改写为--x e e x >1的形式,这里t e t f =)(,区间为[0, x ],于是可用拉格朗日中值定理证明。

令t e t f =)(,∈t [0, x ],则)(t f 满足拉格朗日中值定理的条件,于是存在∈ξ[0, x ]有--x e e x=ξe >1所以,有不等式1-xe >x . 例2:证明不等式x+11<x x ln )1ln(-+<x1 (x >0)证明:x x ln )1ln(-+=xx x x -+-+)1(ln )1ln(这里x b +=1,x a =,于是可对tt f ln )(=在[x , 1+x ]上应用拉格朗日中值定理.令t t f ln )(= ]1,[x x t +∈ (x >0),则)(t f 在[x , 1+x ]上满足中值定理的条件,于是有]1,[x x +∈ξ,即x <ξ<x +1,使得·2·ξξ1)()1()()1(=='=-+-+t t f xx x f x f (1)又因为x <ξ<x +1,知有 x+11<ξ1<x1 (2)于是由(1)(2)可得x+11<)()1(x f x f -+<x1二、利用函数的单调性1.定义:设)(x f 在(a , b )内有定义,任取),(,21b a x x ∈且1x <2x ,如有)(1x f ≤)(2x f 则称)(x f 在(a , b )单调增加,如有)(1x f ≥)(2x f 则称)(x f 在(a , b )内单调减少.2.判定单调性的方法:如)(x f 在(a , b )内的导数)(x f '>0,则)(x f 在(a , b )内单调增加;如导数)(x f '<0,则)(x f 在(a , b )内单调减少. 3.从单调性的定义可以看出,若构造不成ab a f b f --)()(的形式,则可利用函数的单调性进行判定证明.例3:证明,x >0时有x e >1+x .证明:令x e x f x --=1)(,则1)(-='x e x f >0所以)(x f 单调增加,于是当x >0时有)(x f >)0(f =0,即有)(x f >0. 或 x e >1+x 例4:证明x >1时,有x ln >1)1(2+-x x证明:令-=x x f ln )(1)1(2+-x x ,则[]22)1(41)1()1()1(21)(+-=+--+-='x xx x x x x f2222)1()1()1(4)1(++=+-+=x x x x x x x ,由x >1知 )(x f '>0,所以)(x f 单调增加,于是当x >1时有)(x f >)1(f =0,即得: x ln >1)1(2+-x x .三、利用闭区间上的连续函数可以取得最大值与最小值的方法1.定理:若)(x f 在闭区间[a , b ]上取得最大值M 与最小值m ,于是有m ≤)(x f ≤M.·3·2.因此,若在不等式的证明中,如有某一个变量受到限制时,可用该方法。

不等式的证明方法

不等式的证明方法

不等式的证明方法第一篇:不等式的证明方法几个简单的证明方法一、比较法:a>b等价于a-b>0;而a>b>0等价于ab>1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:要证a<b,又已知(或易证)a<c,则只要证c<b,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有:①添加或舍去一些项,如:a2+1>a;n(n+1)>n;②将分子或分母放大(或缩小);③利用基本不等式,如:log3⋅lg5<(n(n+1)<lg3+lg522)2=lg<lg=lg4; n+(n+1);④利用常用结论:k+1-k=1k+1+=11-k1k<12k1k;1k(k+1)1k+11k1k+11k<1k(k-1)1k;>=-(程度大)1k<-1=(k-1)(k+1)=2k-1(-);(程度小)五、换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知x2+y2=a2,可设x=acosθ,y=asinθ;已知x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);已知xaxa2+ybyb=1,可设x=acosθ,y=bsinθ;-=1,可设x=asecθ,y=btanθ;六、数学归纳法法:与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则(1)、设P(n0)成立,且对于任意的k>n0,从P(k)成立可推出P(k+1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1≤k<m)成立可推出P(k+1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n=2m),使得P(n)成立,且从P(k+1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1≤n≤k的n成立可推出P(k+1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k+1)成立可推出P(k+2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1<n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若P(1)成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k+1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m+1,n),P(m,n+1)成立,证明P(m+1,n+1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明n∑k=11ksinkx>0,(0<x<π)就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22例1 已知a,b∈R,且a+b=1.求证:(a+2)+(b+2)≥252.证法一:(比较法)Θa,b∈R,a+b=1∴b=1-a∴(a+2)+(b+2)-252=a+b+4(a+b)-12=2(a-12)≥0=a+(1-a)+4-=2a-2a+即(a+2)2+(b+2)2≥证法二:(分析法)252(当且仅当a=b=时,取等号).(a+2)2+(B+2)≥252⇐a+b+4(a+b)+8≥252⎧b=1-a⎪⇐⎨225122⇐(a-)≥0⎪a+(1-a)+4+8≥22⎩显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)假设(a+2)2+(b+2)2<252,则 a2+b2+4(a+b)+8<252252.由a+b=1,得b=1-a,于是有a2+(1-a)2+12<1⎫⎛所以(a-)<0,这与 a-⎪≥0矛盾.22⎭⎝.所以(a+2)+(b+2)≥252.证法五:(放缩法)∵a+b=1∴左边=(a+2)+(b+2)⎡(a+2)+(b+2)⎤2125≥2⎢=a+b+4=⎡⎤()⎥⎣⎦222⎣⎦=右边.点评:根据不等式左边是平方和及a+b=1这个特点,选用基本不等式⎛a+b⎫a+b≥2 ⎪.⎝2⎭证法六:(均值换元法)∵a+b=1,所以可设a=12+t,b=-t,1∴左边=(a+2)+(b+2)=(+t+2)2+(-t+2)25⎫5⎫2525⎛⎛2=右边.=t+⎪+t-⎪=2t+≥2⎭2⎭22⎝⎝当且仅当t=0时,等号成立.点评:形如a+b=1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法) 设y=(a+2)+(b+2),由a+b=1,有y=(a+2)2+(3-a)2=2a2-2a+13,所以2a2-2a+13-y=0,因为a∈R,所以∆=4-4⋅2⋅(13-y)≥0,即y≥故(a+2)+(b+2)≥252.252.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A≥0,B≥0,则(A+B)n≥An+nA(n-1)B,其中n∈N+.证明:由二项式定理可知n(A+B)=∑An-iBi≥An+nA(n-1)Bni=0∴(A+B)≥A+nAnn(n-1)B第二篇:证明不等式方法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。

常用的推导法有数学归纳法、递推法、代入法等。

其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。

(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。

(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。

通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。

2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。

常用的数学运算包括加法、减法、乘法、除法等。

在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。

3.几何法:几何法是指通过将不等式转化为几何问题进行证明。

几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。

通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。

4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。

这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。

5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。

通过逐个讨论每种情况,可以得出要证明的不等式的证明。

6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。

反证法常用于证明不等式的唯一性和存在性。

7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。

通过不断进行递推,可以逐步证明不等式的成立。

以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。

在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。

不等式证明几种方法

不等式证明几种方法
又∵0 <a,b,c< 1∴
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。

不等式证明的几种方法

不等式证明的几种方法

不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。

例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。

2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。

该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。

例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。

由此可知,不等式不成立。

3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。

通过反证法证明。

例如,要证明n^2<2^n,首先当n=1时,不等式成立。

假设当n=k时,不等式也成立,即k^2<2^k成立。

我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。

通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。

4.几何法几何法可以通过将不等式转化为几何问题来证明。

例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。

通过建立几何模型,可以直观地看出不等式成立的原因。

例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。

5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。

例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。

以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。

在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。

基本不等式的20种证明方法

基本不等式的20种证明方法

基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。

求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。

一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明

(19)构造函数证明


(20)构造期望方差证明


另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。

证明不等式的常用技巧

证明不等式的常用技巧

证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。

作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。

换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。

1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。

综合法由因导果。

证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。

分析法执果索因。

证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。

放缩法将不等式一侧适当的放大或缩小以达到证题目的。

数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。

用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

构造法通过构造函数、图形、方程、数列、向量等来证明不等式。

2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。

其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

证明不等式的八种方法

证明不等式的八种方法

利用导数证明不等式的八种方法构造函数法---1研究其单调性2 极值、最值与0的关系 张红娟学习所得 2012.10.181、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

证明不等式的基本方法

证明不等式的基本方法

恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

论不等式的几种证明方法

论不等式的几种证明方法

论不等式的几种证明方法
不等式的几种证明方法主要有四种:
①数学归纳法:即将不等式成立的不等关系形式划分为多个档次,以求对不等式的证明。

证明过程是这样的:首先给出最高档次的命题,然后依次从上往下证明每一次结论,当最低档次的命题已经被证明时,则从此可以推出不等式成立。

②分解因子法:即将不等式中的项分别乘以一定的正数,使之成为两个等式,然后分别进行证明,最后再对比两个等式就可以证明不等式的成立性了。

③裁剪法:即将不等式中的某一部分分开研究,并把它们的结果组合起来,再证明它们的总体结果,以此来证明不等式的成立。

④极限法:即将不等式作为极限放入函数中,由函数的特性分析函数的趋势,即可证明不等式的成立性。

不等式的证明其实是通过证明等式而间接得到不等式的。

通过以上四种方法,可以很好地证明不等式的成立。

证明函数不等式的六种方法

证明函数不等式的六种方法

证明函数不等式的六种方法在高中数学中,函数的不等式是一个重要的主题。

证明函数不等式是一个基本的技能,它可以帮助学生更好地理解函数的性质并提高数学思维能力。

下面我们介绍六种证明函数不等式的方法。

1. 代数法这种方法是最常用的方法之一。

我们可以将不等式两边的函数展开,并进行简单的代数计算,以确定不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)展开,然后将它们相减,得到:f(x) - g(x) = x + 1因此,f(x) > g(x) 当且仅当 x > -12. 消元法这种方法通常适用于含有多个变量的不等式。

我们可以将其中一个变量消去,从而使不等式简化。

例如,我们要证明:f(x, y) > g(x, y)其中f(x, y) = x^2 + y^2g(x, y) = x^2 - y^2我们可以将y消去,得到:f(x, y) - g(x, y) = 2y^2因此,f(x, y) > g(x, y) 当且仅当 y ≠ 03. 极限法这种方法通常适用于连续函数的不等式。

我们可以将不等式两边取极限,以确定不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)的极限计算出来,得到:lim (f(x)) = +∞x→+∞lim (g(x)) = +∞x→+∞因此,f(x) > g(x) 当 x → +∞4. 导数法这种方法通常适用于在区间内单调的函数不等式。

我们可以计算函数的导数,以确定函数的单调性和不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^3 + 3x^2 + 3x + 1g(x) = x^2 + 2x + 1我们可以计算f(x)和g(x)的导数,得到:f'(x) = 3x^2 + 6x + 3g'(x) = 2x + 2由于f'(x) > g'(x) 在 [-1, +∞) 上成立,并且f(-1) > g(-1) ,因此,f(x) > g(x) 在 [-1, +∞) 上成立。

不等式证明常用方法

不等式证明常用方法

不等式证明常用方法不等式是中学数学最基本内容之一,它有着丰富的实际背景,与生产实践联系十分密切;因此,无论普通高考,还是对口高考,不等式,历年都是考试的重点、热点,甚至难点。

下面就不等式的证明,介绍几种常见方法,如有不对,敬请同行、同学们斧正. 一、作差法例1、对于任意实数x ,求证:x x 232>+.证明:∵x x 232-+=2)1(2+-x 0> ∴x x 232>+.评注:1.作差法步骤:作差—变形—判断与0的关系—结论.2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选用.二、作商法例2、设a ,b 均是正实数,求证:a b b a b a b a ≥.证明:首先,由条件0>bab a ,0>abb a , 其次, b a a b b a b aba b a -=)(,⑴当0>≥b a 时,1≥ba,0≥-b a ,∴1)(≥-b a b a .⑵当0>>a b 时,10<<b a ,0<-b a ,∴1)(>-b a ba.综合⑴、⑵:1)(≥-b a ba,∴a b b a b a b a ≥.评注:1.作商法步骤:作商—变形—判断与1的关系—结论.2.作差法是通法,运用较广;作商法,要注意条件,不等式两边必须是正数。

作商法常用于证幂、指数形式的不等式。

三、综合法例3、设a ,b ,c 均是正实数,求证:c b a c ab b ca a bc ++≥++ 证明:∵a ,b ,c 均是正实数,∴a bc ,b ca ,cab也均是正实数.∴2,2,2bc ca ca ab ab bc c a b a b b c c a+≥+≥+≥∴2(bc a +)(2c b a c abb ca ++≥+, ∴c b a cab b ca a bc ++≥++ 评注:1.利用某些已经证明过的不等式(例如正数的算术均值不小于几何均数等)和不等式的性质(例如||||||||||b a b a b a +≤+≤-等)推导出所要证明的不等式成立,这种证明方法通常叫做综合法.2.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.3.运用综合法证明不等式,必须发现式子的结构特征,结合重要不等式和常用不等式,找到解题的方法。

不等式的八种证明方法及一题多证

不等式的八种证明方法及一题多证

不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。

使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。

○将差变形为几个因式的积的形式,常用因式分解法。

○若变形后得到二次三项式,常用判别式定符号。

总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。

2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。

(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。

高中数学证明不等式的九种常用方法

高中数学证明不等式的九种常用方法

ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1

∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届本科毕业论文(设计)题目:不等式的若干证明方法学院:数学科学学院专业班级:数学与应用数学12-1班****:******:***答辩日期:2016年5 月3日新疆师范大学教务处目录1.引言 (1)2.证明不等式的常用方法 (2)2.1比较法 (2)2.1.1 作差法 (2)2.1.2作商法 (2)2.2 分析法 (3)2.3 综合法 (3)2.4 反证法 (4)2.5 放缩法 (5)2.6 数学归纳法 (5)2.7换元法 (6)2.7.1增量换元法.. (6)2.7.2三角换元法 (6)2.7.3 比值换元法 (7)2.8 标准化法 (7)2.9 公式法 (8)2.10 分解法 (8)2.11 构造法 (9)2.11.1 构造对偶式模型 (9)2.11.2 构造函数模型 (9)2.12 借助几何法 (10)3.利用函数证明不等式 (10)3.1 极值法 (10)4.利用著名不等式 (11)4.1 均值不等式 (11)4.2 柯西-施瓦茨不等式 (12)4.3 拉格朗日中值定理 (12)4.4 赫尔德不等式 (13)4.5 詹森不等式 (13)4.6 闵可夫斯基不等式 (14)4.7 伯努利不等式 (15)4.8 切比雪夫不等式 (15)4.9 琴生不等式 (16)4.10 艾尔多斯—莫迪尔不等式 (16)4.11 排序不等式定理 (16)5.小结 ...................................................... 错误!未定义书签。

参考文献 . (18)谢辞 ...................................................... 错误!未定义书签。

不等式的若干证明方法摘要:不论在初等数学还是高等数学中,不等式都是非常重要的内容,而不等式的证明又是不等式知识的重要组成部分,在本篇文章中,综述了证明不等式的若干方法,从初等数学不等式的证明中经常用到的数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等,到高等数学不等式的证明中经常利用的中值定理、泰勒公式以及一些著名的不等式,使不等式的证明方法更加的完善,有利于进一步的探讨和研究不等式的证明。

关键词:不等式;不等式证明;常用方法Some prove inequalities methodAbstract:in both the elementary mathematics and advanced mathematics, the content of the inequality is very important, inequality and the proof is an important part of knowledge, in this article, several methods to prove inequality are reviewed in this paper, from the elementary mathematics inequality analyst frequently used mathematical induction, the reduction to absurdity, zooming method, substitution method and elementary method, function method, geometric method, etc., to the higher mathematics inequality analyst often use of mean value theorem, Taylor formula and some famous inequality, the inequality proof method more perfect, is conducive to further explore and research of inequality proof.Key words: inequality; Inequality proof; Commonly used method1.引言在生活中,虽然不等关系要比相等关系更多的存在于现实世界里,但是人们对于不等式的认识要比等式要迟的多,直到17世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论中的一个重要组成部分。

数学不等式的研究最早从欧洲国家开始兴起, 其中有一个较大的研究群体, 它是位于欧洲东部的原南斯拉夫国家,对不等式的研究更是做出了巨大贡献。

在数学不等式理论的发展史上,一共有两个比较重大的事件,它们分别是:切比雪夫在1882 年发表的论文和高德菲·哈罗德·哈代在1928 年任伦敦数学会主席届满时的演讲。

哈代、李特尔伍德以及波利亚的著作《Inequalities》的前言中更是对不等式的哲学做出了非常有见地的见解: 一般来讲初等的不等式应该有初等的证明, 证明应该是“内在的”,并且应该给出使等号成立的证明。

Fink 说道:人们应该尽量陈述和证明那些不能推广的不等式;哈代也说:“基本的不等式是初等的”。

自哈代、李特尔伍德以及波利亚的著作《Inequalities》由Cambridge University Press在1934年开始出版以后, 数学不等式的理论和数学不等式理论应用的研究在数学史上正式开始活跃起来, 成为一门新兴的独立的数学学科, 从此以后不等式便不再是一些零星散乱、孤立的公式综合, 而是逐渐发展成为一套系统的、独立的科学理论。

自20 世纪 70 年代以来 , 按照国际惯例,每四年在德国召开一次关于一般不等式 ( General Inequalities) 的国际学术会议 , 并且还要出版专门的会议论文集,不等式理论更是 2000 年在意大利召开的第三届世界非线性分析学家大会 (“The Third World Congress of Nonlinear Analyst s” ( WCNA - 2000) )的主题之一,从这些方面我们可以看出不等式在数学中的重要性。

在研究数学的不等式过程中,有许多的内容都十分有用,如:不等式的性质、不等式的证明方法和不等式的解法,在本文中,就不一一说明了,而主要介绍一些证明不等式的常用方法、利用函数证明不等式的方法和利用一些著名不等式证明不等式的方法,希望通过这些方法的学习,我们可以更好的认识数学中不等式的一些特点,从而开拓我们的数学视野,深化我们对不等式的认识,以便于站在更高的角度来研究数学不等式,让数学不等式理论充满蓬勃生机、兴旺发达。

2.证明不等式的常用方法2.1比较法比较法是把不等式两边作商或作差后和1或0做比较的方法 ,常用比较法的有两种:作差法和作商法。

2.1.1 作差法从不等式两边的差是正数还是负数来判断它们的大小,其理论根据就是:若0a b ->,则a b >;若0a b -<,则a b <.此外,还要特别注意对任何实数,其平方后必不小于零。

在运用此方法证不等式时,常常求不等式两端的差,所以这种方法通常也称为求差法。

例 求证:对任何实数,,a b c 成立下述不等式:222ab bc ac a b c ++≤++.证明: 利用比较大小的办法,我们求不等式两边式子之差,因为 222()a b c ab bc ac ++-++2222221(222)2a b ab b c bc a c ac =+-++-++- 2221[()()()]02a b b c c a =-+-+-≥ 所以 222ab bc ac a b c ++≤++.2.1.2作商法作商法是把不等式两边做比,然后与1作比较,看比值是大于1还是小于1。

例 设+∈R b a ,,求证:()2ba b a ab b a +≥.(由于要比较的两式成幂的结构,故结合函数的单调性,故可采用作商比较法来证明.)证明:作商得:()2222b a ab ba ba ba b a b a ab b a ---+⎪⎭⎫ ⎝⎛=⋅=,又由指数函数的性质当b a =时,12=⎪⎭⎫ ⎝⎛-b a b a ;当0>>b a 时,1>b a ,02>-b a ,12>⎪⎭⎫ ⎝⎛-b a b a .当0>>a b 时,10<<b a ,1,022>⎪⎭⎫ ⎝⎛<--ba b a b a .即 ()2ba b a ab b a +≥.2.2 分析法分析法也叫逆推法,就是假定给的不等式是成立的,推测使它成立的条件,用恒等变换和不等式的性质继续推测能使这些条件成立的条件,这样逐步的递推下去,最后得到一个已知成立的不等式的方法,并且让推导过程的每一步又都是可逆的,便证明了原不等式是正确的。

对于比较复杂的不等式,往往可以运用这种方法进行思考,从而探索证题的途径。

例 已知0απ<<,证明2sin 2cot 2αα≤,并讨论当α为何值时等号成立.证明: 若原不等式2sin 2cot 2αα≤成立,则可写成 1+cos 2sin 2sin ααα≤,由于0απ<<,两端乘以正数sin α,则问题化为证明2sin sin 21cos ααα≤+但 222sin sin 24sin cos(1cos )4(1cos )cos ααααααα=+=-4(1cos )(1cos )cos ααα=-+所以问题又化为证明不等式(1cos )[4(1cos )cos 1]0ααα+--≤即 21(1cos )[4(cos )]02αα+--≤ 这个不等式的正确是显然的,故原不等式成立.因为0απ<<,所以等号成立当且仅当1cos =02α-,解出=3πα. 2.3 综合法综合法是利用已经证明过的不等式和不等式的性质,推出所要证明的不等式成立,综合法也是分析法的逆推.对于比较复杂的不等式,如果从已知直接推出结果,往往不易成功,这时,我们便可用逆向思维,由结果去推已知,也许会简单些,因此,在证明题时通常是先用分析法去探索证题的途径,再用综合法叙述证明过程.综合法证明不等式的逻辑关系是:(已知A )逐步推演不等式成立的必要条件(结论B ),符号如下:12n A B B B B ⇒⇒⇒⋅⋅⋅⇒⇒.例 已知,,a b c 为正实数,用综合法证明3332222(a +b +c )a (b+c)+b (a+c)+c (a+b)≥.证明:222232233322a>0,b>0a+b>0,(a-b)0(a+b)(a-b)0(a -b )(a-b)0a -a b-ab +b 0a +b ba +ab →≥≥≥≥≥同理33223322b +c cb +bc ,c +a ac +ca ≥≥,三同向的不等式的两边相加得到: 3332222222a +2b +2c a b+a c+ab +cb +c a+c b ≥.2.4 反证法反证法是从求证结论的反向入手,即假设求证的不等式不成立,然后经过一堆番合乎逻辑的推理,推出与已知条件或其他正确的定理、命题、公式相矛盾的结论,从而否定开始所作的假设,以此断定求证的不等式成立的方法,也就是逆向思维。

相关文档
最新文档