一次函数经典练习题精心整理

合集下载

一次函数经典练习题精心整理

一次函数经典练习题精心整理

1.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.〔1〕小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时. 〔2〕小张出发几小时与小李相距15千米?〔3〕假设小李想在小张休息期间与他相遇,则他出发的时间x 应在什么范围?〔直接写出答案〕2,甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答以下问题:〔1〕甲、乙两人的速度各是多少?〔4分〕〔2〕写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式〔任写一个〕.〔3分〕 〔3〕在什么时间段内乙比甲离A 地更近?〔3分〕3.〔2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如下列图,(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式;(3)问小明能否在12:0 0前回到家?假设能,请说明理由:假设不能,请算出12:00时他离家的路程,(第23题图)x (小时)图134.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y 〔人〕与售票时间x 〔分钟〕的关系如下列图,已知售票的前a 分钟只开放了两个售票窗口〔规定每人只购一张票〕.〔1〕求a 的值.〔2〕求售票到第60分钟时,售票听排队等候购票的旅客人数.〔3〕假设要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?5、双蓉服装店老板到厂家选购A 、B 两种型号的服装,假设购进A 种型号服装9件,B 种型号服装10件,需要1810元;假设购进A 种型号服装12件,B 种型号服装8件,需要1880元。

考点10 一次函数(精练)(原卷版)

考点10 一次函数(精练)(原卷版)

考点10.一次函数(精练)限时检测1:最新各地模拟试题(40分钟)4.(2023·江苏·中考模拟)如图,在平面直角坐标系中,直线2y x b =+与直线36y x =-+相交于点A ,则关于x ,y 的二元一次方程组236y x b y x =+⎧⎨=-+⎩的解是()A .20x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .19x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩A .210k k <<B .1k <7.(2023·山东枣庄·校考一模)已知点A .25b a ≥B .b a ≤A .<2x -11.(2023·安徽滁州则以下判断正确的是(A .若0x x >A .12k ≤-B .3k ≥-13.(2023·河南周口·校联考三模)如图,在平面直角坐标系于点P ,Q ,在Rt OPQ 中从左向右依次作正方形123n A A A A ⋯,,,在x 轴上,点1B 在全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形A .1134n n ++B .212234n n --C .14.(2023·天津河西·校考三模)若一次函数3y kx =+出一个满足条件的值).15.(2023·湖南永州·校考二模)已知一次函数y =取值范围是.19.(2023·河北·模拟预测)已知直线y-≤≤,求该函数的解析式.12820.(2023·陕西西安·校考一模)李老师计划组织学生暑假去北京研学旅行,经了解,现有甲、乙两家旅行社比较合适,报价均为每人都按八折收费;乙旅行社表示,若人数不超过仍按报价的八五折收费,则超出部分每人按七折收费,假设组团参加甲、乙两家旅行社研学旅行的人数均限时检测2:最新各地中考真题(40分钟)1.(2023年湖南省益阳市中考数学真题)关于一次函数1y x =+,下列说法正确的是()A .图象经过第一、三、四象限B .图象与y 轴交于点()0,1C .函数值y 随自变量x 的增大而减小D .当1x >-时,0y <2.(2023年湖南娄底中考数学真题)将直线 21y x =+向右平移2个单位所得直线的表达式为()A .21y x =-B .23y x =-C .23y x =+D .25y x =+3.(2023年四川省雅安市中考数学真题)在平面直角坐标系中.将函数y x =的图象绕坐标原点逆时针旋转90︒,再向上平移1个单位长度,所得直线的函数表达式为()A .=1y x -+B .1y x =+C .=1y x --D .1y x =-4.(2023年甘肃省兰州市中考数学真题)一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是()A .2B .1C .-1D .-25.(2022·湖南邵阳·中考真题)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n <B .m n >C .m n ≥D .m n≤6.(2023年宁夏回族自治区中考数学真题)在同一平面直角坐标系中,一次函数1(0)y ax b a =+≠与2(0)y mx n m =+≠的图象如图所示,则下列结论错误的是()A .1y 随x 的增大而增大B .b n <C .当2x <时,12y y >D .关于x ,y 的方程组ax y b mx y n -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩7.(2023年山东省临沂市中考数学真题)对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A.8:28B.8:3010.(2023年山东省威海市中考数学真题)时)之间的函数关系如图所示.当0≤x之间的函数表达式为.11.(2023年江苏省无锡市中考数学真题)12.(2023年湖南省郴州市中考数学真题)在一次函数16.(2022·辽宁锦州·中考真题)点()()1122,,,A x y B x y 在一次函数(2)1y a x =-+的图像上,当12x x >时,12y y <,则a 的取值范围是____________.18.(2023年四川省南充市中考数学真题)如图,直线于点A ,B ,则23OA OB +的值是(1)=a___________,b=___________;(2)请分别求出(3)当上升多长时间时,两个气球的海拔竖直高度差为(1)A,B两地之间的距离是______千米,(3)货车出发多少小时两车相距15千米?(直接写出答案即可)(1)小聪在直角坐标系中描出了表中数据对应的点.经老师介绍,在这种食用油达到沸点前,锅中油温︒)与加热的时间t(单位:位:C选填“正比例”“一次”“二次”“反比例(3)当加热110s时,油沸腾了,请推算沸点的温度.(3)当2,1,2a b c =-==时,即212y x =--+.①当1x ≥时,函数化简为y =______.②在图2所示的平面直角坐标系内画出函数212y x =--+的图象.(4)请写出函数y a x b c =-+(a ,b ,c 是常数,0a ≠)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)。

(精心整理)一次函数经典题型+习题(精华,含答案)

(精心整理)一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型是一次函数,求其解析式。

已知函数1. 例解:由一次函数定义知,。

y=-6x+3,故一次函数的解析式为。

0≠m-3。

如本例中应保证0≠k解析式时,要保证y=kx+b注意:利用定义求一次函数 . 二点斜型,求这个函数的解析式。

(2, -1)的图像过点y=kx-3已知一次函数2. 例,(2, -1)解:一次函数的图像过点。

y=x-3。

故这个一次函数的解析式为k=1,即,求这个函数的解析式。

y=-1时,x=2,当y=kx-3 变式问法:已知一次函数两点型. 三3.例,则这个函数的(0, 4)、(-2, 0)轴的交点坐标分别是y轴、x 已知某个一次函数的图像与。

_____解析式为,由题意得y=kx+b解:设一次函数解析式为y=2x+4 故这个一次函数的解析式为,图像型. 四。

__________已知某个一次函数的图像如图所示,则该函数的解析式为4. 例y=kx+b解:设一次函数解析式为(0, 2) 、(1, 0)由图可知一次函数的图像过点 y=-2x+2 故这个一次函数的解析式为有斜截型. 五,则直线的解析式为2轴上的截距为y平行,且在y=-2x与直线y=kx+b已知直线5. 例。

___________时,b≠b,=kk。

当;解析:两条直线2121平行,y=-2x与直线y=kx+b直线。

y=-2x+2 ,故直线的解析式为2轴上的截距为y在y=kx+b直线又平移型. 六。

___________个单位得到的图像解析式为2向下平移y=2x+1把直线6. 例,y=kx+b 解析:设函数解析式为y=2x+1直线平行y=2x+1与直线y=kx+b个单位得到的直线2向下平移,故图像解析式为b=1-2=-1 轴上的截距为y在y=kx+b直线七实际应用型. (升)Q则油箱中剩油量分钟,/升0.2流速为油从管道中匀速流出,升,20某油箱中存油7. 例。

___________(分钟)的函数关系式为t与流出时间Q=-0.2t+20 ,即Q=20-0.2t 解:由题意得)(Q=-0.2t+20 故所求函数的解析式为注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

初中数学一次函数练习题(含答案)精选全文完整版

初中数学一次函数练习题(含答案)精选全文完整版

可编辑修改精选全文完整版初中数学一次函数练习题(含答案)一.选择题(每题3分,满分36分)1.下列函数中,不是一次函数的是()A.y=x+4 B.y=x C.y=2﹣3x D.y=2.对于函数y=﹣2x+1,下列结论正确的是()A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限3.在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣5 C.x≥﹣5且x≠0 D.x≥0 且x≠0 4.函数y=5﹣2x,y的值随x值的增大而()A.增大B.减小C.不变D.先增大后减小5.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A.B.C.D.6.若函数y=kx的图象经过第一、三象限,则k的值可以为()A.﹣2 B.﹣C.0 D.27.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A. B.C.D.8.小明同学利用“描点法”画某个一次函数的图象时,列出的部分数据如下表:x…﹣2 ﹣1 0 1 2 …y… 4 1 ﹣2 ﹣6 ﹣8 …经过认真检查,发现其中有一个函数值计算错误,这个错误的函数值是()A.2 B.1 C.﹣6 D.﹣89.已知一次函数y=﹣2x+1,当x≤0时,y的取值范围为()A.y≤1 B.y≥0 C.y≤0 D.y≥110.以下关于直线y=2x﹣4的说法正确的是()A.直线y=2x﹣4与x轴的交点的坐标为(0,﹣4)B.坐标为(3,3)的点不在直线y=2x﹣4上C.直线y=2x﹣4不经过第四象限D.函数y=2x﹣4的值随x的增大而减小11.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地12.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二.填空题(每题4分,满分20分)13.若一次函数y=kx+b的图象如图所示,那么关于x的方程kx+b=0的解是.14.已知y﹣2与x成正比例,且x=2时,y=﹣6.则y与x的函数关系式为.15.某院观众的座位按下列方式设置,根据表格中两个变量之间的关系.排数(x) 1 2 3 4 …座位数(y ) 30 33 36 39 …则当x =8时,y = .16.已知函数y =﹣3x +1的图象经过点A (﹣1,y 1)、B (1,y 2),则y 1 y 2(填“>”、“<”、“=”).17.A 、B 两地相距2400米,甲从A 地出发步行前往B 地,同时乙从B 地出发骑自行车前往A 地.乙到达A 地后,休息了一会儿,原路原速返回到B 地停止,甲到B 地后也停止.在整个运动过程中,甲、乙均保持各自的速度匀速运动.甲、乙两人相距的路程y (米)与甲出发时间x (分钟)之间的关系如图所示,则a = .三.解答题(共44分)18.(10分)已知直线l 1:y =x +2与x 轴交于点A ,与y 轴交于点B ,直线l 2:y =﹣2x +b 经过点B 且与x 轴交于点C .(1)b = ;(答案直接填写在答题卡的横线上) (2)画出直线l 2的图象; (3)求△ABC 的面积.19.(10分)在同一平面直角坐标系中,画出函数①y =x +3、②y =x ﹣3、③y =﹣x +3④y =﹣x ﹣3的图象,并找出每两个函数图象之间的共同特征.20.(12分)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去图书馆的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)21.(12分)如图1,在平面直角坐标系中,直线l1:y=2x+8与坐标轴分别交于A,B两点,点C在x正半轴上,且OA=OC.点P为线段AC(不含端点)上一动点,将线段OP 绕点O逆时针旋转90°,得线段OQ(见图2)(1)分别求出点B、点C的坐标;(2)如图2,连接AQ,求证:∠OAQ=45°;(3)如图2,连接BQ,试求出当线段BQ取得最小值时点Q的坐标.参考答案一.选择题1. D.2. C.3. C.4. B.5. B.6. D.7. D.8. C.9. D.10. B.11. C.12. C.二.填空题13. x=2.14. y=﹣4x+2.15. 51.16.>.17. 24.三.解答题18.解:(1)当x=0时,y=x+2=2,∴点B的坐标为(0,2).:y=﹣2x+b经过点B,∵直线l2∴b=2.故答案为:2.的解析式为y=﹣2x+2.(2)由(1)可知直线l2当y=0时,﹣2x+2=0,解得:x=1,∴点C的坐标为(1,0).连接BC,则直线BC即为直线l,如图所示.2(3)当y=0时,x+2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).S=AC•OB,△ABC=(OA+OC)•OB,=×(4+1)×2,=5.19.解:列表:如图所示:由图可得,①和②图象互相平行,①和③图象与y轴交点相同,①和④图象与x轴交点相同,②和③图象与x轴交点相同,②和④图象与y轴交点相同,③和④图象互相平行.20.解:(1)l1(2)小凡,10(3)小光,10(4)34(5)10千米/小时、7.5千米/小时.21.解:(1)C(8,0).(2)∠OAQ=45°.(3)点Q坐标为(﹣6,2).。

一次函数练习题(大题30道)

一次函数练习题(大题30道)

1.已知一次函数y=ax+b的图象经过点A〔2,0〕与B〔0,4〕.〔1〕求一次函数的解析式,并在直角坐标系内画出这个函数的图象;〔2〕如果〔1〕中所求的函数y的值在-4≤y ≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.〔1〕写出y与x之间的函数关系式;〔2〕如果x的取值范围是1≤x≤4,求y的取值范围.3.一次函数的图象经过点〔2,1〕和〔-1,-3〕〔1〕求此一次函数表达式;〔2〕求此一次函数与x轴、y轴的交点坐标;〔3〕求此一次函数的图象与两坐标轴所围成的三角形的面积。

4.知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.5.已知一次函数的图象,交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A〔0,1〕出发,经过x轴上点C反射后经过点B〔3,3〕,求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.直角坐标系x0y中,一次函数y=23x+2的图象与x轴,y轴,分别交于A、B两点,•点C坐标为〔1,0〕,点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C〔4,0〕作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P〔•0,-1〕,Q〔0,k〕,其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.〔2005年宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f〔x〕=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f〔x〕表示稿费为x元应缴纳的税额.假设张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又假设甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.〔1〕求x、y的关系式;〔2〕假设预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14. 已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15. 已知正比例函数y =kx 经过点P (1,2〕,如下列图.〔1〕求这个正比例函数的解析式;〔2〕将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、原点O 的像P '、O '的坐标,并求出平移后的直线的解析式.16. 如图,在直角坐标系中,已知矩形OABC 的两个顶点坐标(30)A ,,(32)B ,,对角线AC 所在直线为l ,求直线l 对应的函数解析式.17. “一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答以下问题:〔1〕设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; 〔2〕如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;〔3〕在〔2〕的条件下,假设要求总运费最少,应采用哪种安排方案?并求出最少总运费.物资种类 食品 药品 生活用品每辆汽车运载量〔吨〕 6 5 4 每吨所需运费〔元/吨〕 120 160 100x18. 某农户种植一种经济作物,总用水量y 〔米3〕与种植时间x 〔天〕之间的函数关系式如图10所示.〔1〕第20天的总用水量为多少米3?〔2〕当x ≥20时,求y 与x 之间的函数关系式.〔3〕种植时间为多少天时,总用水量到达7000米3?19. 武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y 〔千米〕和冲锋舟出发后所用时间x 〔分〕之间的函数图象如下列图.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.〔1〕请直接写出冲锋舟从A 地到C 地所用的时间. 〔2〕求水流的速度.〔3〕冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y 〔千米〕和冲锋舟出发后所用时间x 〔分〕之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?天)x 〔分〕20. 甲乙两人同时登西山,甲、乙两人距地面的高度y〔米〕与登山时间x〔分〕之间的函数图象如下列图,根据图象所提供的信息解答以下问题:〔1〕甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.〔2〕假设乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y〔米〕与登山时间x〔分〕之间的函数关系式.〔3〕登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?21. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费方法收费.即一月用水10吨以内〔包括10吨〕的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按>〕收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系每吨b元〔b a如下列图.〔1〕求a的值;某户居民上月用水8吨,应收水费多少元?x>时,y与x之间的函数关系式;〔2〕求b的值,并写出当10〔3〕已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?22. 我市花石镇组织10辆汽车装运完A 、B 、C 三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:〔1〕设装运A x 之间的函数关系式;〔2〕如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;〔3〕假设要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23. 某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.〔1〕今年三月份甲种电脑每台售价多少元?〔2〕为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?〔3〕如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使〔2〕中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利24. 五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量到达最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P 〔件〕,销售日期为n (日),P 与n 之间的关系如下列图.〔1〕写出P 关于n 的函数关系式P = 〔注明n 的取值范围〕;〔2〕经研究说明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?〔3〕该品牌衬衣本月共销售了 件.25. 某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损消耗c元(c≤5);假设用水量超过am3时,除了付同上的基本费和损消耗外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.、26.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.〔1〕设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W〔元〕关于x〔台〕的函数关系式,并求W的最大值和最小值.〔2〕设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W〔元〕,并求W的最大值和最小值.27了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x〔cm〕 37.0 40.0 42.0 45.0桌高y〔cm〕 70.0 74.8 78.0 82.8〔1〕小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;〔不要求写出x的取值范围〕;〔2〕小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.28.小明同学骑自行车去郊外春游,以下列图表示他离家的距离y〔千米〕与所用的时间x〔小时〕之间关系的函数图象.〔1〕根据图象答复:小明到达离家最远的地方需几小时?此时离家多远?〔2〕求小明出发两个半小时离家多远?〔3〕•求小明出发多长时间距家12千米?29.(宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.30. 某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答数关系式.〔2〕如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.〔3〕假设要使此次销售获利最大,应采用〔2〕中哪种安排方案?并求出最大利润的值.。

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。

一次函数习题集锦含答案

一次函数习题集锦含答案

一次函数习题集锦含答案一、选择题1·下面图象中,不可能是关于 x的一次函数 y= mx-(m-3)图象的是( )参考答案: C说明:图象反映性质,先确定m的符号,然后看此函数图象在两坐标轴上的截距情况是否矛盾,即用排除法;当 m>0时,-(m-3)有可能大于零、小于零、等于零,所以 A、B有可能是函数 y = mx-(m-3)的图象,由此排除 A与B;当 m<0时,-(m-3)>0 ,故可排除 D,因此选 C.2·已知一次函数 y=kx+b 的图象经过第一、三、四象限,那么 ( )A·k>0,b>0 B · k<0,b>0 C · k>0,b<0 D · k<0,b<0参考答案:C说明:由已知得该一次函数的图象不经过第二象限,而当k<0时,一次函数的图象必过第二象限,所以此时k应大于0:另外,不难得出当k>0,b>0时,函数图象也过第二象限,所以 b 不难大于0,而当 b=0 时,图象只过一、三象限,不过第四象限,只有在 b<0时,图象才经过第一、三、四象限,所以参考答案为 C.3·下列图形中,表示一次函数 y=mx+n 与正比例函数 y=mnx(m ,n是常数,且mn≠0)图象是( )参考答案:A说明:从选项 A的图象中可以看出一次函数与正比例函数的函数值都是随着 x的增大而减小,即m<0,mn<0,而图象中还可以看出 n>0,符合条件,所以 A正确;由选项 B中的图象可得 m<0且 n>0, mn>0,产生矛盾, B错;由选项 C中的图象可得 m>0且 n>0, mn<0,产生矛盾, C错;由选项 D中的图象可得 m>0且n<0,mm>0,也产生矛盾,D错;所以正确参考答案为 A.4·如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中 s和 t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A·2.5 米 B ·2米 C · 1.5 米 D · 1米参考答案: C说明:可设这两个一次函数分别为 y=kx+b(k 、 b为常数, k≠0),y=mx(m ≠0为常数);从图中可以看出对于 y=kx+b 来说当x=0 时y=12 ,即b=12 ;当x=8 时,y=64 ,即64=8k+12 ,解得k=6.5 ,即y=6.5x+12 ;而对于 y=mx来说当 x=8 时y=64 ,可解得 m=8,即 y=8x ;这就是说速度慢的每秒 6.5 米,先跑 12米之后,速度快的才以每秒8米的速度出发,8秒后速度快的追上速度慢的;即快者的速度比慢者的速度每秒快8-6.5 = 1.5 米,答案为 C.5·下列说法正确的是 ( )A·正比例函数是一次函数B·一次函数是正比例函数C·函数 y= kx+2(k 为常数)是一次函数D·函数 y=2 是一次函数参考答案: A说明:由一次函数的定义 y= kx+b(k 、 b为常数, k≠0),不难得到当 b=0 时,该一次函数就是正比例函数,即正比例函数是一种特殊的一次函数,选项A正确;而当b≠0时,一次函数就不是正比例函数,所以选项 B错误;只有在 k为不等于 0 的常数时,函数 y= kx+2 才是一次函数,所以选项 C错误;函数 y=2不符合一次函数的定义,因为它不含变量 x的项,所以选项D错误;参考答案为 A.6·如图,1,反映了某公司的销售收入与销售量的关系,|₂反映了该公司产品的销售成本与销售量的关系,当该公司赢利 (收入大于成本 )时,销售量( )A·小于 3吨 B ·大于 3吨 C ·小于 4吨 D ·大于 4吨参考答案:D说明:从图不难出,当x>4时,的图在 l ₂的图上方,当 x=4时,的图与参考答案:A说明:因点 P 按A→B→C→M的顺在边为正方形边运逝以应谈论随 x 的增大而减小,即 2<x< , >y>0,如下(3),并且 y = SΔAPM= ×底×高,或 y = S8·弹的艘与所挂物体的重的关系为次函数,如图示,由图知不挂物体的弹的腹(为 )A·7cm B·8cm1₂的翻産交点,当 x<4时,的閣在 |₂的閣下方,而若要收入大于成本,即 | ₁的圆应在I ₂的图上方,也就是 x>4(参考答案DJ.7·如图P 按A→B→C→M的顺在抛为的正方形边运动 M 是CD 边的中点:设 P 线的程 x 内数,△APM的面积,则数y 的大致翻 (如下图是( )当P 在 AB 边运动 y 随x 的增大而增大,即 1212,0≤y ≤,如下(图) :当P 在 BC上运动 y 随 x 的增大而减小,|521≤14x ≤2,>y ≥,如下(2) :当 P 在CM 上运动 y12正方形-SABP-Suour-SAMCP,1它均是一次函数关系,故选·C·9cmD· 10cm参考答案:D说明:可读一次函数关系式为= kx+b(k 、b 常数, k≠0),因此,由图可得当 x = 5射= 12.5 ,当 x = 20时= 20,即有 12.5 = 5k+b 且 20= 20k+b,可解出 k= 0.5,b= 10:这棵一次函数关系式就是 y=0.5x+10 ,不挂物体的弹簧,即当 x=0射的值得到 y= 10 ,正确参考答案Dy二、解答题1·直线与直线= 2x+1 的交点的横坐梯2,与直线 = -x+2的交点的坐标1,求直线的解析式·参考答案: y=4x -3;说明:可以直线的解析式y 为= kx+b ,由已知不得到直壁,5)和(1,1)两点,即当 x=2时=5 ;当x=1时=1 ;槎有 2k+b=5 且k+b= 1 ,解得 k= 4 , b= -3,即直线的解析式y=4x -3·2·如图某汽布皱路程 s(km) 与阈min) 的函数关系图窥图所提供的信息,解答下列题(1) 汽在前 9分钟的平均速度是多少? (2) 汽在中途停了多时间(3)当 16≤ t≤30球s 与t 的函数式·(2) 汽在中途停了 16-9=7 分钟 (3)s= 2t -20(16≤t≤30)可读函数解析式约= kt+b(16 ≤ t≤30),由图可知:=kt+b ( 16,12)和点(30,40),即当 t= 16时=12 ,t= 308g=40 ;槎有 16k+b = 12 且30k+b= 40,解得 k=2 ,b= -20,所以当 16≤ t≤30日$与t 的函数式$= 2t -20(16≤t≤30)·3·某地锯拨入网有两种收费式,用再任选一: (A)时制: 0.05 元/分: (B)包月制: 50元/月(限一部个人住宅地网 );此外,每种上网方式都得加收通信02元/分;解答: (1)当 t=9日$= 12 ;∴汽在 9分钟的平均速度(km/min) 或480km/ℎ;(1) 请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间 x(小时)之间的函数关系式:(2) 若某用户预计一个月内上网的时间少于20小时,你认为采用哪种方式较为合算?参考答案:(1) 计时制: y= 60 × (0.05+0.02)x= 4.2x ;包月制: y= 50+60 × 0.02x= 50+1.2x(2) 令 y,=y ₂,则4.2x= 50+1.2x ,解得x=1623,N时)=16小时 40分钟:所以当用户一个月上网16 小时40分钟时,选用计时制、包月制均可:当一个月上网时间小于16 小时40分钟时,选用计时制合算:当一个月上网时间大于16小时40分钟时,则选用包月制合算·∴AQ=7-(3-x)=4+x ,∴y=12(BP+AQ)?AB=12(x+4+x)74=4x+8(0<x<3)4·如图,在矩形 ABCD中,AB=4 ,BC=7 ,P是 BC上与B不重合的动点,过点 P的直线交 CD的延长线于 R,交 AD于 Q(Q与 D不重合),且∠RPC= 45o,设 BP=x ,梯形 ABPQ的面积为 y,求y与x之间的函数关系,并求出自变量 x的取值范围·参考答案: ∵∠ C=90 o,∠RPC=45o,∴∠R=45 o,∴∠ R=∠RPC,∴CR=CP,同理 DR=DQ∵BP=x ,BC=7 ,∴PC=CR=7 -x∵CD=AB=4 ,∴RD=3-x,DQ=DR=3 -x,。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

一次函数经典训练题(含答案)

一次函数经典训练题(含答案)

一次函数经典训练题1.下列函数中,正比例函数是( ) A .y =4xB .y =4x C .y = x+4 D .y = x 22.已知函数2(1)1y m x m =++-是正比例函数,则m 值为( ) A .1B .1-C .0D .±13.一次函数1y x =--的图象不经过哪个象限( ) A .第一象限B .第二象限C .第三象限D .第四象限4.已知关于x 的一次函数y =kx +2k -3的图象经过原点,则k 的值为( ) A .0B .32C .23D .35.将直线24y x =+向下平移3个单位长度后得到的函数解析式是( ) A .57y x =-B .27y x =+C .1y x =--D .21y x =+6.若直线21y x =-+向左平移2个单位,则得到的直线解析式是( ) A .23y x =-- B .21y x =-- C .23y x =-+D .25y x =-+7.已知正比例函数y =(m ﹣1)x 的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( ) A .m <1B .m >1C .m <2D .m >08.一次函数24y x =+的图像与y 轴交点的坐标是( ) A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)9.直线26y x =-+与两坐标轴围成的三角形的面积是() A .8B .6C .9D .210.在同一平面直角坐标系中,直线41y x =-与直线y x b =-+的交点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限11.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .4y <-B .40y -<<C .2y <D .0y <12.一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <13.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3解集为( )A .x ≤-1B .x ≥-1C .x ≤3D .x ≥314.如图,一次函数11y k x b =+,的图象1l 与22y k x b =+的图象2l 相交于点P ,则方程组111222y k x b y k x b =+⎧⎨=+⎩的解是( )A .23x y =-⎧⎨=⎩B .32x y =⎧⎨=-⎩C .23x y =⎧⎨=⎩D .23x y =-⎧⎨=-⎩15.如图,直线3yx分别与x 轴、y 轴交于点,A C ,直线43y mx =+分别与x 轴、y 轴交于点,B D ,直线AC 与直线BD 相交于点(1,)M b -,则不等式433x mx +≤+的解集为( )A .1x ≥-B .1x ≤-C .2x ≥D .2x ≤16.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.17.如图,直线y 1 = k 1x + b 1与坐标轴交于点(-4,0)和(0,2.5);直线 y 2 = k 2x + b2与坐标轴交于点(3,0)和(0,4),不等式组112200k x b k x b +>⎧⎨+>⎩的解集是__________.18.已知一次函数的图象经过A (﹣2,﹣3),B (1,3)两点,求这个一次函数的解析式. 19.如图,直线l 1的函数表达式为y =﹣3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C . (1)求点D 的坐标; (2)求直线l 2的解析表达式; (3)求△ADC 的面积.20.下表是小颖往表姐家打长途电话的收费记录:(1)上表的两个变量中,是自变量,是因变量;(2)写出y与x之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费?(4)若小颖有24元钱,则她最多能打多少分钟电话?21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据如图图象提供的信息,解答下列问题:(1)当一户居民在某月用水为15吨时,求这户居民这个月的水费.(2)当17≤x≤30时,求y与x之间的函数关系式;并计算某户居民上月水费为91元时,这户居民上月用水量多少吨?22.某天,一蔬菜经营户从蔬菜批发市场批发了黄瓜和茄子共60 千克,(每种蔬菜不少于10 千克),到菜市场去卖,黄瓜和茄子当天的批发价和零售价如表表示:(1)若他当天批发两种蔬菜共花去140 元,则卖完这些黄瓜和茄子可赚多少元?(2)设全部售出60 千克蔬菜的总利润为y(元),黄瓜的批发量a(千克),请写出y 与a 的函数关系式,并求最大利润为多少?参考答案1.B2.A3.A4.B5.D6.A7.A8.B9.C10.B11.D12.A13.B14.A15.B16.x>-217.-4<x<318.y=2x+119.(1) D(1,0)(2) y=32x-6(3) 可求得点C(2,-3) ,则S△ADC=9 220.(1)通话时间;电话费;(2)()()3030.6 1.23xyx x⎧≤≤⎪=⎨+⎪⎩>;(3)小颖通话15分钟,则需付话费10.2元;;(4)小颖有24元钱,则她最多能打38多少分钟电话.21.(1)当一户居民在某月用水为15吨时,这户居民这个月的水费是45元;(2)当17≤x≤30时,y与x之间的函数关系式是y=5x﹣34,某户居民上月水费为91元时,这户居民上月用水量为25吨22.(1)64元;(2)y=0.4a+48(10⩽a⩽50),最大利润为68元本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)1.自变量x的取值范围为x≠-1.2.自变量x的取值范围为x≠0.3.代入点P(-2,m),得m=2*(-2)+1=-3.4.交点坐标分别为(0,-1)和(1,1)。

5.由于函数经过原点,代入得m=2.6.答案为B,即(-2,1)。

7.底为y,面积为1/2*y*x=8,解得y=16/x。

8.图象为y=x^2,不是一次函数。

9.长度剩余y与时间x成反比例关系,即y=20-5x。

10.代入交点(1,6),解得k=1,b=-3.一次函数练(二)1.n=2.2.解析式为y=(2m-1)/(m^2-3)。

3.m<1/2.4.解得m=4或m=-2.5.y=-6.6.答案为(-2,-4)。

7.根据比例关系,y-2=kx,代入x=-2和y=4,解得k=-3/2,再代入x=6,解得y=7.1.一次函数是指函数的自变量的最高次数为1的函数。

因此,③y=x和④y=-x-1是一次函数。

2.首先将函数展开,得到y=mx^5+10x- m^2+3.由于一次函数的解析式为y=kx+b,因此要求m使得y=mx^5+10x-m^2+3满足一次函数的形式。

因为一次函数的自变量的最高次数为1,因此只有当m=4或m=-4时,y才能写成一次函数的形式。

此时解析式分别为y=4x+3和y=-4x+3.3.当m=1时,y=(m+2)x+m-1变为y=3x,为一次函数;当m=-2时,y=(m+2)x+m-1变为y=-4x-5,为正比例函数。

4.向下平移1个单位后,直线y=-2x的解析式变为y=-2x-1.5.直线y=2x-4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,-4),三角形的底为2,高为4,因此面积为4.6.当a=-2时,直线经过原点,此时解析式为y=-2x;当a=1时,直线与y轴交于点(0,-2),此时解析式为y=3x-1.7.将点A的坐标代入函数y=2x-1中,得到1-a=2(a+2)-1,解得a=1.8.因为直线与y轴平行,所以斜率为2.又因为过点(-2,1),所以解析式为y=2x+5.9.由于两个函数的图象平行,因此它们的斜率相等。

一次函数典型例题[整理版]

一次函数典型例题[整理版]

典型例题例1 判断下列函数关系中,哪些是关于的一次函数(以下各题中的且为常数)?(是一次函数的打√,若不是打×)(1)()(2)()(3)()(4)()(5)()(6)()例2 已知函数,m为何值时,函数是正比例函数?.说明正比例函数应满足自变量指数为1、自变量的系数不为零.例3 已知与成正比例(其中,是常数)(1)求证:是的一次函数;(2)如果时,,时,,求这个一次函数的解析式.分析要证明是的一次函数,只需证明与的关系式满足的形式,其中为常数,且说明在教学中应强调“谁是谁的函数”.例4 某地长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,其图像如图所示.求:(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李多少公斤.分析由所给的图像可知和时,所对应的y值分别是6和10,通过方程组可求出y与x之间的函数关系式.得到关系式后,由.求得的x值即是最多可免费携带行李的公斤数.说明在实际问题中,求得关系式后应注明自变量的取值范围.例5 (1)如图,分别表示甲、乙两名学生运动的一次函数图像,图中s和t分别表示运动路程和时间,根据图像判断快者的速度比慢者的速度每秒快()A.2.5m B.2m C.1.5m D.1m(2002年重庆市中考试题)(2)两个物体A、B所受压强分别为(Pa)与(Pa)(、为常数),它们所受压力F(N)与受力面积s()的函数关系图像分别是射线,如图所示,则()A. B. C. D.(2002年辽宁省中考试题)答案:(1)用直接法.由题图所反映出快者和慢者所用的时间均为8秒,快者走了64m,慢者走了64-12=52(m),所以快者的速度比慢者的速度每秒快(m),故本题应选C.点评本题考查路程、时间、速度之间的变化规律与函数图像的关系.(2)用直接法.由,又图中图像为射线,所以F、S成的是正比例函数,p是定值,如图中虚线所示,∴,故本题应选A.点评本题是物理中压强、压力、受力面积三者之间关系与函数图像结合的一道小型综合题,这样的题很好地考查了学生的综合能力,是今后中考题型发展的方向.习题精选一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.(1)求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y有如下的对应关系:(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).(1)因为与成正比例,所以(k是不等于0的常数),即.三、1.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.一次函数习题精选一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.(1)求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y有如下的对应关系:(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).(1)因为与成正比例,所以(k是不等于0的常数),即.三、1.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。

(完整版)一次函数经典练习题精心整理.docx

(完整版)一次函数经典练习题精心整理.docx

一次函数练习一、选择题1. 若 yx 2 3b 是正比例函数,则 b 的值是( )A.0B.2C. 2D.333 22. 当 x3 时, 函数 yx 2 3x 7 的函数值为 ()A.-25B.-7C. 8D.113. 函数 y=( k-1)x ,y 随 x 增大而减小,则 k 的范围是 ( )A. k 0B. k 1C.k 1D. k 1 4. 一次函数 y x 1不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 5. 若把一次函数 y=2x -3, 向上平移 3 个单位长度,得到图象解析式是 ( )A 、y=2xB 、 y=2x -6C 、 y=5x - 3D 、 y=-x -36. 一次函数的图象与直线 y= -x+1 平行,且过点( 8,2),此一次函数的解析式为: ( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、 y=4x 7.如果直线 y =2x + m 与两坐标轴围成的三角形面积等于 m ,则 m 的值是( )A 、± 3B 、3C 、± 4D 、4 8.点 A ( x 1 , y 1 )和 ( x 2 , y 2 )在同一直线 y kx b 上,且 k 0 .若 x 1 x 2 ,则 y 1 , y 2 的B关系是( )A 、 y 1 y 2 B 、 y 1 y 2 C 、 y 1 y 2 D 、无法确定.9. 若 m < 0, n >0, 则一次函数 y=mx+n 的图象不经过 ( )A. 第一象限B.第二象限 C. 第三象限D. 第四象限y10、一次函数 y kx b ( k ,b 是常数, k 0 )的图象如图所示,则不等式kx b 0 的解集是( )A . x 2B . x 0C . x 2D . x 0211. 已知函数 y1x 2 , 当-1 < x ≤ 1 时, y 的取值范围是()2A.5 3 3y5 3 5 3 5y2B.C.yD.y222 222220 x212.已知两个一次函数 y=x+3k 和 y=2x -6 的图象交点在 y 轴上,则 k 的值为( )A 、3B 、1C 、2D 、- 2 ) 13.已知一次函数 y x -k ,若 y 随 x 的增大而减小,则该函数的图象经过(=kA 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限 14. 当 a 0 , b 0 时,函数 y a b 与 y bx a 在同一坐标系中的图象大致是( )= x+15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;②a>0;③当x<3 时, y 1<y 2 中,正确的个数是()A.0个B .1 个C .2 个D . 3 个16. 汽车由A地驶往相距 120km 的 B 地,它的平均速度是 30km/ h ,则汽车距B地路程 s( km)与行驶时间 t( h 的函数关系式及自变量 t 的取值范围是())A .S=120-30t (0 ≤t ≤4)B . S=120-30t (t >0).S t(0≤t ≤40)DS t(t<4)C =30. =30二、填空题1. 若关于 x 的函数 y( n 1)xm 1 是一次函数,则 =,n .m12.在函数 y中,自变量 x 的取值范围是。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。

答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。

答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。

解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。

7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。

解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。

解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。

四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。

已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。

一次函数 精选36道题 带答案!

一次函数 精选36道题 带答案!

一次函数实际应用1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?49cm 30cm36cm 3个球有水溢出(第23题) 图2 图27、元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:y与x的函数关系,并求出函数关系式;根彩纸链,则每根彩纸链至少要用多少个纸环?图38、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

一次函数经典测习题精心整理

一次函数经典测习题精心整理

一次函数练习一、选择题1.若23y x b =+-是正比例函数,则b 的值是() A.0B.23C.23- D.32- 2.当3-=x 时,函数732--=x x y 的函数值为()A.-25B.-7C.8D.113.函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是()A.0<kB.1>kC.1≤kD.1<k4.一次函数1y x =--不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限5.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是()A 、y=2xB 、y=2x -6C 、y=5x -3D 、y=-x -36.一次函数的图象与直线y=-x+1平行,且过点(8,2),此一次函数的解析式为:()A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x7.如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A 、±3B 、3C 、±4D 、48.点A (1x ,1y )和B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是()A 、12y y >B 、12y y <C 、12y y =D 、无法确定. 9.若m <0,n >0,则一次函数y=mx+n 的图象不经过() A.第一象限B.第二象限C.第三象限D.第四象限10、一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式 0kx b +>的解集是()A .2x >-B .0x >C .2x <-D .0x < 11.已知函数122y x =-+,当-1<x ≤1时,y 的取值范围是()A.5322y -<≤B.3522y <<C.3522y <≤D.3522y ≤< 12.已知两个一次函数y=x+3k 和y=2x -6的图象交点在y 轴上,则k 的值为()A 、3B 、1C 、2D 、-213.已知一次函数y =k x -k ,若y 随x 的增大而减小,则该函数的图象经过()A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限 14.当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是()15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;②a>0;③当x<3时,y 1<y 2中,正确的个数是() A .0个B .1个C .2个D .3个16.汽车由A地驶往相距120km 的B 地,它的平均速度是30km /h ,则汽车2xy 0 2分距B地路程s(km )与行驶时间t (h )的函数关系式及自变量t 的取值范围是()A .S =120-30t (0≤t ≤4)B .S =120-30t(t >0)C .S =30t (0≤t ≤40)D .S =30t (t <4) 二、填空题1.若关于x 的函数1(1)m y n x -=+是一次函数,则m =,n . 2.在函数21-=x y 中,自变量x 的取值范围是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数练习
一、选择题
1.若23y x b =+-是正比例函数,则b 的值是( )
A.0
B.23
C.23-
D.3
2
-
2.当3-=x 时,函数732--=x x y 的函数值为 ( )
A.-25
B.-7
C. 8
D.11
3.函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )
A.0<k
B.1>k
C.1≤k
D.1<k 4.一次函数1y x =--不经过的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( )
A 、y=2x
B 、 y=2x -6
C 、 y=5x -3
D 、y=-x -3 6.一次函数的图象与直线y= -x+1平行,且过点(8,2),此一次函数的解析式为:( )
A 、y=2x-14
B 、y=-x-6
C 、y=-x+10
D 、y=4x
7.如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )
A 、±3
B 、3
C 、±4
D 、4
8.点A (1x ,1y )和B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的
关系是( )A 、12y y > B 、12y y < C 、12y y = D 、无法确定. 9.若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )
A.第一象限
B. 第二象限
C.第三象限
D.第四象限 10、一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式
0kx b +>的解集是( )
A .2x >-
B .0x >
C .2x <-
D .0x <
11.已知函数1
22
y x =-+,当-1<x ≤1时,y 的取值范围是( )
A.5322y -<≤
B.3522y <<
C.3522y <≤
D.3522
y ≤<
12.已知两个一次函数y=x+3k 和y=2x -6的图象交点在y 轴上,则k 的值为( )
A 、3
B 、1
C 、2
D 、-2
13.已知一次函数y =k x -k ,若y 随x 的增大而减小,则该函数的图象经过( )
A 、第一、二、三象限
B 、第一、二、四象限
C 、第二、三、四象限
D 、第一、三、四象限
14.当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )
2 x y 0 2
2-
0 3 4 0.7 1 y(元) x(分)
15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;
②a>0;③当x<3时,y 1<y 2中,正确的个数是( ) A .0个 B .1个 C .2个 D .3个
16.汽车由A地驶往相距120km 的B 地,它的平均速度是30km /h ,则汽车距B地路程s(km )与行驶时间t (h )的函数关系式及自变量t 的取值范围是( )
A .S =120-30t (0≤t ≤4)
B .S =120-30t (t >0)
C .S =30t (0≤t ≤40)
D .S =30t (t <4) 二、填空题
1.若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n . 2.在函数2
1
-=x y 中,自变量x 的取值范围是 。

3.把函数3
x
y =
的图像向 平移 个单位得到函数36-=x y 。

4.直线y=2x+b 经过点(1,3),则b= _________
5. 已知一次函数y=-3x+2,它的图像不经过第 象限.
6.若一次函数y =mx -(m -2)过点(0,3),则m = .
7.函数y = -x +2的图象与x 轴,y 轴围成的三角形面积为_________________.
8.已知函数y =-3x +b 的图象过点(1,-2)和(a ,-4),则a =__________
9.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出
一个符合上述条件的函数关系式___________
10.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30
220
x y x y --=⎧⎨-+=⎩的解是________.
11.若直线y=kx+b 平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ .
12.直线y=2x+3与y=3x -2b 的图象交x 轴上同一点,则b=_______.
13.写出一个图象经过点(-1,-1),且不经过第一象限的函数关系式____________.
14.一次函数y=kx+b 的图象与正比例函数x y 2
1
=的图象平行,且与直线y=-2x -1交于y
轴上同一点,则这个一次函数的关系式为_________. 15.在某公用电话亭打电话时,需付电话费y (元)与通话时间 x (分钟)之间的函数关系用图象表示如图.小明打了2分钟需
付费______元;小莉打了8分钟需付费_______元.
三、计算题
1.画出函数y=-2x+5的图象,结合图象回答下列问题:
(1)这个函数中,随着x 的增大,它的图象从左到右是怎样变化的? (2)当x 取何值时,y=0?
(3)当x 取何值时,函数的图象在x 轴的下方?
2.已知一次函数y=(4m+1)x-(m+1), (1)m 为何值时,y 随x 的增大而减小?
(2)m 为何值时,直线与y 轴的交点在x 轴的下方? (3)m 为何值时,直线位于第二,三,四象限?
3.已知关于x 的一次函数y=(3a-7)x+a-2的图象与y 轴的交点在x 轴的上方,
且当x 1<x 2时,对应的函数值满足y 1>y 2,求a 的取值范围.
4.已知直线21y x =+.
(1) 求已知直线与y 轴的交点A 的坐标;
(2) 若直线y kx b =+与已知直线关于y 轴对称,求k 与b 的值.
5.已知直线y=-2
3
x+3与y=2x-1,求它们与y 轴所围成的三角形的面积.
6.如图,已知直线L 1:y 1=k 1x+b 1和L 2:y 2=k 2x+b 2相交于点M (1,3),根据图象判断: (1)x 取何值时,y 1=y 2?(2)x 取何值时,y 1>y 2?(3)x 取何值时,y 1<y 2?
7.已知3-y 与x 成正比例,且2=x 时,7=y . (1)求y 与x 的函数关系式; (2)当2
1
-
=x 时,求y 的值; (3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.
8. 如图,直线y =2x 3与x 轴交于点A ,与y 轴交于点B 。

(1) 求A 、B 两点的坐标;
(2) 过B 点作直线BP 与x 轴交于点P ,且使OP =2OA ,求△ABP 的 面积。

9.已知,直线y =2x +3与直线y =-2x -1. (1)求两直线与y 轴交点A ,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.
10.小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用
的时间x (小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下列问题:①小强到离家最远的地方需几小时?此时离家多远?②何时开始第一次休息?休息时间多长?③小强何时距家21㎞?(写出计算过程)
11.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).
(1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶? (3)小强经过多少时间追上爷爷?
12.某水果店超市,营销员的个人收入与他每月的销售量成一次函数关系,其图象如下:请你根据图象提供的信息,解答以下问题:
(1)求营销员的个人收入y 元与营销员每月销售量x 千克(x ≥0)之间的函数关系式;
(2)营销员佳妮想得到收入1400元,她应销售多少水果?
j
距离(km )
时间(h)
15
13
121110.5O 15
30
x
y
A B
C
1000 2000 4000 3000 400
800 1200 y (元)
x (千克)。

相关文档
最新文档