植物生理
植物的5大生理作用分别是
![植物的5大生理作用分别是](https://img.taocdn.com/s3/m/93833a56a66e58fafab069dc5022aaea998f4192.png)
植物的5大生理作用分别是植物具有多种生理作用,这些作用使其能够适应环境、生长发育和维持生命活动。
以下是植物的五大主要生理作用:
1. 光合作用(Photosynthesis):光合作用是植物的核心生理过程之一,通过光合色素在叶绿体中捕获太阳能,将二氧化碳和水转化为葡萄糖和氧气。
这个过程为植物提供了能量,并是氧气的主要来源。
2. 呼吸作用(Respiration):呼吸作用是植物释放能量的过程,与动物的呼吸作用有所不同。
植物通过呼吸作用将葡萄糖和氧气转化为二氧化碳、水和能量。
这个过程发生在细胞的线粒体中。
3. 蒸腾作用(Transpiration):蒸腾作用是植物通过叶片表面散发水蒸气的过程。
这有助于植物在光合作用中吸收的水分的运输和分配,同时也有助于维持植物体内的水分平衡。
4. 激素调节(Hormone Regulation):植物产生和调节激素,如赤霉素、生长素、脱落酸等,以控制植物的生长、开花、果实发育和其他生命周期中的关键阶段。
激素对植物的发育和适应环境的响应起着重要作用。
5. 营养吸收和运输(Nutrient Absorption and Transport):植物通过根部吸收土壤中的水分和矿物质养分。
这些养分通过根内的细胞和导管系统进行运输,分配到植物的各个组织和细胞,以支持生长和代谢。
这五大生理作用共同维持了植物的生命活动和生态功能,使其能够适应不同的环境条件,并在生态系统中发挥重要作用。
植物生理学名词解释(全)
![植物生理学名词解释(全)](https://img.taocdn.com/s3/m/155cd583a58da0116c1749c9.png)
一、绪论1. 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。
二、植物的水分生理1.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
水分代谢:植物对水分的吸收、运输、利用和散失的过程。
2.衬质势:由于衬质 ( 表面能吸附水分的物质,如纤维素、蛋白质、淀粉等 ) 的存在而使体系水势降低的数值。
3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。
4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
5.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
6.质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象。
7.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。
胶体物质吸引水分子的力量称为吸胀。
8.根压:由于植物根系生理活动而促使液流从根部上升的压力。
伤流和吐水现象是根压存在的证据。
9.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用 g·kg-l表示。
11.蒸腾系数:植物每制造 1g 干物质所消耗水分的 g 数,它是蒸腾效率的倒数,又称需水量。
12. 气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。
13.气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。
14.保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体和水分的量。
形成气孔和水孔的一对细胞。
双子叶植物的保卫细胞通常是肾形的细胞,但禾本科的气孔则呈哑铃形。
气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。
植物生理学的定义和任务
![植物生理学的定义和任务](https://img.taocdn.com/s3/m/d59fa70afbd6195f312b3169a45177232f60e4d1.png)
绪论一、植物生理学的定义和任务植物生理学(plant physiology)―――是研究植物生命活动规律的科学。
植物的生命活动是在水分代谢、矿质营养、光合作用和呼吸作用等基本代谢的基础上,表现出种子萌发、生长、运动、开花、结果等生长发育过程。
以及植物与外界环境之间相互关系。
这些生命活动是相互联系、相互依赖和相互制约的。
植物生理学教材的基本内容由四个部分所组成:(1)细胞生理,它是植物体各种生理活动与代谢过程的组织基础;(2)代谢生理,包括水分生理、矿质与氮素营养、光合作用、呼吸作用、同化物的运输分配以及信息传递和信号转导等;(3)发育生理,它是各种功能与代谢活动的综合反应,包括植物的生长物质、植物的生长分化、发育生殖、衰老及其调控;(4)环境生理,包括植物在各种逆境条件下生长的生理反应,以及提高植物抗性的措施等。
任务―――是研究和了解植物在各种环境条件下,进行生命活动的规律和机理,并将这些研究成果应用于一切利用植物生产的事业中。
二、植物生理学的产生和发展任何一门学科的产生和发展都离不开生产实践。
植物生理学也是如此,生产实践决定植物生理学的产生,并随着生产力和其他学科的发展而发展。
同时,植物生理学的发展又可推动生产的发展,并在实践中丰富自身。
(一)古代的植物生理学5000年前,开始有了人类文明,就有了认识植物的历史。
生产实践,出现植生萌芽。
甲骨文上刻有“贞禾有及雨?三月”和“雨弗足年?”(贞问庄稼有没有及时的雨水?雨水不够庄稼用吗?)。
说明人们对水分和植物生长的关系有了一些认识。
早在公元前3世纪,战国荀况著《荀子·富国篇》中就记载有“多粪肥田”;同时期,在韩非著《韩非子》中记载有“积力于畴,必且粪灌”,这反映战国时期古人对作物施肥、灌溉已相当重视。
古埃及有农神――俄赛里斯;上古中国有神农尝百草,种植五谷。
西汉《汜胜之书》(公元前2世纪)、公元6世纪贾思勰的《齐民要术》、17世纪徐光启的《农政全书》、宋应星的《天工开物》等著作中,分别记载了农、林、果树和野生植物的利用,植物嫁接技术,豆科植物可以肥田,豆类和谷类轮作可以增产,以及植物的性别,种子的处理、繁殖和贮藏、生长发育等植物生理学知识。
植物的生理变化
![植物的生理变化](https://img.taocdn.com/s3/m/ac4379bfed3a87c24028915f804d2b160b4e86d9.png)
植物的生理变化
植物是活体生物,它们随着时间的推移会经历各种生理变化。
在本文中,我们将探讨一些常见的植物生理变化。
1.生长过程:植物以生长为主要目标,其生长过程是一个关键
的生理变化。
植物的生长受到环境因素的影响,如阳光、水分和营
养物质的供应。
通过光合作用,植物能够将阳光转化为能量,并利
用这些能量进行细胞分裂和扩张,从而实现生长。
2.开花和结果:开花是植物的一个重要生理变化。
当植物达到
一定的生长阶段和特定的环境条件时,它们会产生花朵。
花朵中的
花粉结合雌花的柱头,进行授粉,最终结成果实。
果实则包含种子,以保证植物的后代延续。
3.休眠:植物在适应环境变化的过程中,可能会进入休眠状态。
休眠是植物的一种防御机制,可以帮助植物在不利的环境条件下生存。
在休眠状态下,植物的生长和代谢活动减缓,以节省能量和资源,从而适应干燥、寒冷或其他恶劣条件。
4.叶片的变化:叶片是植物进行光合作用和呼吸的重要器官。
植物的叶片在不同的生理阶段会有变化。
例如,一些植物的叶片可能在夏季变得更加厚实,以减少水分蒸发。
另外,一些植物的叶片会随着季节的变化而改变颜色,产生美丽的秋叶景观。
总结起来,植物的生理变化是一个复杂而有趣的领域。
了解植物的生理变化有助于我们更好地照顾和管理植物,提高农作物的产量和品质。
(完整版)植物生理学教案
![(完整版)植物生理学教案](https://img.taocdn.com/s3/m/ae314a06842458fb770bf78a6529647d2628347f.png)
光信号转导途径光敏色素、来自花色素等光 受体介导的信号转导途径 。
温度信号转导途径
温度感受器介导的信号转 导途径,如春化作用。
植物生长与发育的农业应用
作物育种
通过遗传改良,选育具有优良 生长和发育特性的作物品种。
作物栽培
通过合理的农业措施,如施肥 、灌溉、除草等,调控作物的 生长和发育。
设施农业
利用设施条件,调控环境因子 ,促进作物的生长和发育,提 高产量和品质。
• 维持细胞内外环境稳定:呼吸作用参与细胞内pH值、渗透压等环境因素的调节。
呼吸作用的生理意义及影响因素
温度
适宜的温度有利于呼吸作用的进行, 过高或过低的温度都会抑制呼吸作用 。
氧气浓度
有氧呼吸需要充足的氧气,低氧或无 氧条件会抑制有氧呼吸,促进无氧呼 吸。
呼吸作用的生理意义及影响因素
水分
适宜的水分含量有利于呼吸作用的进行,水分过多或过少都会抑制呼吸作用。
液泡
06 调节细胞内的水分和离子浓度
,维持细胞的渗透压和pH值稳 定。
03
植物的水分生理
水的物理和化学性质
02
01
03
水的物理性质 无色、无味、透明的液体。 在4°C时密度最大,具有异常的膨胀特性。
水的物理和化学性质
• 高比热容和高汽化热,对稳定环境温度有重要作用。
水的物理和化学性质
01
水的化学性质
研究对象
植物的细胞、组织、器官以及整 体植株在各种环境条件下的生理 活动和代谢过程。
植物生理学的历史与发展
01
02
03
04
萌芽阶段
古代人们对植物生理现象的观 察和描述。
实验生理学阶段
17-18世纪,通过实验手段研 究植物生理过程。
植物生理学名词解释
![植物生理学名词解释](https://img.taocdn.com/s3/m/6d5e936faf1ffc4ffe47ac6e.png)
植物生理学名词解释1、植物细胞全能性(totipotency ):指植物的每个细胞都包含着该物种的全部遗传信息,从而具备发育成完整植株的遗传能力。
在适宜条件下,任何一个细胞都可以发育成一个新个体。
植物细胞全能性是植物组织培养的理论基础。
2、细胞信号转导:是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程 。
3、代谢源(metabolic source ): 是指能够制造并输出同化物的组织、器官或部位。
如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年生或多年生植物的块根、块茎、种子等。
4、代谢库:接纳消耗或贮藏有机物质的组织或部位。
又称代谢池 。
5、光合性能:是指植物光合系统的生产性能或生产能力。
光合生产性能与作物产量的关系是:光合产量的多少取决于光合面积、光合性能与光合时间三项因素。
农作物经济产量与光合作用的关系可用下式表示: 经济产量=[(光合面积 X 光合能力 X 光合时间)— 消耗] X 经济系数6、光合速率(photosynthetic rate ):是指单位时间、单位叶面积吸收CO2的量或放出O2的量。
常用单位12--∙∙h m mol μ,12--∙∙s m m ol μ 7、光和生产率(photosynthetic produce rate ):又称净同化率(NAR ),是指植物在较长时间(一昼夜或一周)内,单位叶面积产生的干物质质量。
常用单位12--∙∙d m g8、氧化磷酸化:生物化学过程,是物质在体内氧化时释放的能量供给ADP 与无机磷合成ATP 的偶联反应。
主要在线粒体中进行。
9、质子泵:能逆浓度梯度转运氢离子通过膜的膜整合糖蛋白。
质子泵的驱动依赖于ATP 水解释放的能量,质子泵在泵出氢离子时造成膜两侧的pH 梯度和电位梯度。
10、水分临界期:作物对水分最敏感时期,即水分过多或缺乏对产量影响最大的时期 。
11、呼吸跃变(climacteric ):当果实成熟到一定时期,其呼吸速率突然增高,最后又突然下降的现象。
植物生理学
![植物生理学](https://img.taocdn.com/s3/m/5f641650be1e650e52ea9973.png)
绪论植物生理学(plant physiology):研究植物生命活动规律及其与环境相互关系、揭示植物生命现象本质的科学。
研究内容:细胞生理、代谢生理、生长发育生理、信息生理、逆境生理、分子生理。
植物生理学的诞生与成长:3个历史阶段,植物生理学的孕育阶段、植物生理学的诞生与成长阶段、植物生理学发展阶段。
植物生理学的研究趋势:第一,与其他学科交叉渗透,微观与宏观相结合,向纵深领域拓展;第二,对植物信号传递和信号转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径;第三,物质代谢和能量转换的分子机制及其基因表达调控仍将是研究重点;第四,植物生理学与农业科学技术的关系更加密切。
植物生理学的任务:①作物高产优质生理理论与技术;②现代设施农业中的理论与技术;③作物遗传改良中植物生理学的应用。
第一章细胞生理名词解释:1.流动镶嵌模型(fluid mosaic model):膜的骨架是由膜脂双分子层构成,疏水性尾部向内,亲水性头部向外,通常呈液晶态。
膜蛋白不是均匀地分布在膜脂的两侧,有些蛋白质位于膜的表面,与膜脂亲水性的头部相连接;有些蛋白质则镶嵌在磷脂分子之间,甚至穿透膜的内外表面,以其外露的疏水基团与膜脂疏水性的尾部相结合,漂浮在膜脂之中,具有动态性质。
两个基本特点:不对称性、流动性。
2.共质体:植物体活细胞的原生质体通过胞间连丝形成了连续的整体。
质外体:质膜以外的胞间层、细胞壁及细胞间隙,彼此形成了连续的整体。
简答题:1.真核细胞与原核细胞的主要区别是什么?原核细胞和真核细胞在细胞结构组成、代谢和遗传方面都有显著差别。
原核细胞一般体积很小,没有典型的细胞核,只有一个无核膜的环状DNA分子构成的类核;除了核糖体、光合片层外,无其他细胞器存在;有蛋白质丝构成的原始类细胞骨架结构;细胞分裂方式为无丝分裂。
原核细胞的基因表达的调控比较简单,转录与翻译同时同时进行。
真核细胞体积较大,有核膜包裹的典型细胞核,有各种结构与功能不同的细胞器分化,有复杂的内膜系统和细胞骨架系统存在,细胞分裂方式为有丝分裂和减数分裂。
植物的三大生理作用
![植物的三大生理作用](https://img.taocdn.com/s3/m/45b9fc3d178884868762caaedd3383c4bb4cb4b4.png)
植物的三大生理作用植物的生理作用是指植物在生长和发育过程中进行的一系列生理活动,这些活动对于维持植物生命活动的正常进行至关重要。
植物的生理作用主要包括光合作用、呼吸作用和蒸腾作用。
一、光合作用光合作用是植物进行能量转换的过程,通过吸收太阳能、水和二氧化碳,合成有机物质并释放氧气。
光合作用是植物生存和繁衍的基础,对维持地球生态平衡具有重要意义。
光合作用是植物生存的重要保障,通过合成机质,植物能够利用光能将二氧化碳转化为有机物,使其生长和发育得以顺利进行。
二、呼吸作用呼吸作用是植物获得能量的过程。
植物通过呼吸作用将有机物质氧化分解,释放出能量,供给细胞的生活活动所需。
呼吸作用的产物为二氧化碳和水。
呼吸作用分为胚乎呼吸和叶乎呼吸。
胚乎呼吸是种子在休眠状态下进行的,是为了维持种子的生存和发育,以及繁殖能力的保持。
叶乎呼吸则是植物正常生长和代谢活动中进行的,主要发生在叶子中的叶绿体和线粒体中。
叶乎呼吸是植物维持生理活动所需的基本过程之一,通过呼吸作用可以将光合作用的产物转化为能量,以维持植物细胞的正常功能。
三、蒸腾作用蒸腾作用是植物水分运输和吸收的重要过程。
植物通过吸收土壤水分,并借助于蒸腾作用将水分从根部运输到叶子和其他器官。
蒸腾作用的原理是由于气孔的打开和关闭,使植物组织中的水珠蒸发到空气中,形成水蒸气,并增加根部和叶子间的水分压差,使水分得以向上输送。
蒸腾作用对于植物的生长和发育至关重要。
通过蒸腾作用,植物能够调节体内水分的平衡,保持根部的吸水力,并通过导管系统将水分输送到需要的部位。
同时,蒸腾作用还能帮助植物进行气体交换,维持细胞的正常代谢活动。
综上所述,植物的生理作用主要包括光合作用、呼吸作用和蒸腾作用。
光合作用为植物提供能量和有机物质合成的基础,呼吸作用为植物提供能量,蒸腾作用则是植物水分运输和吸收的重要过程。
这些生理作用相互配合,使植物能够进行正常的生长和发育,维持其生命活动的正常进行。
植物生理学
![植物生理学](https://img.taocdn.com/s3/m/a870a99551e79b8968022617.png)
1 绪论植物生理学(Plant Physiology)是研究植物生命活动规律的科学。
植物生命活动包括:物质与能量转化信息传递和信号转导生长发育与形态建成第一章植物的水分代谢动力运输:1.水分压力蒸腾 2.根压根压的存在可以通过下面两种现象证明:伤流与吐水从受伤或折断的植物组织中溢出液体的现象,叫做伤流没有受伤的植物如处在土壤水分充足,气温适宜,天气潮湿的环境中,叶片的尖端或边缘也有液体外泌的现象,这种现象称为吐水导管中水柱如何保持不断?答:由于水分子蒸腾作用与分子间内聚力大于张力,使水分在导管内连续不断上升。
第二章植物的矿质营养植物对矿质盐的吸收、运转和同化(以及矿质元素在生命活动中的作用),叫做矿质营养(mineral nutrition)。
生物膜的功能:1.分室作用 2.代谢反应的场所 3.物质交换 4.识别功能根据跨膜离子运输蛋白的结构及离子运输的方式:1.离子通道(ion channel)2.离子载体(ion carrier)3.离子泵(ion pump)第三章植物的光合作用光合膜蛋白复合体:光系统I(PSI)光系统II(PSII)Cytb6/f复合体ATP酶复合体(ATPase)NADPH脱氢酶电子链:还原型辅酶上的氢原子以质子的形式脱下,其电子沿一系列按一定顺序排列的电子传递体转移,最后转移给分子氧并生成水,这个电子传递体系称为电子传递链光合作用,从能量转化角度,整个光合作用可大致分为三个步骤:A)光能的吸收、传递和转换为电能的过程(通过原初反应完成);B)电能转变为活跃化学能的过程(通过电子传递和光合磷酸化完成);C)活跃化学能转变为稳定化学能的过程(通过碳同化完成)。
第四章植物的呼吸作用植物呼吸主要途径有:1.糖酵解(EMP)-酒精或乳酸发酵2. 糖酵解-三羧酸循环(TCA)3. 磷酸戊糖途径(PPP)。
质子--------ATP电子--------NADPH第五章植物的生长物质植物激素生长素类赤霉素类细胞分裂素类乙烯脱落酸(油菜素内酯为第六类)生长素的生理效应A)促进伸长生长:与顶端生长有关(生长素在低浓度时促进生长浓度较高时则会转化为抑制作用)器官敏感性:根>芽>茎B)促进器官与组织分化:促进根的分化。
植物生理学
![植物生理学](https://img.taocdn.com/s3/m/2c2be2d50875f46527d3240c844769eae009a3a9.png)
植物生理学植物生理学是研究植物的生命过程、生理机制、代谢调节等方面的学科,是植物科学中重要的基础学科之一。
它既是农业生产技术的基础,又是环境保护、资源利用和生态建设的重要基础。
在植物生理学的研究中,主要涉及气体交换、水分运输、营养分代谢、激素作用、环境适应以及生长和发育等方面。
本文将从这几个方面来阐述植物生理学的相关内容。
一、气体交换植物通过气孔进行气体交换,吸收二氧化碳进行光合作用,产生氧气和有机物质。
在这个过程中,光合作用的速率,以及氧气和二氧化碳的浓度都会影响气孔的开启和关闭。
为了适应不同的环境条件,植物会进行调节,使其气孔开启大小和数量进行变化。
二、水分运输植物的水分运动主要是通过根系吸水以及叶片蒸腾作用来完成的。
根系吸收水分主要依赖于根系的结构和毛细作用,而叶片蒸腾作用则依赖于气孔的开启和关闭以及气温、湿度和气体浓度等环境因素。
植物通过调节这些环境因素来适应干旱、高盐、低温等不同环境条件。
三、营养分代谢植物的营养分包括糖类、蛋白质、脂类等,这些物质是植物进行生长、代谢和修复的重要物质。
糖类是植物体内的主要能量来源,同时也可以转化为植物的骨架。
植物的蛋白质则主要用于构建细胞结构和参与各种代谢和生长活动。
植物的脂类则主要在种子中储存,并可以被转化为能量。
四、激素作用植物的生长与发育过程主要受到植物生长素、乙烯、赤霉素、脱落酸等多种植物激素的调节。
这些激素可以影响植物体内各种代谢过程,包括幼苗的萌发、花序的形成、根系的发育和水分运输等,从而影响植物的生长发育。
五、环境适应植物能够通过调节身体结构和生理机制来适应不同的环境条件和生长阶段。
比如干旱条件下,植物的根系可能会长出更多的侧根,以吸收更多的水分;水稻在淹水逆境下会通过生长空气根来吸收氧气。
植物还可以调节生长素和乙烯的含量来适应不同的环境条件和生长阶段。
六、生长和发育植物的生长和发育过程主要涉及到细胞增殖、细胞分化和细胞扩张等方面。
正常的生长过程需要合适的环境条件和适宜的营养物质供应。
植物生理
![植物生理](https://img.taocdn.com/s3/m/86135d4a852458fb770b56c9.png)
1、束缚水:被细胞内胶体颗粒或大分子吸附或存在于大分子结构空间不能自由移动的水2、水分临界期:作物对水分最敏感的时期,即水分过多或缺乏对产量影响最大的时期3、溶液培养法:又称水培法即用纯化的化合物配置成水溶液来培养植物以确定植物必须矿物元素种类和数量的方法4、胞饮作用:细胞通过纸膜的内折而将物质转移到胞内的过程5、抗氰呼吸:指当植物体内存在与细胞色素氧化酶的铁结合的阴离子(如氰化物、叠氮化物)时,仍能继续进行的呼吸,即不受氰化物抑制的呼吸。
6、呼吸商:又称气体交换率,指生物体在同一时间内,释放二氧化碳与吸收氧气的体积之比或摩尔数之比,即指呼吸作用所释放的CO2和吸收的O2的分子比。
7、光呼吸:植物绿色组织在光照下吸收氧和放出二氧化碳的过程。
8、光补偿点:植物同化器官中,光合作用吸收的二氧化碳与呼吸作用释放的二氧化碳相等时的光照强度。
9、代谢源:是指能够制造并输出同化物的组织、器官或部位。
10、代谢库:是指能够消耗或贮藏有机物质的组织或部位。
11、生长素的极性运输:生长素由上向下,从一个细胞到下一个细胞连续进行的运输。
12、偏上性生长:指在形态上或生理上具有正反面的植物器官(叶和侧枝等)的向上生长(向轴侧)快于向下(背轴侧)生长,而显示向上凸出的弯曲现象。
13、细胞全能性:指植物体的每个具有核的活细胞都具备母体的全部基因,在一定的条件下都具有分化发育成一个完整植株的潜在能力14、光形态建成:光控制植物生长、发育和分化的过程。
15、光周期现象:植物对白天和黑夜相对长度变化发生反应的现象16、临界夜长:指在昼夜周期中短日植物能够开花的最小暗期长度或长日植物能够开花的最大暗期长度17、休眠:植物生长极为缓慢或暂时停顿的一种现象18、衰老:在正常的环境条件下,生物机体代谢活动减弱,生理机能衰退的过程19、抗性锻炼:植物经诱导逐步适应逆境的过程20、渗透调节:水分胁迫时植物体内积累各种有机和无机物质,提高细胞液浓度,降低渗透势,保持一定的压力势,这样植物就可以保持其体内水分,适应水分胁迫环境,这种现象称为渗透调节蒸腾方式:气孔关闭、初干、暂时萎蔫质壁分离:膜的半透性、细胞死活、细胞渗透式水孔蛋白:细胞质膜、液泡膜、磷酸化.植物细胞吸收溶质:通道运输、载体运输、泵运输、胞饮作用诊断:病症诊断法、化学分析诊断法追肥:长相和叶色生理指标叶片营养状况、酰胺含量和酶活性类囊体膜四类蛋白质:P SⅡ、PSⅠ、Cytb6-f、ATPase光合碳循环中:PEP羧化酶催化PEP和HCO3-生成OAA。
植物生理学学习指南
![植物生理学学习指南](https://img.taocdn.com/s3/m/af200695cf2f0066f5335a8102d276a20029603e.png)
植物生理学学习指南植物生理学是研究植物生命过程以及其与环境相互作用的学科。
它涉及植物的增长与发育、营养摄取与代谢、光合作用、呼吸代谢、植物激素、植物运动等方面的内容。
下面是一个植物生理学学习指南,包括学习重点、学习方法以及常见问题解答等内容。
一、学习重点:1.植物生长与发育:了解植物生长的基本过程、发育调控的机制,包括植物激素在发育中的作用、根系生长与分化等内容。
2.光合作用与呼吸代谢:了解光合作用的过程、光合作用的调控机制,以及呼吸代谢的基本原理。
3.营养摄取与代谢:了解植物的营养需求、营养摄取的途径和机制,以及植物的代谢过程。
4.植物激素与信号转导:了解植物激素的种类、作用机制,以及植物的信号转导过程。
5.植物运动:了解植物的运动形式、驱动力和机制,以及植物对外界刺激的响应过程。
二、学习方法:1.多角度学习:植物生理学是一门综合性学科,需要从多个角度去学习。
可以通过阅读教材、参考书籍、查阅学术期刊以及观察实际植物进行学习。
2.实践操作:通过实验室操作、田间实习等方式,进行实际操作和观察,加深对植物生理学的理解。
3.制作笔记:在学习过程中,及时整理和总结重点内容,制作笔记,方便日后回顾和复习。
4.辅助工具:使用辅助工具,如植物生理学模型、实验仪器等,加深对植物生理学的理解。
5.交流讨论:与同学、老师或者在学术平台上进行讨论和交流,获取更多的学习资源和意见。
三、常见问题解答:1.植物生理学与植物学有什么区别?2.植物生长与发育有哪些调控机制?植物生长与发育受到许多因素的调控,包括植物激素、光周期、温度、营养物质等。
其中,植物激素在调控植物生长和发育过程中起着重要作用,如赤霉素促进植物伸长生长,激动素促进根系生长与分化等。
3.光合作用的过程是什么?光合作用是植物利用光能将二氧化碳和水合成有机物质的过程。
在光合作用过程中,植物通过叶绿体中的叶绿素吸收光能,将光能转化为化学能,用于合成光合产物,同时释放氧气。
植物生理-名词解释
![植物生理-名词解释](https://img.taocdn.com/s3/m/8b3ef098dd88d0d233d46ae4.png)
一.名词解释1.胞间连丝:是指贯穿细胞壁、胞间层,连接相邻细胞原生质体的管状通道。
2.温周期现象与光周期现象:在自然条件下气温是呈周期性变化的,许多生物适应温度的某种节律性变化,并通过遗传成为其生物学特性,这一现象称为温周期现象。
生物在暴露于阳光期间对变化产生的反应,尤指通过生物过程显示出来的反应称光周期现象。
3.质壁分离与质壁分离复原:如果把具有液泡的细胞置于水势较低的溶液中,液泡失水,细胞收缩,体积变小。
由于细胞壁的伸缩性有限,而原生质体的伸缩性较大,随着细胞继续失水,原生质层便和细胞壁分离开来,这种现象被称为质壁分离。
如果把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中,外液中的水分又会进入细胞,液泡变大,整个原生质层很快会恢复原来的状态,重新与细胞壁想贴,这种现象称为质壁分离复原。
4.根系的主动吸水与被动吸水:由根系代谢活动而引起的根系吸水过程称为主动吸水。
由蒸腾拉力引起的根系吸水称为被动吸水。
5.植物的水分临界期与最大需水期:指植物在生命周期中对水分最敏感、最易受伤害的时期。
一般而言,植物水分临界期多处于花粉母细胞四分体形成期,此时若缺水,使性器官发育不正常。
植物的最大需水期指植物生活周期中需水最多的时期。
6.大量元素与微量元素:植物生命活动必需的、且需要量较多的一些元素,它们约占植物体干重的0.01-10%,有C、H、O、N、P、S、K、Ga、Mg等9种元素。
植物生命活动必需的、而需要量很少的一类元素。
它们约占植物体干重的10(-5)-10(-3)%,有Fe、Mn、Zn、Cu、B、Mo、Cl等。
7.RuBP羧化酶与PEP羧化酶:核酮糖二磷酸羧化酶,催化1,5-二磷酸核酮糖和CO2生成二分子甘-3-磷酸甘油酸反应的酶。
亦称羧基歧化酶。
催化以磷酸烯醇型丙酮酸为底物,固定CO2形成草酰乙酸的酶,简称PEP羧化酶8.CO2饱和点与CO2补偿点:光合速率随CO2浓度增高而增加,当光合速率达到最大值时CO2浓度即为CO2饱和点。
植物生理知识点总结
![植物生理知识点总结](https://img.taocdn.com/s3/m/23da282fce84b9d528ea81c758f5f61fb6362876.png)
植物生理知识点总结植物生理学是研究植物生命活动规律的科学,它涵盖了从植物的细胞、组织到整个植株的生长、发育、代谢、繁殖等多个方面。
以下是对植物生理一些重要知识点的总结。
一、植物细胞生理植物细胞是植物生命活动的基本单位。
细胞壁为细胞提供了支持和保护,其主要成分是纤维素。
细胞膜具有选择透过性,能够控制物质的进出。
细胞质中包含各种细胞器,如线粒体是细胞的“动力工厂”,进行有氧呼吸产生能量;叶绿体是进行光合作用的场所,将光能转化为化学能。
液泡储存着细胞液,维持细胞的渗透压。
细胞的水分关系也很重要。
细胞吸水有两种方式,一种是渗透性吸水,依靠细胞液和外界溶液之间的渗透压差异;另一种是吸胀吸水,由亲水性物质引起。
水势是衡量水分运动趋势的指标,包括渗透势、压力势和重力势等。
二、植物的光合作用光合作用是植物将光能转化为化学能,并合成有机物的过程。
光合色素主要有叶绿素和类胡萝卜素,它们吸收不同波长的光。
光反应在类囊体膜上进行,包括光能的吸收、传递和转化,形成ATP 和 NADPH。
暗反应在叶绿体基质中进行,利用光反应产生的ATP 和 NADPH,将二氧化碳固定并还原为有机物。
影响光合作用的因素众多,包括光照强度、光质、二氧化碳浓度、温度、水分和矿质元素等。
在农业生产中,合理密植、增加二氧化碳浓度、调节温度等措施都可以提高作物的光合效率。
三、植物的呼吸作用呼吸作用是植物分解有机物、释放能量的过程。
有氧呼吸包括糖酵解、三羧酸循环和电子传递链等阶段,产生大量的 ATP。
无氧呼吸在无氧条件下进行,产生的能量较少,还会产生酒精或乳酸等物质。
呼吸作用的速率受温度、氧气浓度、二氧化碳浓度等因素的影响。
在储存粮食和水果时,常通过降低温度、减少氧气含量等方法来降低呼吸作用,减少有机物的消耗。
四、植物的水分和矿质营养植物通过根系吸收水分和矿质元素。
根系的结构和功能适应了吸收的需求,根毛区是吸收水分和矿质元素的主要部位。
水分在植物体内的运输依靠蒸腾作用产生的拉力,通过导管向上运输。
植物生理
![植物生理](https://img.taocdn.com/s3/m/eccc7f10866fb84ae45c8dc4.png)
IAA/GA比值高,分化木质部; IAA/GA比值低,分化韧皮 部; IAA/GA比值中等,既有木质部又有韧皮部。
蔗糖浓度高,分化韧皮部;蔗糖浓度低,分化木质部;蔗 糖浓度中等,既有韧皮部,又有木质部,中间有形成层。
极性与再生作用
植物细胞分化具一定独立性, 主要表现为极性与再生作用。
极性(polarity):表现在植物 的器官、组织或细胞的形态学 两端在生理上的差异性(异质 性)。例如植物的形态学上端 总是长芽,下端总是长根。 再生作用(regeneration): 指与植物体分离了的部分具有 恢复其余部分的能力。
periodicity)。
(一)植物生长大周期(grand period of growth 生长曲线(growth curve) 无论是细胞、组织、器官,还是个体乃至群体,在其整个 生长进程中,生长速率均表现出“慢-快-慢”的节奏性变 化。通常,把生长的这三个阶段总和起来,叫做生长大周期 假若以时间为横座标,以 生长量为纵座标,就可以给 出一条曲线,叫生长曲线.生 长大周期的曲线则为S形曲线;
脱分化 再分化
(六)组织培养的应用
1、植物体的无性快速繁殖及脱毒 2、花粉培养和单倍体育种 3、人工种子 4、药用植物的工厂化生产 5、原生质体培养和体细胞杂交
第四节 植物的生长分析
一、生长速率 表示方法 绝对生长速率 相对生长速率 1. 绝对生长速率(absolute growth rate,AGR) 指单位时间内植物的绝对生长量。
2、种子生活力(seed viability)
指种子能够萌发的潜在能力或种胚具有的生命力。
常用标准条件下测得的发芽力表示。但测定较慢。 常用快速检测方法 活种子有呼吸作用,呼吸作用产生还原力, 后者可使氯化三苯基四唑(简称TTC,无色) 还原成三苯甲簪(TTF或TPF,红色) 。
植物生理学课件
![植物生理学课件](https://img.taocdn.com/s3/m/f1909a1d10a6f524ccbf8585.png)
四、植物生理学当前的主要任务
我国植生研究的主要任务:
1.深入进行基础理论的研究,探索生命活动的本质。
理论研究的突破,会给农业生产带来革命性的变化。
例如: “绿色革命” 重点:能量转化
例如:“第一次绿色革命”:发生在上世纪50
年代初,其主要特征是把水稻的高秆变矮秆, 另外辅助于农药和农业机械,从而解决了19 个发展中国家粮食自给问题。 世界上一些国家科技对农业增长的贡献率一 般都在70%以上,像以色列这样一个极度缺 水的国家,它的科技对农业的贡献率达到90 %以上。 我国的杂交水稻是第一次绿色革命时期的杰 出代表
(6)德国的萨克斯对植物的生长、光合作用 和矿质营养做了很多的实验,使植物生理学 成为完整的体系。于1882年编写了《植物生 理学讲义》。 (7)萨克斯的弟子费弗尔、全面总结了植物 生理学以往的研究成果1904年出版了三卷本 专著《植物生理学》,植物生理学作为一门 学科诞生了。
3.植物生理学飞跃发展时期(20世纪至今) 科学技术突飞猛进,植物生理学发展迅速, 具体表现在: (1)研究仪器和方法的改进,使结果更加精 细和准确。例如:同位素技术、电子显微镜、
3、创办了一批主要刊登植物分子生物学的刊 物,如: ● 《Plant Molecular Biology》(1986年创 刊);(2003年影响因子为3.795) ● 《The Plant Cell》(1989年创刊)。
4、高等学校的专业、学科和课程设置发生了
变化: ●撤消植物生理学本科专业; ●植物生理学硕士、博士学位点合并到植物 学专业中; ●部分综合性大学不再开设植物生理学课程, 代之以“植物生物学”
2.大力开展应用基础研究和应用研究,促使
植物生理
![植物生理](https://img.taocdn.com/s3/m/b691963acfc789eb172dc8a4.png)
植物生理学复习1.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。
2.P/O:指呼吸链中每消耗1个氧原子与用去Pi或产生ATP的分子数。
3.抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸。
即在有氰化物存在的情况下仍能够进行其它的呼吸途径。
4.糖酵解:指在细胞质内所发生的,由葡萄糖分解为丙酮酸的过程。
5.三羧酸循环:丙酮酸在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解CO2的过程。
6.末端氧化酶:是指处于生物氧化作用一系列反应的最末端,将底物脱下的氢或电子传递给氧,并形成H2O或H2O2的氧化酶类。
7.呼吸链:呼吸代谢中间产物随电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。
8.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。
9.植物生长物质:调节植物生长发育的物质。
10.植物激素:是指一些在植物体内合成,并从产生之处运往作用部位,对生长发育起调控作用的微量(0.5)有机物。
11.植物生长调节剂:指一些具有植物激素活性的人工合成的物质。
12.三重反应:乙烯可抑制黄化豌豆幼苗上胚轴的伸长生长,促进其加粗生长,地上部分失去负向地性生长(偏上生长)。
13.极性运输: 是指生长素只能从植物体的形态学上端向下端运输。
14.程序性细胞死亡:是指为维持内环境稳定,由基因控制的细胞自主的有序性的死亡,它涉及一系列基因的激活、表达以及调控等的作用,因而是具有生理性和选择性的。
15.细胞全能性:植物的每个细胞均含有母体的全套基因,并在适宜条件下均能发育成完整个体的潜在能力。
16.愈伤组织: 原是指植物在受伤后于伤口表面形成的一团薄壁细胞,在组培中,则指在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。
特征:细胞排列疏松而无规则,是一种高度液泡化的呈无定形状态的薄壁细胞.17.脱分化: 是指分化细胞失去特有的结构和功能变为未分化细胞特性的过程,即分化的细胞在适当的条件下转变为胚性状态而重新获得分裂能力的过程。
植物生理学名词解释
![植物生理学名词解释](https://img.taocdn.com/s3/m/fd304ffa941ea76e58fa04ce.png)
名词解释1.植物生理学:是研究植物生命活动规律揭示植物生命现象本质的学科。
2.生长:是指增加细胞数目和扩大细胞体积而导致植物体积和重量的不可逆增加。
3.发育:是指细胞不断分化,形成新组织、新器官,即形态建成,具体表现为种子萌发,根、茎、叶生长,开花、结实、衰老死亡等过程。
4.细胞信号转导:是指细胞偶联各种刺激信号(包括各种内外源刺激信号)与其引起的特定生理效应之间的一系列分子反应机制。
5.诱导酶:又叫适应酶。
指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。
6.三重反应:是指乙稀可抑制茎的伸长生长;促进其横向生长(加粗);上胚轴失去负向重力性生长。
7.植物激素:是指一些在植物体内合成,并从产生之处运往作用部位,对生长发育起调控作用的微量有机物。
8.植物生长调节剂:指一些具有植物激素活性的人工合成物质。
9.光周期现象:指植物对白天和黑夜的相对长度的反应,与一些植物的开花有关。
10.光周期诱导:是指植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下仍然可开花,这种现象成为光周期诱导。
11.水势:同温同压同一系统下水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得的商。
把纯水的水势定义为零,溶液的水势值则是负值。
12.抗氰呼吸:指在氰化物存在的情况下,某些植物呼吸不受抑制,这种呼吸成为抗氰呼吸。
13.呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,最后又下降的现象。
此时果实便进入完全成熟。
这个呼吸高峰,便称为渗透调节。
14.平衡溶液:几种盐类按一定比例和浓度配制的不使植物发生单盐毒害的溶液。
这种配制的溶液是使其中各种盐类的阳离子之间表现它们的拮抗作用。
15.单盐毒害:如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,(如钾离子,而且在培养液中的浓度很低,)植物也不能正常生活,不久即受害而死。
16.聚光色素:没有光化学活性,只有收集作用,像漏斗一样把光能聚集起来,传到反应中心色素,包括大部分叶绿素a分子、全部叶绿素b、类胡萝卜素分子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物学复习提纲答案1.根毛的形成及利于吸收水分和矿物质的特征。
1)根毛是由表皮细胞外壁延伸而成,是根的特有结构,一般呈管状,角质层极薄,不分枝,长约0.08~1.5mm,数目多少不等,因植物种类而异2)(生理学)a.增大了吸收面积;b.细胞壁外部由果胶组成,黏性强,亲水性也强,有利于土壤颗粒黏着和吸水;c.根毛区输导组织发达,对水分移动的阻力小2.典型的细胞水势包括哪四个部分?典型的细胞水势是由4个势组成的:ψw(细胞水势)=ψs(溶质势)+ψp(压力势)+ψg(重力势)+ψm(衬质势)3.植物的吐水现象是由什么引起的?没有受伤的植物如处于土壤水分充足,天气潮湿的环境中,叶片尖端或边缘的水孔也有液体外泌的现象,这种从未受伤叶片尖端或边缘向外溢出液滴的现象,称为吐水。
吐水是由根压引起的,在自然条件下,当植物吸水大于蒸腾时(如早晨、傍晚),往往可以看到吐水现象。
在生产上,吐水现象可作为判断根系生理活动的指标。
4.光反应和碳反应的部位?光反应:类囊体薄膜(光合膜)碳反应:叶绿体基质5. 聚光色素和反应中心色素的区别?1)聚光色素:没有光化学活性,只起吸收和传递光能作用,不能进行光化学反应的光合色素2)反应中心色素:吸收光或由聚光色素传递而来的激发能后,发生光化学反应,引起电荷分离的光合色素,具有光化学活性,既是光能的“捕捉器”,又是光能的“转化器”(光能转化为电动势)6.高等植物固定CO2 的生化途径?高等植物固定CO2的生化途径有3条:C3途径、C4途径和景天酸代谢途径。
其中以C3途径为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的能力,其他两条途径不普遍(特别是第三条),而且只能起固定、运转CO2的作用,不能形成淀粉等产物。
7. 当把蚕豆叶表皮细胞自K+浓度高的溶液移至低的溶液中,气孔将发生什么变化?张开变为闭合。
在K+进入细胞同时,还伴随着少量Cl-的进入,以保持保卫细胞的电中性。
外界溶液中钾离子浓度高时,保卫细胞中会积累较多的K+和Cl-,水势降低,水分进入保卫细胞,气孔张开。
反之,水势降低,水分流出保卫细胞,气孔闭合。
8. C3 植物和C4 植物叶维管束鞘的区别?C4植物如玉米、甘蔗、高梁,其维管束鞘发达,是单层薄壁细胞,细胞较大,排列整齐,含多数较大叶绿体。
维管束鞘外侧紧密毗连着一圈叶肉细胞,组成“花环形”结构。
这种“花环”结构是C4植物的特征。
C3植物包括水稻、小麦等,其维管束鞘有两层,外层细胞是薄壁的,较大,含叶绿体较叶肉细胞中为少;内层是厚壁的,细胞较小,几乎不含叶绿体。
C3植物中无“花环”结构,且维管束鞘细胞中叶绿体很少,这是C3植物在叶片结构上的特点。
9. 掌握一个含有中央大液泡的成熟植物细胞水势组成以及溶液的水势组成?典型的细胞水势是由4个势组成的:ψw=ψs+ψp+ψg+ψmΨw是细胞水势,ψs是溶质势,ψp是压力势,ψg是重力势,ψm是衬质势考虑到水分在细胞水平移动,与渗透式和压力势相比,重力势组分通常忽略不计。
已形成中心大液泡的细胞含水量很高,ψm只占整个水势的微小部分,通常一般忽略不计。
因此一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成,即ψw =ψs +ψp10. 解释叶绿素溶液透射光下呈绿色,反射光下呈红色的原理。
叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象叫做荧光现象。
1)反射光下,看到的是叶绿素的吸收光谱。
由于叶绿素提取液吸收的绿光部分最少,故用肉眼观察到的为绿色透射光。
2)透射光下,看到的是叶绿素分子受激发后所产生的发射光谱。
当叶绿素分子吸收光子后,就由最稳定的、能量最低的基态上升到一个不稳定的、高能量的激发态。
由于激发态极不稳定,停留时间一般不超过几纳秒,以后就迅速向较低能状态转变。
叶绿素分子吸收的光能有一部分用于分子内部振动上,辐射出的能量就小。
由“光子说”可知,光是以一份一份光子的形式不连续传播的,而且E=hv= hc/λ,即波长与光子能量成反比。
因此,反射出的光波波长比入射光波的波长长,叶绿素提取液在反射光下呈红色。
11. 掌握光合作用、光能利用率、光合磷酸化、二氧化碳补偿点的概念。
1)绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物并释放氧气的过程称为光合作用2)所谓光能利用率,是指植物光合作用所累积的有机物所含的能量占照射在单位地面上的日光能量的比率。
3)光合磷酸化是指叶绿体利用光能驱动电子传递建立跨类囊体膜的质子动力势,质子动力势就把ADP和无机磷酸合成ATP。
光合磷酸化可分为三种类型:非环式光合磷酸化、环式光合磷酸化和假环式光合磷酸化。
4)当光合吸收的CO2量等于呼吸放出的CO2量,这个时间外界的CO2含量就叫做CO2补偿点12. 掌握水势、蒸腾作用的概念。
1)衡量水分反应或做功能量的高低,可用水势表示,在植物生理学上,水势就是每偏摩尔体积水的化学势差,就是说,水溶液的化学式与纯水的化学式之差,除以水的偏摩尔体积所得的商,称为水势。
2)蒸腾作用是指水分以气体状态,通过植物体的表面(主要是叶片),从体内散失到体外的现象。
蒸腾作用虽然基本上是一个蒸发过程,但是与物理学上的蒸发不同,因为蒸腾过程还受植物气孔结构和气孔开度的调节13. 请从从植物生理学角度,分析农谚“有收无收在于水”的道理。
植物的一切正常生命活动只有在有一定的细胞水分含量状况下才能进行,如果缺少水分,植物的正常的生命活动就会受阻,甚至停止。
这是因为: ①水是植物原生质的主要成分,只有在水分饱和条件下植物细胞才能进行正常的分裂、伸长、分化及各种生理生化过程。
②水是光合、呼吸、有机物合成及分解等多种代谢过程的反应物质。
③水是生化反应和植物对物质吸收运输的溶剂。
④水能维持细胞的膨胀状态,使植物枝叶挺立,有利于充分接受阳光和进行气体交换,同时使花开放,便于授粉。
⑤植物细胞的分裂和伸长都要在充分吸水的膨胀状态下才能进行。
⑥水对可见光的吸收极少,从而使光线能进入叶肉细胞,进行光合作用。
因此,水对农业生产是必不可少的。
14. 将一植物细胞放入纯水中,其水势、渗透势、压力势和体积如何变化?在纯水中由于细胞吸水,其体积增大,水势、渗透势、压力势增高,水势最终增至零;渗透势与压力势绝对值相等,故代数和为零。
细胞在吸水过程中,体积、水势、压力势、渗透势是同时增大的,至吸水饱和时,细胞体积达最大,各组分不再变化。
15. 常言道:“水往低处流”,而水分却可以从土壤经根、茎干和叶到达高大树木的顶部, 二者是否矛盾?不矛盾。
通过蒸腾作用(植物蒸腾作用是叶片内细胞失水,渗透势增高,这样水和溶解在水中的无机盐顺着渗透势被运送到植物顶端。
)散失水分所产生的拉力,是促使水分在植物体内向上运输的动力。
根部生理活动也能产生推动水分向上运动的压力。
16. 水分是如何进入根部导管的?水分又是如何运输到叶片的?根系是陆生植物吸水的主要器官,它从土壤中吸收大量水分,以满足植物体的需要。
植物根系吸水主要通过质外体途径、跨膜途径和共质体途径相互协调、共同作用,使水分进入根部导管。
而水分的向上运输则来自根压和蒸腾拉力。
正常情况下,因根部细胞生理活动的需要,皮层细胞中的离子会不断地通过内皮层细胞进入中柱,于是中柱内细胞的离子浓度升高,渗透势降低,水势也降低,便向皮层吸收水分。
根压把根部的水分压到地上部,土壤中的水分便不断补充到根部,形成了根系吸水的动力过程之一。
蒸腾作用是水分运输的主要动力。
正常生理情况下,叶片发生蒸腾作用引起水分的散失,从而使叶片细胞、输导组织产主一系列的水势梯度,导致根部被动吸水,水分由根部进入导管,不断从一个细胞传到另一个细胞,直到叶片上。
17. 植物必需的矿质元素要具备哪些条件?如何用实验方法证明植物生长需要这些元素?这些元素在植物体内的生理作用是什么?1)植物必需元素必须符合下列3条标准:a.完成植物整个生长周期不可缺少的;b.在植物体内的功能是不能被其他元素代替的,植物缺乏该元素时会表现专一的症状,并且只有补充这种元素症状才会消失;c.这种元素对植物体内所起的作用是直接的,而不是通过改变土壤的理化性质、微生物生长条件等原因所产生的间接作用。
2)溶液培养法亦称水培法,是在含有全部或部分营养元素的溶液中栽培植物的方法。
研究植物必需的矿质元素时,可在人工配成的混合营养液中除去某种元素,观察植物的生长发育和生理性状的变化。
如果植物发育正常,就表示这种元素不是植物必需的;如果植物发育不正常,但当补充该元素后又恢复正常状态,即可断定钙元素是植物必需的。
3)必需矿质元素在植物体内的生理作用概括起来有4个方面:a.细胞结构物质的组成成分,如N、S、P等;b.植物生命活动的调节者,参与酶的活动,如K+、Ca2+;c.起电化学作用,即离子浓度的平衡、氧化还原、电子传递和电荷中和,如K+、Fe2+、Cl-;d.作为细胞信号传导的第二信使,如Ca2+18. 植物对水分和矿质元素的吸收有什么关系?是否完全一致?矿质元素可以溶解在溶液中,通过溶液的流动来吸收。
两者的吸收不完全一致相同点:①两者都可以通过质外体途径和共质体途径进入根部。
②温度和通气状况都会影响两者的吸收。
不同点:①矿质元素除了根部吸收后,还可以通过叶片吸收和离子交换的方式吸收矿物质。
②水分还可以通过跨膜途径在根部被吸收。
19. 电子传递为何能与光合磷酸化偶联?根据化学渗透学说,ATP的合成是由质子动力(或质子电化学势差)推动形成的,而质子动力的形成是H+跨膜转移的结果。
在光合作用过程中随着类囊体膜上的电子传递会伴随H+从基质向类囊体膜腔内转移,形成质子动力,由质子动力推动光合磷酸化的进行。
用以下实验也可证实电子传递是与光合磷酸化偶联的:在叶绿体体系中加入电子传递抑制剂如DCMU,光合磷酸化就会停止;如果在体系中加入磷酸化底物如ADP与Pi则会促进电子传递。