数字图像处理-图像分割PPT课件
合集下载
第七章 图像分割_PPT课件
•关键点
– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义
– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义
数字图像处理图像分割课件
基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。
[课件]数字图像处理 第八讲 图像分割PPT
图像分割
拉普拉斯(Laplacian)算子是不依赖于边缘方向的 二阶微分算子。它是一个标量而不是向量,具有旋 转不变即各向同性的性质,在图像处理中经常被用 来提取图像的边缘。其表示式为
f x ,y f x ,y f x ,y 2 2 x y
2 2 2
f(x-1,y-1) f(x-1,y)
f(x,y-1) f(x,y-1) f(x,y) f(x,y) f(x,y+1)
f(x+1,y-1) f(x+1,y) f(x+1,y+1)
图像分割
选取适当的门限TH,作如下判断:G[f(x,y)]>TH, (x,y)为阶跃状边缘点。
二、Sobel梯度算子(3×3个像素) 先做加权平均,再作微分,即
2
图像增强
f(x-1,y)
f(x,y-1)
f(x,y)
f(x,y+1)
f(x+1,y)
图像分割
当拉普拉斯算子输出出现过零点时就表明有边 缘存在。该算子有两个缺点:其一就是边缘方向信 息的丢失,其二它是二阶差分,双倍加强了图像中 噪声的影响。
改进的LOG算法:
在进行拉普拉斯运算前先进行平滑去噪,然后 再提取边缘。平滑去噪采用高斯滤波器,然后与拉 普拉斯边缘检测合并在一起,形成LOG(Laplacian Of Gaussian)。
图像分割
对于数字图像,可用一阶差分替代一阶微分:
f f x,yf x x ,y 1 ,y x f x f f x,yf x,y x ,y 1 y f y
此时梯度的幅度可表示为:
G f x , y f x , y f x , y x y
【课件】数字图像处理之图像分割ppt
2.图像分割的定义
令集合R代表整个图像区域,对R的分割可看作将R分成N 个满足以下五个条件
的非空子集(子区域)R1,R2,…,RN:
N
• Ri R
;
i1
• 对所有的i和j,i≠j,有Ri∩Rj =φ;
• 对i = 1,2,…,N,有P(Ri) = TRUE;
• 对i≠j,有P(Ri∪Rj) = FALSE;
• 一般的图像很难获得灰度的概率密度函数以及 先验概率,在一些特殊的应用场合,如文字、乐 谱等图像,可以从大量图像得到一个统计规律, 获得符号部分在全图像中的百分比,以此为基础, 结合直方图谷点分析,可以得到近似最优
• 的结果
若选为Zt分割门限,则将背景象素错认为是目标象素的概率
是:
E1 Zt
图像分割—引言
图像分割的目的 • 把图像分解成构成它的部件和对象; • 有选择性地定位感兴趣对象在图像中的位置 和范围。
图像分割—引言 图像分割的基本思路
从简到难,逐级分割 • 控制背景环境,降低分割难度 • 注意力集中在感兴趣的对象,缩小不相干图像 成分的干扰。
提取轮廓
车牌定位
车牌识别
连通准则: 4-连通 8-连通
4.图像分割的方法
1) 基于边缘的分割方法:先提取区域边界,再确定边界限定的区域。
2) 区域分割:确定每个像素的归属区域,从而形成一个区域图。
3) 区域生长:将属性接近的连通像素聚集成区域。
4) 分裂-合并分割:综合利用前两种方法,既存在图像的划分,又有
图像的合并。
分割对象
在利用阈值方法来分割灰度图像时一般都对图像有一定的假设。基于 一定的图像模型的。最常用的模型:
假设图像由具有单峰灰度分布的目标和背景组成,处于目标或背景内
数字图像处理与分析图像分割(课堂PPT)
下面看一下导数的求取方法。从第三章了解到,图像 中的一阶导数采用梯度算子计算,而二阶导数常使用 拉普拉斯算子得到。
13
梯度算子
一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像f(x,y)在位
置(x,y)的梯度定义为下列向量:
f
F
G x
G
y
x
f
y
(10.1.3)
向量的大小:
图10.7中第一列的图 像分割显示了分割左 右黑白区域的4个斜 坡边缘的特写图。分 别被均值为0且 σ=0.0,0.1,1.0,10.0 的随机高斯噪声污染。 第二列是一阶导数图 像和灰度级剖面线。 第三列为二阶导数图 像和灰度级剖面线。
图10.7
12
这个例子很好的说明了导数对于噪声的敏感性。 那么为了对于有意义的边缘点进行分类,必须使得与 这个点相联系的灰度级变换比在这一点的背景上的变 换更为有效才行。即所作的变换应该更有利于区分边 缘点。比如,如果噪声严重的话,就要慎用导数变换。
的特征,那么特征值的分界点就是一个门限。
3
8.1 间断检测
间断检测技术包括点检测,线检测和边界检测三种。寻找间断最 一般的方法是模板检测。计算模板所包围区域的灰度级与模板系 数的乘积之和。
图像中任意点的模板响应公式(3×3模板):
Rw1z1w2z2 w9z9
9
wizi i1 图10.1 3*3模板
可以看到,
(a)
(1)图中水平和垂直的部
分都被去掉了,并且在(b)
中所有原图中接近-450的部
分产生了最强响应。
(2)加了门限之后,在(c) 中有孤立点,可以使用点检 测模板检测,然后删除,或 者使用下一章的形态学腐蚀 法删除。
13
梯度算子
一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像f(x,y)在位
置(x,y)的梯度定义为下列向量:
f
F
G x
G
y
x
f
y
(10.1.3)
向量的大小:
图10.7中第一列的图 像分割显示了分割左 右黑白区域的4个斜 坡边缘的特写图。分 别被均值为0且 σ=0.0,0.1,1.0,10.0 的随机高斯噪声污染。 第二列是一阶导数图 像和灰度级剖面线。 第三列为二阶导数图 像和灰度级剖面线。
图10.7
12
这个例子很好的说明了导数对于噪声的敏感性。 那么为了对于有意义的边缘点进行分类,必须使得与 这个点相联系的灰度级变换比在这一点的背景上的变 换更为有效才行。即所作的变换应该更有利于区分边 缘点。比如,如果噪声严重的话,就要慎用导数变换。
的特征,那么特征值的分界点就是一个门限。
3
8.1 间断检测
间断检测技术包括点检测,线检测和边界检测三种。寻找间断最 一般的方法是模板检测。计算模板所包围区域的灰度级与模板系 数的乘积之和。
图像中任意点的模板响应公式(3×3模板):
Rw1z1w2z2 w9z9
9
wizi i1 图10.1 3*3模板
可以看到,
(a)
(1)图中水平和垂直的部
分都被去掉了,并且在(b)
中所有原图中接近-450的部
分产生了最强响应。
(2)加了门限之后,在(c) 中有孤立点,可以使用点检 测模板检测,然后删除,或 者使用下一章的形态学腐蚀 法删除。
图像分割与特征提取 ppt课件
ppt课件
5
7.1 图像分割的概念
2. 图像分割的依据和方法
◆图像分割的依据是各区域具有不同的特性,这些 特性可以是灰度、颜色、纹理等。而灰度图像分割的 依据是基于相邻像素灰度值的不连续性和相似性。也 即,子区域内部的像素一般具有灰度相似性,而在区 域之间的边界上一般具有灰度不连续性。
◆灰度图像分割是图像分割研究中最主要的内容,其 本质是按照图像中不同区域的特性,将图像划分成不 同的区域。
7.2.1 图像边缘
图像
剖面
一阶导数
二阶导数
上升阶跃边缘 (a)
下降阶跃边缘 (b)
脉冲状边缘 (c)
屋顶边缘 (d)
图7.1 图像边缘及其导数曲线规律示例
ppt课件
11
7.2 基于边缘检测的图像分割
7.2.1 图像边缘
综上所述,图像中的边缘可以通过对它们求导数 来确定,而导数可利用微分算子来计算。对于数字图 像来说,通常是利用差分来近似微分。
方向:
f (x, y) = arctan(Gx / Gy )
(7.5)
ppt课件
14
7.2.2 梯度边缘检测
(1) Roberts算子
是一个交叉算子,其在点(i,j)的梯度幅值表示为:
G(i, j) = f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (7.6)
ppt课件
2
7.1 图像分割的概念
◆目标或前景 ◆背景 ◆目标一般对应于图像中特定的、具有独特性质的 区域。
ppt课件
3
7.1 图像分割的概念
1. 图像分割
图像分割就是依据图像的灰度、颜色、纹理、边 缘等特征,把图像分成各自满足某种相似性准则或具 有某种同质特征的连通区域的集合的过程。
第 05 章 图像分割——数字图像处理及应用北航谢凤英课件PPT
灰度
目标
边界
背景
梯度
c 多波段:
R、G、B可分别组成R-B, G-B, R-B两维直方图, 图上强的地方反映一个区。
5.2 边缘检测
1 边缘检测原理 其导数在边缘方向取得极值
0
0
(a) 一幅纵向 0 边缘的图像
(b) 每行像素的 灰度剖面图
(c) 一阶导数 (d) 二阶导数
从数学上看,图像的模糊相当于图像被平均或积分,为实现图象的 锐化,必需用它的反运算“微分”--加强高频分量作用,使轮廓清晰。
图像分割:将图像中有意义的特征或需要应用的特征提 取出来。
(简单而又难于实现的最基础的识别工作。人的视觉系统对图像分 割是十分复杂的,也是相当有效的。但分割原理和模型都未搞清 楚。)
第五章 图像的分割
5.1 阈值分割 5.2 边缘检测 5.3 区域分割 5.4 Hough变换 5.5 近邻法分割 5.6 基于动态聚类的分割 5.7 基于神经网络的分割 5.8 其它分割方法
2 (1,2 ) w0,1[w0 (0 0,1)2 w1(1 0,1)2 ]
w12[w1(1 1,2 )2 w2 (2 1,2 )2 ] w0,2[w0 (0 0,2 )2 w2 (2 0,2 )2 ]
概率统计的阈值选取法 如:目标占整幅图像面积百分比
3 影响因素 噪音、照度不均匀,结构特征等。
-1 -c -1 -1 1 -c c
1 c 1 -1 1
c1 1 -1
-1 -c
1c -1 1 -c -1
注意:边缘检测对噪声敏感,常在作边缘检测前对图
像进行某些预处理,如平滑处理等。
2 典型算子 f) 二阶微分算子--- laplace算子
2
数字图像处理PPT——第七章 图像分割
p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1
∑
( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1
∑
f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2
∑
f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线
数字图像处理-图像分割课件
差分定义:
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界, 但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
非连续性分割: 首先检测局部不连续性,然后将它们 连接起来形成边界,这些边界把图像分以不同的区域。 这种基于不连续性原理检出物体边缘的方法称为基于 点相关的分割技术
两种方法是互补的。有时将它们地结合起来,以求 得到更好的分割效果。
人眼图像示例
分类—连续性与处理策略 连续性: 不连续性: 边界 相似性: 区域 处理策略: 早期处理结果是否影响后面的处理 并行: 不 串行: 结果被其后的处理利用 四种方法 并行边界;串行边界;并行区域;串行区域
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割: 将相似灰度级的像素聚集在一起。形成 图像中的不同区域。这种基于相似性原理的方法也称 为基于区域相关的分割技术
高斯拉普拉斯(LOG)
高斯拉普拉斯(Laplacian of Gaussian, LOG, 或 Mexican hat, 墨西哥草帽)滤波器使用了Gaussian 来进行噪声去除并使用 Laplacian来进行边缘检测
高斯拉普拉斯举例
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界, 但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
非连续性分割: 首先检测局部不连续性,然后将它们 连接起来形成边界,这些边界把图像分以不同的区域。 这种基于不连续性原理检出物体边缘的方法称为基于 点相关的分割技术
两种方法是互补的。有时将它们地结合起来,以求 得到更好的分割效果。
人眼图像示例
分类—连续性与处理策略 连续性: 不连续性: 边界 相似性: 区域 处理策略: 早期处理结果是否影响后面的处理 并行: 不 串行: 结果被其后的处理利用 四种方法 并行边界;串行边界;并行区域;串行区域
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割: 将相似灰度级的像素聚集在一起。形成 图像中的不同区域。这种基于相似性原理的方法也称 为基于区域相关的分割技术
高斯拉普拉斯(LOG)
高斯拉普拉斯(Laplacian of Gaussian, LOG, 或 Mexican hat, 墨西哥草帽)滤波器使用了Gaussian 来进行噪声去除并使用 Laplacian来进行边缘检测
高斯拉普拉斯举例
数字图像处理-图像分割-讲义PPT
数字图像处理
图像分割
图像分割概论
图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。 图像分割是模式识别和图像分析的预处理阶段。 通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相 似的特征,如相同的灰度值、相同的颜色等。 传统的图像分割技术: 基于像素灰度值的分割技术 基于区域的分割技术 基于边界的分割技术 图像的描述,包括边界和区域的描述
在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。
纹理分析的自相关函数方法
自相关函数的定义 若有一幅图像f(i, j), i, j=0, 1, …, N-1, 它的自相关函数为:
f (i, j ) f (i x, j y ) i 0 j 0 f 2 (i, j ) i 0 j 0
对图像区域的操作―数学形态学
灰度阈值分割法
灰度阈值分割法是最古老的分割技术 只能应用于图像中组成感兴趣对象的灰度值是均匀的,并且和背景的灰度值不一样。 事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们 所感兴趣的对象;反之则属于背景部分。 这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一 个合适的阈值。 如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近 出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰 值之间的低谷处找到一个合适的阈值。 单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。
灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的; 不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。
图像分割
图像分割概论
图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。 图像分割是模式识别和图像分析的预处理阶段。 通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相 似的特征,如相同的灰度值、相同的颜色等。 传统的图像分割技术: 基于像素灰度值的分割技术 基于区域的分割技术 基于边界的分割技术 图像的描述,包括边界和区域的描述
在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。
纹理分析的自相关函数方法
自相关函数的定义 若有一幅图像f(i, j), i, j=0, 1, …, N-1, 它的自相关函数为:
f (i, j ) f (i x, j y ) i 0 j 0 f 2 (i, j ) i 0 j 0
对图像区域的操作―数学形态学
灰度阈值分割法
灰度阈值分割法是最古老的分割技术 只能应用于图像中组成感兴趣对象的灰度值是均匀的,并且和背景的灰度值不一样。 事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们 所感兴趣的对象;反之则属于背景部分。 这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一 个合适的阈值。 如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近 出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰 值之间的低谷处找到一个合适的阈值。 单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。
灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的; 不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。
数字图像处理第九章图像分割(共94张精选PPT)
如果选择使用二阶导数,则边缘点定义为它的二阶
导数的零交叉点。
分割的关键问题是如何将边缘线段组合成更长的
边缘。
应该注意到,这些定义并不能保证在一幅图像中成功地找
到边缘。它们只是给了一个寻找边缘的形式体系。
边缘检测基本步骤
滤波:改善与噪声有关的边缘检测器的性能;一般滤波
器降噪导致了边缘的损失;增强边缘和降低噪声之间
转换为黑白二值图像,
0
f (x, y) T
g(x, y) =
255 f (x, y) T
以上原理用MATLAB实现很简单,其实是将图像中所有的灰
阶值与T相比较,大于T的返回1,小于T的返回0,我们得到一
个只有0和1的矩阵,将其显示为图像,就是一幅二值图像。
可以用函数im2bw来实现上述操作。
, 具有最大
的k即是最佳阈值.
用h(x,y)对图像f(x,y)的平滑可表示为:
一阶
二阶
边缘和导数
阶跃边缘、脉冲边缘、屋顶边缘的灰度剖面
线及其一阶、二阶导数。
边缘点的判定
判断一个点是否为边缘点的条件:该点的灰度变
化(一阶导数)必须比指定的门限大。
一组这样的依据事先定好的连接准则相连的边缘
点就定义为一条边缘。
希望得到的特点)
(2)一条连接极值点的虚构直线将在边缘中点附近穿过,
该性质对于确定粗边线的中心非常有用。
图象
剖面
1.在ρ、θ的极值范围内对其分别进行m,n等分,设一个二维数组的下标与ρi、θj的取值对应;
边缘检测判据是二阶导数零交叉点并对应一阶导数的峰值.
tr=uint8(r.
(3) 边缘的“宽度”取决于斜坡的长度.
L 1
导数的零交叉点。
分割的关键问题是如何将边缘线段组合成更长的
边缘。
应该注意到,这些定义并不能保证在一幅图像中成功地找
到边缘。它们只是给了一个寻找边缘的形式体系。
边缘检测基本步骤
滤波:改善与噪声有关的边缘检测器的性能;一般滤波
器降噪导致了边缘的损失;增强边缘和降低噪声之间
转换为黑白二值图像,
0
f (x, y) T
g(x, y) =
255 f (x, y) T
以上原理用MATLAB实现很简单,其实是将图像中所有的灰
阶值与T相比较,大于T的返回1,小于T的返回0,我们得到一
个只有0和1的矩阵,将其显示为图像,就是一幅二值图像。
可以用函数im2bw来实现上述操作。
, 具有最大
的k即是最佳阈值.
用h(x,y)对图像f(x,y)的平滑可表示为:
一阶
二阶
边缘和导数
阶跃边缘、脉冲边缘、屋顶边缘的灰度剖面
线及其一阶、二阶导数。
边缘点的判定
判断一个点是否为边缘点的条件:该点的灰度变
化(一阶导数)必须比指定的门限大。
一组这样的依据事先定好的连接准则相连的边缘
点就定义为一条边缘。
希望得到的特点)
(2)一条连接极值点的虚构直线将在边缘中点附近穿过,
该性质对于确定粗边线的中心非常有用。
图象
剖面
1.在ρ、θ的极值范围内对其分别进行m,n等分,设一个二维数组的下标与ρi、θj的取值对应;
边缘检测判据是二阶导数零交叉点并对应一阶导数的峰值.
tr=uint8(r.
(3) 边缘的“宽度”取决于斜坡的长度.
L 1
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究层次
图像分割算法 图像分割算法的评价和比较 对分割算法的评价方法和评价准则的系统研究
图像分割的策略
图像分割的基本策略是基于灰度值的两个基本特性:
区域之间的不连续性 • 先找到点、线(宽度为1)、边(不定宽度) • 再确定区域
区域内部的相似性 • 通过选择阈值,找到灰度值相似的区域 • 区域的外轮廓就是对象的边
处理策略:早期处理结果是否影响后面的处理
并行:不 串行:结果被其后的处理利用
四种方法
并行边界;串行边界;并行区域;串行区域
问题
不同种类的图像、不同的应用要求所要求提取的区 域是不相同的。分割方法也不同,目前没有普遍适 用的最优方法。
人的视觉系统对图像分割是相当有效的,但十分复 杂,且分割方法原理和模型都未搞清楚。这是一个 很值得研究的问题。
边缘检测
边缘上的这种变化可以通过微分算子进行检测:
一阶导数:通过梯度来计算 二阶导数:通过拉普拉斯算子阶导数:用梯度算子来计算
特点:对于亮的边,边的变化起点是正的,结束是负 的。对于暗边,结论相反。常数部分为零。 用途:用于检测图像中边的存在
边缘检测
二阶导数:通过拉普拉斯来计算
用空域的高通滤波器来检测 孤立点:
R= (-1 * 8 * 8 + 128 * 8)/9=106
可以设置阈值T = 64
若R=0,则说明?
若R > T,则说 明?
888
8 128 8
888 图像
点检测
-1 -1 -1 -1 8 -1 -1 -1 -1
模板
点检测
汽轮机叶片对 应的X光图像
点检测的结果
555555555
111111111
边缘检测
物体的边缘是以图像局部特性的不连续性的形式出现 的,从本质上说,边缘意味着一个区域的终结和另一 个区域的开始。 图像边缘信息在图像分析和人的视觉中都是十分重要 的,是图像识别中提取图像特征的一个重要属性。 是一种并行边界技术
边缘导数
阶跃型 凸缘型 房顶型
图像分割
计算机图像处理的两个目的:
产生更适合人观察和识别的图像 有计算机自动识别和理解图像
图像分割(Image Segmentation):
图像分割 阈值选择与阈值化处理 边界提取和轮廓跟踪 Hough变换 区域生长
课程内容
图像分割
图像分割的目标是重点根据图像中的物体将图像的 像素分类,并提取感兴趣目标
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割举例
图像分割举例
图像分割是把图像分解成构成的部件和对象的过程 把焦点放在增强感兴趣对象
汽车牌照
排除不相干图像成分:
非矩形区域
形式化的定义
形式化定义
令集合R代表整个图像区域,对R的分割可看作将R分成 若干个满足以下条件的非空子集(子区域) R1, R2, R3,… Rn:
22
改变阈值 的结果
线检测
通过比较典型模板的计算值,确定一个点是否在某 个方向的线上
你也可以设计其它模板:
模板系数之和为0 感兴趣的方向系数值较大
-1 -1 -1 222 -1 -1 -1
-1 -1 2 -1 2 -1 2 -1 -1
-1 2 -1 -1 2 -1 -1 2 -1
2 -1 -1 -1 2 -1 -1 -1 2
xfx,yfx,yfx1,y yfx,yfx,yfx,y1
则f(x,y)的梯度幅度可以=?
常用的边缘检测器
给定图像中的一个 3*3区域,使用下面的边缘检测 滤波器进行检测,它们都使用一阶导数
原始图像
边缘检测举例
水平梯度部分
垂直梯度部分
组合得到边缘图像
边缘检测问题
边缘检测中经常碰到的问题是:
图像中存在太多的细节。比如,前面例子中的砖墙 图像受到噪声的干扰,不能准确的检测边缘
解决的一个方法是在边缘检测之前对图像进行平滑
常用的平滑滤波器为高斯(Gauss)函数:
g 0 h x
1
x2
e 2 2
2
g1 h x
x
x2
e 2 2
2 3
g 2 h x
1
x2
e 2 2
x2
1
2 3
2
对于图像信号,Marr提出先 用高斯函数进行平滑:
Gx,y, 1 e2 12x2y2
差分定义:
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界,但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
特点:二阶微分在亮的一边是正的,在暗的一边是负 的。常数部分为零。 用途:确定边上的像素是在亮的一边,还是暗的一边, 0用于确定边的准确位置
简单边缘检测方法
最早的边缘检测方法都是基于像素的数值导数的, 在数字图像中应用差分代替导数运算。
由于边缘是图像上灰度变化比较剧烈的地方,在
灰度变化突变处进行微分,将产生高值,因此在数学 上可用灰度的导数来表示变化。
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割:将相似灰度级的像素聚集在一起。形成图 像中的不同区域。这种基于相似性原理的方法也称为基 于区域相关的分割技术
非连续性分割:首先检测局部不连续性,然后将它们连 接起来形成边界,这些边界把图像分以不同的区域。这 种基于不连续性原理检出物体边缘的方法称为基于点相 关的分割技术
两种方法是互补的。有时将它们地结合起来,以求得到 更好的分割效果。
人眼图像示例
分类—连续性与处理策略
连续性:
不连续性:边界 相似性:区域
水平模板
45度模板
垂直模板 135度模板
线检测
用4种模板分别计算
R水平 = -6 + 30 = 24 R45度 = -14 + 14 = 0 R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
从这些值中寻找绝对值最大值,确定当前点更加接 近于该模板所对应的直线
111111111
图像分割算法 图像分割算法的评价和比较 对分割算法的评价方法和评价准则的系统研究
图像分割的策略
图像分割的基本策略是基于灰度值的两个基本特性:
区域之间的不连续性 • 先找到点、线(宽度为1)、边(不定宽度) • 再确定区域
区域内部的相似性 • 通过选择阈值,找到灰度值相似的区域 • 区域的外轮廓就是对象的边
处理策略:早期处理结果是否影响后面的处理
并行:不 串行:结果被其后的处理利用
四种方法
并行边界;串行边界;并行区域;串行区域
问题
不同种类的图像、不同的应用要求所要求提取的区 域是不相同的。分割方法也不同,目前没有普遍适 用的最优方法。
人的视觉系统对图像分割是相当有效的,但十分复 杂,且分割方法原理和模型都未搞清楚。这是一个 很值得研究的问题。
边缘检测
边缘上的这种变化可以通过微分算子进行检测:
一阶导数:通过梯度来计算 二阶导数:通过拉普拉斯算子阶导数:用梯度算子来计算
特点:对于亮的边,边的变化起点是正的,结束是负 的。对于暗边,结论相反。常数部分为零。 用途:用于检测图像中边的存在
边缘检测
二阶导数:通过拉普拉斯来计算
用空域的高通滤波器来检测 孤立点:
R= (-1 * 8 * 8 + 128 * 8)/9=106
可以设置阈值T = 64
若R=0,则说明?
若R > T,则说 明?
888
8 128 8
888 图像
点检测
-1 -1 -1 -1 8 -1 -1 -1 -1
模板
点检测
汽轮机叶片对 应的X光图像
点检测的结果
555555555
111111111
边缘检测
物体的边缘是以图像局部特性的不连续性的形式出现 的,从本质上说,边缘意味着一个区域的终结和另一 个区域的开始。 图像边缘信息在图像分析和人的视觉中都是十分重要 的,是图像识别中提取图像特征的一个重要属性。 是一种并行边界技术
边缘导数
阶跃型 凸缘型 房顶型
图像分割
计算机图像处理的两个目的:
产生更适合人观察和识别的图像 有计算机自动识别和理解图像
图像分割(Image Segmentation):
图像分割 阈值选择与阈值化处理 边界提取和轮廓跟踪 Hough变换 区域生长
课程内容
图像分割
图像分割的目标是重点根据图像中的物体将图像的 像素分类,并提取感兴趣目标
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割举例
图像分割举例
图像分割是把图像分解成构成的部件和对象的过程 把焦点放在增强感兴趣对象
汽车牌照
排除不相干图像成分:
非矩形区域
形式化的定义
形式化定义
令集合R代表整个图像区域,对R的分割可看作将R分成 若干个满足以下条件的非空子集(子区域) R1, R2, R3,… Rn:
22
改变阈值 的结果
线检测
通过比较典型模板的计算值,确定一个点是否在某 个方向的线上
你也可以设计其它模板:
模板系数之和为0 感兴趣的方向系数值较大
-1 -1 -1 222 -1 -1 -1
-1 -1 2 -1 2 -1 2 -1 -1
-1 2 -1 -1 2 -1 -1 2 -1
2 -1 -1 -1 2 -1 -1 -1 2
xfx,yfx,yfx1,y yfx,yfx,yfx,y1
则f(x,y)的梯度幅度可以=?
常用的边缘检测器
给定图像中的一个 3*3区域,使用下面的边缘检测 滤波器进行检测,它们都使用一阶导数
原始图像
边缘检测举例
水平梯度部分
垂直梯度部分
组合得到边缘图像
边缘检测问题
边缘检测中经常碰到的问题是:
图像中存在太多的细节。比如,前面例子中的砖墙 图像受到噪声的干扰,不能准确的检测边缘
解决的一个方法是在边缘检测之前对图像进行平滑
常用的平滑滤波器为高斯(Gauss)函数:
g 0 h x
1
x2
e 2 2
2
g1 h x
x
x2
e 2 2
2 3
g 2 h x
1
x2
e 2 2
x2
1
2 3
2
对于图像信号,Marr提出先 用高斯函数进行平滑:
Gx,y, 1 e2 12x2y2
差分定义:
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界,但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
特点:二阶微分在亮的一边是正的,在暗的一边是负 的。常数部分为零。 用途:确定边上的像素是在亮的一边,还是暗的一边, 0用于确定边的准确位置
简单边缘检测方法
最早的边缘检测方法都是基于像素的数值导数的, 在数字图像中应用差分代替导数运算。
由于边缘是图像上灰度变化比较剧烈的地方,在
灰度变化突变处进行微分,将产生高值,因此在数学 上可用灰度的导数来表示变化。
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割:将相似灰度级的像素聚集在一起。形成图 像中的不同区域。这种基于相似性原理的方法也称为基 于区域相关的分割技术
非连续性分割:首先检测局部不连续性,然后将它们连 接起来形成边界,这些边界把图像分以不同的区域。这 种基于不连续性原理检出物体边缘的方法称为基于点相 关的分割技术
两种方法是互补的。有时将它们地结合起来,以求得到 更好的分割效果。
人眼图像示例
分类—连续性与处理策略
连续性:
不连续性:边界 相似性:区域
水平模板
45度模板
垂直模板 135度模板
线检测
用4种模板分别计算
R水平 = -6 + 30 = 24 R45度 = -14 + 14 = 0 R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
从这些值中寻找绝对值最大值,确定当前点更加接 近于该模板所对应的直线
111111111