高中数学线面角与线线角例题、习题-学生
2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板
2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】类型一 空间中线线角的求法方法一 平移法使用情景:空间中线线角的求法解题模板:第一步 首先将两异面直线平移到同一平面中;第二步 然后运用余弦定理等知识进行求解;第三步 得出结论.例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A. 6π B. 4π C. 3π D. 2π 【答案】B平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常转化为解三角形的问题处理,要注意异面直线所成角的范围为0,2π⎛⎤ ⎥⎝⎦。
【变式演练1】如图,四边形ABCD 是矩形, 沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A D 所成的角为α, 则( )A .'A CA α<∠B .'A CA α>∠C.'A CD α<∠ D .'A CD α>∠【答案】B考点:异面直线所成角的定义及运用.【变式演练2】【2018年衡水联考】在棱长为1的正方体1111ABCD A B C D -中,点E , F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为( )①//DF 平面11D EB ; ②异面直线DF 与1B C 所成角为60︒;③1ED 与平面1B DC 垂直; ④1112F CDB V -=. A. 0 B. 1 C. 2 D. 3【答案】A【解析】对于①,∵DF 11//B D ,DF ⊄平面11D EB , 11B D ⊂平面11D EB ,∴//DF 平面11D EB ,正确; 对于②,∵DF 11//B D ,∴异面直线DF 与1B C 所成角即异面直线11B D 与1B C 所成角,△11C B D 为等边三角形,故异面直线DF 与1B C 所成角为60︒,正确;对于③,∵1ED ⊥1A D , 1E D ⊥CD,且1A D ⋂CD=D ,∴1E D ⊥平面11A B DC ,即1E D ⊥平面1B DC ,正确;对于④,11CDF 1111133412F CDB B CDF V V S --==⨯⨯=⨯=,正确, 故选:A 【变式演练3】设三棱柱111ABC A B C -的侧棱与底面垂直,90BCA ∠=︒,2BC CA ==,若该棱柱的所有顶点都在体积为323π的球面上,则直线1B C 与直线1AC 所成角的余弦值为( )A .23-B .23C . 【答案】B【变式演练4】如图所示,正四棱锥P ABCD -的底面面积为3,, E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒【答案】C方法二 空间向量法使用情景:空间中线线角的求法解题模板:第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步 然后求出所求异面直线的空间直角坐标;第三步 再利用cos a ba bθ→→→→⋅=即可得出结论. 例2、如图,直三棱柱111ABC A B C -中,13AC BC AA ===,AC BC ⊥,点M 在线段AB 上.(1)若M 是AB 中点,证明:1//AC 平面1B CM ;(2)当BM =11C A 与平面1B MC 所成角的正弦值【答案】(1)详见解析(2(II )1,AC BC CC ABC ⊥⊥平面,故如图建立空间直角坐标系1(033),(300),(030),(000)B A B C ,,,,,,,,,BA =13BM BA = 1(1,1,0),(0,3,0)(1,1,0)(1,2,0)3BM BA CM CB BM ==-=+=+-=, 令平面1B MC 的法向量为(,,)n x y z =,由100n CB n CM ⎧⋅=⎪⎨⋅=⎪⎩,得020y z x y +=⎧⎨+=⎩ 设1z =所以(2,1,1)n =-,11(3,0,0)C A CA == ,设直线11C A 与平面1B MC 所成角为q1111||sin ||||3C A n C A n q ×===故当BM =11C A 与平面1B MC 考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.例3、如图,正方形AMDE 的边长为2,B C、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC 、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.【答案】(1)详见解析(2)6π考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【变式演练4】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为______.考点:异面直线及其所成的角【变式演练5】如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .6B .6C .10D .10【答案】D【解析】试题分析:以BC 的中点O为坐标原点建立空间直角坐标系如图所示,则A,1A ,(0,2,3)E ,(0,2,4)F -,1(3)A E =--,(2,4)AF =--,设1A E ,AF 所成的角为θ,则11||cos 10||||5A E AF A E AF θ⋅===⋅⨯. 考点: 线面角.类型二空间中线面角的求法方法一 垂线法使用情景:空间中线面角的求法解题模板:第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角;第三步 得出结论.例3如图,四边形ABCD 是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .GD BA(Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【答案】(Ⅰ)证明见解析;.证法2:(坐标法)证明1-=⋅BE AC K K ,得BE AC ⊥,往下同证法1.证法3:(向量法)以,为基底, ∵-=+=21,,0=⋅∴)21()(AB AD AB AD BE AC -⋅+=⋅221-=01221=-⨯= ∴BE AC ⊥,往下同证法1.(2)在AGF Rt ∆中,22GF AF AG +=36)33()33(22=+= 在BGF Rt ∆中,22GF BF BG +=1)33()36(22=+= 在ABG ∆中,36=AG ,1==AB BG ∴2)66(13621-⨯⨯=∆ABG S 656303621=⨯⨯=设点E 到平面ABG 的距离为d ,则GF S d S ABF ABG ⋅=⋅∆∆3131,∴ABG ABFS GF S d ∆⋅=1030653312221=⨯⨯⨯= 22)66()33(2222=+=+=EF GF EG ,设直线EG 与平面ABG 所成角的大小为θ,则 EG d=θsin .515221030== 考点:线面垂直的判定,直线与平面所成的角.【点评】解决直线与平面所成的角的关键是找到直线上的点到平面的射影点,构造出线面角.【变式演练6】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B.3 C. D .23【答案】B考点:直线与平面所成的角.【变式演练7】在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( )A.2 B.3 C.2 D.3【答案】D考点:1.平面与平面垂直;2.直线与平面所成的角.方法二空间向量法使用情景:空间中线面角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步再利用a bsina bθ→→→→⋅=即可得出结论.例4 [2018衡水金卷大联考]如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,【变式演练8】【2018浙江嘉兴市第一中模拟】如图,四棱锥,底面为菱形,平面,,为的中点,.(I)求证:直线平面;(II)求直线与平面所成角的正弦值.【解析】(I)证明:,又又平面,直线平面.(方法二)如图建立所示的空间直角坐标系..设平面的法向量,.所以直线与平面所成角的正弦值为【高考再现】1. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A C D 【答案】C【考点】 异面直线所成的角;余弦定理;补形的应用【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。
高考数学一轮复习全套课时作业7-6-1线线角与线面角
题组层级快练7.6.1线线角与线面角一、单项选择题1.(2021·宁夏银川高级中学)在各棱长均相等的直三棱柱ABC -A 1B 1C 1中,已知M 是棱BB 1的中点,N 是棱AC 的中点,则异面直线A 1M 与BN 所成角的正切值为()A.3B .1C.63D.222.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为()A.1010B.15C.31010D.353.(2021·河北辛集中学月考)如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为()A.63B.255C.155D.1054.(2020·福建厦门二模)一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,∠B =∠F =90°,∠A =60°,∠D =45°,BC =DE.现将两块三角板拼接在一起,取BC 中点O 与AC 中点M ,则下列直线与平面OFM 所成的角不为定值的是()A .ACB .AFC .BFD .CF5.(2021·湖南、江西十四校联考)如图,已知棱长为2的正方体ABCD -A 1B 1C 1D 1,点E 为线段CD 1的中点,则直线AE 与平面A 1BCD 1所成角的正切值为()A.22B.12C.32D.26.(2021·四川雅安期末)如图,将矩形ABCD 沿对角线BD 把△ABD 折起,使点A 移到点A 1处,且A 1在平面BCD 上的射影O 恰好在CD 上,则BC 与A 1D 所成角是()A .30°B .45°C .60°D .90°7.(2021·河北示范性高中联合体3月联考)正方体ABCD -A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点有3个,记这3个点分别为E ,F ,G ,则直线AC 1与平面EFG 所成角的正弦值为()A.2613B.22613C.27839D.478398.(2021·保定模拟)在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.则A 1B 与平面ABD 所成角的余弦值是()A.2 3B.73C.32D.37二、多项选择题9.(2021·山东青岛期末)如图,正方体ABCD-A1B1C1D1的棱长为1,则下列四个结论正确的是()A.直线BC与平面ABC1D1所成的角为π4B.点C到平面ABC1D1的距离为22C.异面直线D1C与BC1所成的角为π4D.三棱柱AA1D1-BB1C1外接球的半径为32三、填空题与解答题10.(2018·课标全国Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78.SA与圆锥底面所成角为45°.若△SAB的面积为515,则该圆锥的侧面积为________.11.(2021·河北承德二中期末)已知四棱锥P-ABCD的底面是菱形,∠BAD=60°,PD⊥平面ABCD,且PD=AB,点E是棱AD的中点,F在棱PC上.若PF∶FC=1∶2,则直线EF与平面ABCD所成角的正弦值为________.12.(2021·鲁西部分重点中学期末)已知四棱锥P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中点M是顶点P在底面ABCD的射影,N是PC的中点.(1)求证:平面MPB⊥平面PBC;(2)若MP=MC,求直线BN与平面PMC所成角的正弦值.13.(2021·山东德州模拟)如图,P-ABC是一个三棱锥,AB是圆的直径,C是圆上的点,PC垂直圆所在的平面,D,E分别是棱PB,PC的中点.(1)求证:DE⊥平面PAC;(2)若二面角A-DE-C是45°,AB=PC=4,求AE与平面ACD所成角的正弦值.14.(2020·浙江)如图,在三棱台ABC-DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求直线DF与平面DBC所成角的正弦值.7.6.1线线角与线面角参考答案1.答案C解析本题考查异面直线所成角的正切值的求法.设直三棱柱ABC -A 1B 1C 1的棱长为2,如图所示,以A 为原点,AC 所在直线为y 轴,AA 1所在直线为z 轴,建立空间直角坐标系,则A 1(0,0,2),M(3,1,1),B(3,1,0),N(0,1,0),则A 1M →=(3,1,-1),BN →=(-3,0,0).设异面直线A 1M 与BN 所成角为θ,则cos θ=|A 1M →·BN →||A 1M →||BN →|=35×3=155,∴sin θ=1-cos 2θ=105,∴tan θ=sin θcos θ=63.∴异面直线A 1M 与BN 所成角的正切值为63.故选C.2.答案C解析以D 为坐标原点建立如图所示的空间直角坐标系.设AA 1=2AB =2,则B(1,1,0),E(1,0,1),C(0,1,0),D 1(0,0,2).∴BE →=(0,-1,1),CD 1→=(0,-1,2).∴cos 〈BE →,CD 1→〉=1+22×5=31010.3.答案D解析本题考查线面角的计算.如图所示,在平面A 1B 1C 1D 1内过点C 1作B 1D 1的垂线,垂足为E ,连接BE.1E ⊥B 1D 1,1E ⊥BB 1,1D 1∩BB 1=B 1,得C 1E ⊥平面BDD 1B 1,∴∠C 1BE 的正弦值即为所求.∵BC 1=22+12=5,C 1E =2×222=2,∴sin ∠C 1BE =C 1E BC 1=25=105.4.答案B解析本题考查直线与平面垂直的判定定理,直线与平面所成角.因为O ,M 分别为BC ,AC 的中点,所以OM ∥AB ,所以OM ⊥BC.又OF ⊥BC ,且OM ∩OF =O ,所以BC ⊥平面OMF ,所以BF ,CF 与平面OFM 所成的角分别为∠BFO 和∠CFO ,它们相等,均为45°.根据直线与平面所成角的定义知,AC 与平面OFM 所成的角为∠CMO =∠CAB =60°.故只有AF 与平面OFM 所成的角不为定值.5.答案A解析连接AB 1,AB 1与A 1B 交于点F ,由于AF ⊥A 1B ,AF ⊥BC ,且A 1B ∩BC =B ,所以AF ⊥平面A 1BCD 1.连接EF ,则∠AEF 是直线AE 与平面A 1BCD 1所成角,tan ∠AEF =AF EF =22.故选A.6.答案D解析本题主要考查异面直线所成角及线面垂直的判定与性质.因为A 1在平面BCD 上的射影O 恰好在CD 上,所以A 1O ⊥平面BCD.因为BC ⊂平面BCD ,所以A 1O ⊥BC.又因为BC ⊥CD ,A 1O ∩CD =O ,所以BC ⊥平面A 1CD.又A 1D ⊂平面A 1CD ,所以BC ⊥A 1D ,故BC 与A 1D 所成的角为90°.故选D.7.答案D解析正方体ABCD -A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),不妨设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F.以D 为坐标原点,建立空间直角坐标系D -xyz ,如图.设AB =2,则E(1,2,0),2,G(0,0,2),A(2,0,0),C 1(0,2,2),从而EF →0,GF →2,AC 1→=(-2,2,2).设平面EFG 的法向量为n =(x ,y ,z)·EF →=0,·GF →=0,+2z =0,+2y =0,令x =4,得n =(4,-3,-1).设直线AC 1与平面EFG 所成角为θ,则sin θ=|cos 〈n ,AC 1→〉|=|n ·AC 1→||n |·|AC 1→|=47839.故选D.8.答案B解析以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系如图,设CA =CB =a ,则A(a ,0,0),B(0,a ,0),A 1(a ,0,2),D(0,0,1),∴,a 2,,a 3,GE →,a 6,BD →=(0,-a ,1),∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE →⊥平面ABD ,∴GE →·BD →=0,解得a =2.∴GE →,13,BA 1→=(2,-2,2),∵GE →⊥平面ABD ,∴GE →为平面ABD 的一个法向量.∵cos 〈GE →,BA 1→〉=GE →·BA 1→|GE →|·|BA 1→|=4363×23=23,∴A 1B 与平面ABD 所成的角的余弦值为73.9.答案ABD解析本题考查异面直线所成角、线面角、点到平面距离及外接球问题.正方体ABCD -A 1B 1C 1D 1的棱长为1,直线BC 与平面ABC 1D 1所成的角为∠CBC 1=π4,故A 正确;连接B 1C ,由B 1C ⊥BC 1,B 1C ⊥AB ,BC 1∩AB =B ,得B 1C ⊥平面ABC 1D 1,所以点C 到平面ABC 1D 1的距离为B 1C 长度的一半,即22,故B 正确;因为BC 1∥AD 1,所以异面直线D 1C 与BC 1所成的角为∠AD 1C ,连接AC ,则△AD 1C 为等边三角形,故异面直线D 1C 与BC 1所成的角为π3,故C 错误;三棱柱AA 1D 1-BB 1C 1的外接球也是正方体ABCD-A 1B 1C 1D 1的外接球,故外接球半径为12+12+122=32,故D 正确.故选ABD.10.答案402π解析如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12SA ·SB ·sin ∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,∴SA 2=80,SA =4 5.∵SA 与底面所成的角为45°,∴∠SAS ′=45°,AS ′=SA·cos45°=45×22=210.∴底面周长l =2π·AS ′=410π,∴圆锥的侧面积为12×45×410π=402π.11.答案43535解析如图,以D 点为坐标原点建立如图所示的空间直角坐标系D -xyz.设菱形ABCD 的边长为2,则D(0,0,0),E(32,-12,0),,23,EF →-32,76,又平面ABCD 的一个法向量为n =(0,0,1),所以cos 〈EF →,n 4=43535,即直线EF 与平面ABCD 所成角的正弦值为43535.12.答案(1)略(2)267解析(1)证明:如图,连接BD ,∵四边形ABCD 为菱形,∠ADC =120°,且M 为AD 的中点,∴△ABD 为等边三角形.∴MB ⊥AD ,∴MB ⊥BC.∵P 在底面ABCD 的射影M 是AD 的中点,∴PM ⊥平面ABCD ,又∵BC ⊂平面ABCD ,∴PM ⊥BC ,又PM ∩MB =M ,PM ,MB ⊂平面MPB ,∴BC ⊥平面MPB ,又BC ⊂平面PBC ,∴平面MPB ⊥平面PBC.(2)方法一:过点B 作BH ⊥MC 于点H ,连接HN(图略).∵PM ⊥平面ABCD ,BH ⊂平面ABCD ,∴BH ⊥PM.又∵PM ,MC ⊂平面PMC ,PM ∩MC =M ,∴BH ⊥平面PMC.∴直线HN 为直线BN 在平面PMC 上的射影,∴∠BNH 为直线BN 与平面PMC 所成的角.在菱形ABCD 中,设AB =2a ,则MB =AB·sin60°=3a ,MC =MB 2+BC 2=7a ,PC =MC 2+MP 2=2MC 2=14a ,∴在Rt △MBC 中,BH =2a·3a 7a=2217 a.由(1)知BC ⊥平面MPB ,PB ⊂平面MPB ,∴PB ⊥BC ,∴BN =12PC =142a ,∴sin ∠BNH =BH BN =2217a142a =267,即直线BN 与平面PMC 所成角的正弦值为267.方法二:由(1)知MA ,MB ,MP 两两垂直,以M 为坐标原点,以MA ,MB ,MP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系M -xyz ,不妨设MA =1.∴M(0,0,0),A(1,0,0),B(0,3,0),C(-2,3,0),P(0,0,7).∵N 是PC 的中点,∴1,32,设平面PMC 的法向量为n =(x 0,y 0,z 0),又∵MP →=(0,0,7),MC →=(-2,3,0),·MP →=0,·MC →=0,0=0,0+3y 0=0,令y 0=1,则n1,|n |=72.又∵BN →1,-32,|BN →|=142,∴|cos 〈BN →,n 〉|=|BN →·n ||BN →||n |=267.∴直线BN 与平面PMC 所成角的正弦值为267.13.答案(1)略(2)4214解析(1)证明:因为AB 是圆的直径,所以BC ⊥AC ,因为PC 垂直圆所在的平面,所以PC ⊥BC ,又因为AC ∩PC =C ,所以BC ⊥平面PAC.因为D ,E 分别是棱PB ,PC 的中点,所以BC ∥DE ,从而有DE ⊥平面PAC.(2)由(1)可知,DE ⊥AE ,DE ⊥EC ,所以∠AEC 为二面角A -DE -C 的平面角,从而有∠AEC =45°,则AC =EC =12PC =2,又BC ⊥AC ,AB =4,得BC =23.以C 为坐标原点,CB →,CA →,CP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系C -xyz.则C(0,0,0),A(0,2,0),E(0,0,2),B(23,0,0),P(0,0,4),D(3,0,2),AE →=(0,-2,2),CA →=(0,2,0),CD →=(3,0,2).设n =(x ,y ,z)是平面ACD ·CA →=0,·CD →=0,0,+2z =0.可取n =(2,0,-3).故|cos 〈n ,AE →〉|=|n ·AE →||n |·|AE →|=4214.所以直线AE 与平面ACD 所成角的正弦值为4214.14.思路(1)通过添加辅助线,利用面面垂直得到线面垂直,进而得到DO ⊥BC ,再根据题中所给的已知条件,证得BO ⊥BC ,由此可得BC ⊥平面DBO ,BC ⊥DB ,由BC ∥EF 即可得证;(2)可通过作辅助线找到直线DF 与平面DBC 所成角,利用解三角形知识求得直线DF 与平面DBC 所成角的正弦值,也可以建立合适的空间直角坐标系,通过计算直线DF 的方向向量与平面DBC 的法向量求解直线DF 与平面DBC 所成角的正弦值.答案(1)略(2)33解析(1)证明:如图,过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB.由∠ACD =45°,DO ⊥AC 得CD =2CO.由平面ACFD ⊥平面ABC ,DO ⊥AC ,平面ACFD ∩平面ABC =AC ,得DO ⊥平面ABC ,所以DO ⊥BC.由∠ACB =45°,BC =12CD =22CO 得BO ⊥BC ,又DO ⊥BC ,DO ∩BO =O ,所以BC ⊥平面BDO ,故BC ⊥DB.由三棱台ABC -DEF 得BC ∥EF ,所以EF ⊥DB.(2)方法一:如图,过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH.由三棱台ABC -DEF 得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH ⊥BC ,又OH ⊥BD ,BC ∩BD =B ,故OH ⊥平面BCD ,所以∠OCH 为直线CO 与平面DBC 所成角.设CD =22,则DO =OC =2,BO =BC =2,所以BD =6,OH =233,所以sin ∠OCH =OH OC =33,因此,直线DF 与平面DBC 所成角的正弦值为33.方法二:由三棱台ABC -DEF 得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O -xyz.设CD =22,则O(0,0,0),B(1,1,0),C(0,2,0),D(0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2).设平面BCD 的法向量n =(x ,y ,z),n ·BC →=0,n ·CD →=0,-x +y =0,-2y +2z =0,可取n =(1,1,1).所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF与平面DBC所成角的正弦值为3 3 .。
高中数学线面角与线线角例题、习题-学生
线面角与线线角专练(小练习一)【知识网络】1、异面直线所成的角:(1)范围:(0,]2πθ∈;(2)求法;2、直线和平面所成的角:(1)定义:(2)范围:[0,90];(3)求法;【典型例题】例1:(1)在正方体1111ABCD A BC D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1BC 成60角(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )A 、2个B 、4个C 、6个D 、8个(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( )A .90ºB .60ºC .45ºD .30º(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。
(I )若D 为BC 的中点,E 为AD 上不同于A 、D 的任意一点,证明EF ⊥FC 1;(II )试问:若AB =2a ,在线段AD 上的E点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面PAB ⊥底面ABCD.(Ⅰ)证明:BC ⊥侧面PAB;(Ⅱ)证明: 侧面PAD ⊥侧面PAB;(Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C DPA B C H S M 线面角与线线角专练(小练习二)例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
高考理科数学必考——几何证明与利用空间向量求线面角、面面角
高考理科数学必考——几何证明与利用空间向量求线面角、面
面角
时间过的飞快,距离高考的时间就只剩76天了,同学和老师也越来越紧张了,有些地方欠缺的同学开始寝食难安,老师也赶快奉献点干货来帮助几何证明欠缺的学生。
立体几何其实难度不大,只要你会空间向量,会建系,一切就自然而然水到渠成了。
在这先分析这些立体几何的解题思路。
在立体几何中,第一问一般会让你证明线面平行、线面垂直、面面平行、面面垂直
1、证明线面平行的方法1、平移的方法,找到直线与平面内一条直线平行
2、利用面面平行、证明线面平行
2、证明线面垂直的方法1、证明直线与平面内相交的两直线垂直
3、证明面面平行的方法1、证明一个平面内两相交的直线与另一个平面内两相交的直线互相平行
2、证明平面内两相交的直线分别平行另一个平面
4、证明面面垂直的方法1、先证明一条直线垂直于一个平面,这条直线还在另一个平面内
利用这些方法第一问就可以轻松解决了。
在立体几何第二中,会求线面角、面面角,在第二步中,利用空间向量解决就可以
利用空间向量解决第二问的步骤1、找三垂,建立空间直角坐标系
2、写出各个点的坐标
3、求出直线向量、面的法向量
4、利用夹角公式算出余弦值
下面通过两个例题说明一下这个空间几何。
专题3 线线角、线面角求法 高一数学必修第二册
CM⊂平面 PCD,所以 AM⊥CM.所以 S = △ACM 1 AM·MC= 6 .
2
2
设点 D 到平面 ACM 的距离为 h,由 V =V ,得 D-ACM M-ACD
1 S△ACM·h= 1 S · △ACD 1 PA,解得 h= 6 .
3
3
2
3
设直线 CD 与平面 ACM 所成的角为θ,则 sin θ= h = 6 ,
(1)证明:因为PA⊥平面ABCD,AB⊂平面ABCD,所以 PA⊥AB. 因为AB⊥AD,AD∩PA=A,AD⊂平面PAD,PA⊂平面PAD, 所以AB⊥平面PAD.
因为PD⊂平面PAD,所以AB⊥PD. 因为BM⊥PD,AB∩BM=B,AB⊂平面ABM,BM⊂平面ABM, 所以PD⊥平面ABM. 因为AM⊂平面A的一般步骤: (1)作:在斜线上选择恰当的一个点,作平面的垂线,确定垂足,
连接斜足和垂足,得到斜线在平面内的射影,斜线和其射影所成的角 ,即为斜线和平面所成的角;
(2)证:证明(1)中所作出的角就是所求直线与平面所成的角; (注:关键证明线面垂足,即证得斜线在面内的射影)
l
I.在其中一个半平面内取恰当的一点P,
过点P作另一个平面的垂线,垂足设为Q;
II.过点Q作棱l的垂线,垂足为O,连接OP;
III.易知,l垂直OP,所以∠POQ即为二面角
的平面角.
P
Q
难点突破二面角
例2. 如图,在正方体ABCD-A1B1C1D1中,求二面角B-A1C1-B1的正切值.
【解】 如图,取A1C1的中点O,连接B1O,BO, 由题意知B1O⊥A1C1. 又BA1=BC1,O为A1C1的中点,所以BO⊥A1C1, 所以∠BOB1是二面角B-A1C1-B1的平面角.
最新-2018年高考数学考点解析:线线角与线面角的题型与解法 精品
线线角与线面角高考考纲透析:线线,线面,面面的平行与垂直,异面直线所成角,直线与平面所成角高考热点:异面直线所成角,直线与平面所成角知识整合:1.转化思想:将异面直线所成的角,直线与平面所成的角转化为平面角,然后解三角形;⇔⇔⊥⇔⊥⇔⊥线线平行线面平行面面平行,线线线面面面2.求角的三个步骤:一猜,二证,三算.猜是关键,在作线面角时,利用空间图形的平行,垂直,对称关系,猜斜线上一点或斜线本身的射影一定落在平面的某个地方,然后再证热点题型1例1、如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点.(Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证11AC CDB 平面;(Ⅲ)求异面直线1AC 与1B C 所成角的余弦值.解析;异面直线所成角的平面角顶点O 的选取一般选在两异面直线的端点处,初学者或观察能力有限者可采用穷举法,实行逐个端点考察,也有取在某线段的中点处. 解:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC=3,BC=4AB=5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1, ∵ DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴ AC 1//平面CDB 1; (III )∵ DE//AC 1,∴ ∠CED 为AC 1与B 1C 所成的角,在△CED 中,ED=21AC 1=25,CD=21AB=25,CE=21CB 1=22, ∴8cos 522CED ∠==⋅ ∴ 异面直线 AC 1与 B 1C所成角的余弦值5.1A1A解法二: ∵直三棱锥111ABC A B C -底面三边长3,4,5AC BC AB ===,1,,AC BC CC 两两垂直.如图建立坐标系,则C(0,0,0),A(3,0,0),C 1(0, 0,4),B(0,4,0),B 1(0,4,4),D(32,2,0) (Ⅰ)11(3,0,0),(0,4,4)AC BC =-=,11110,AC BC AC BC ∴⋅=∴⊥.(Ⅱ)设1CB 与1C B 的交点为E ,则E(0,2,2)13(,0,2),(3,0,4),2DE AC =-=-111,//2DE AC DE AC ∴=∴111,,DE CDB AC CDB ⊂⊄平面平面11//AC CDB ∴平面.(Ⅲ)11(3,0,4),(0,4,4),AC CB =-=1111112cos ,5||||AC CB AC CBAC CB ∴<>==∴异面直线1AC 与1B C 所成角的余弦值为5. 热点题型2例2、如图,在斜三棱柱111C B A ABC -中,a B A A A AC AB AC A AB A ===∠=∠1111,,,侧面11BCC B 与底面ABC 所成的二面角为120, E 、F 分别是棱A A C B 111、的中点 (Ⅰ)求A A 1与底面ABC 所成的角 (Ⅱ)证明E A 1∥平面FC B 1(Ⅲ)求经过C B A A 、、、1四点的球的体积.解:(Ⅰ)过1A 作⊥H A 1平面ABC ,垂足为H . 连结AH ,并延长交BC 于G ,于是AH A 1∠为A A 1与底面ABC 所成的角.1∵AC A AB A 11∠=∠,∴AG 为BAC ∠的平分线. 又∵AC AB =,∴BC AG ⊥,且G 为BC 的中点. 因此,由三垂线定理BC A A ⊥1.∵B B A A 11//,且B B EG 1//,∴BC EG ⊥.于是AGE ∠为二面角E BC A --的平面角,即120=∠AGE . 由于四边形AGE A 1为平行四边形,得601=∠AG A .(Ⅱ)证明:设EG 与C B 1的交点为P ,则点P 为EG 的中点.连结PF . 在平行四边形1AGEA 中,因F 为A A 1的中点,故FP E A //1. 而⊂FP 平面FC B 1,⊄E A 1平面FC B 1,所以//1E A 平面FC B 1.(Ⅲ)连结C A 1.在AC A 1∆和AB A 1∆中,由于AB AC =,AC A AB A 11∠=∠,A A A A 11=,则AC A 1∆≌AB A 1∆,故B A C A 11=.由已知得a C A B A A A ===111.又∵⊥H A 1平面ABC ,∴H 为ABC ∆的外心.设所求球的球心为O ,则H A O 1∈,且球心O 与A A 1中点的连线A A OF 1⊥.在FO A Rt 1∆中,3330cos 21cos 111a aH AA F A O A ===.故所求球的半径a R 33=,球的体积33273434a R V ππ==. 热点题型3例3、如图,在四棱锥P —ABC 右,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点.(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC , 并求出N 点到AB 和AP 的距离.解法一:(Ⅰ)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E 的坐标分别为A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0), P (0,0,2),E (0,21,2). 从而AC =(3,1,0),PB =(3,0,-2). 设AC 与PB 的夹角为θ,则1473723||||cos ==⋅=PB AC PB AC θ, ∴AC 与PB 所成角的余弦值为1473. (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,0,z ),则)1,21,(z x ME --=.由NE ⊥面PAC可得:⎪⎩⎪⎨⎧=⋅=⋅,0,0AC NE AP NE 即⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--,0)0,1,3()1,21,(,0)2,0,0()1,21,(z x z x化简得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+-=-.1,63.0213,01z x x z即N 点的坐标为(63,0,1),从而N 点到AB 、AP 的距离分别为1,63解法二:(Ⅰ)设AC ∩BD=O ,连OE ,则OE//PB ,∴∠EOA 即为AC 与PB 所成的角或其补角.在ΔAOE 中,AO=1,OE=21PB=27,AE=21PD=25,∴14173127245471cos =⨯⨯-+=EOA . 即AC 与PB 所成角的余弦值为14173.(Ⅱ)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6π=∠ADF .连PF ,则在Rt ΔADF 中DF=33tan ,332cos ===ADF AD AF ADF AD .设N 为PF 的中点,连NE ,则NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC 从而NE ⊥面PAC. ∴N 点到AB 的距离=21AP=1,N 点到AP 的距离=21AF=63.。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
线面角练习题
线面角练习题在数学中,线面角是一种常见的概念,用于描述线与面之间的相对关系。
本文将为你提供一系列线面角练习题,帮助你加深对线面角概念的理解并提高解题能力。
练习题一:线与平面的关系1. 建立直角坐标系,并画出平面P:4x - 2y + z = 6。
a) 在该平面上选择一点A(x1, y1, z1),其中x1, y1, z1为任意实数。
画出该平面与点A的关系示意图。
b) 选择另一点B(x2, y2, z2),其中x2, y2, z2为任意实数。
画出该平面、点A和点B之间的关系示意图。
练习题二:线与平面上的点的关系2. 平面P:2x + 3y - 4z = 12与直线L:x = 2 + t, y = 3 - t, z = -1 + 2t相交于点A。
求出点A的坐标。
练习题三:线面角的计算3. 已知平面P:2x - y + 3z = 1和直线L:x = 3 - t, y = 2 + 2t, z = -1 + t。
求出直线L与平面P的线面角。
练习题四:垂直线面角的判断4. 平面P1:2x - y + 2z = 5与平面P2:4x - 2y + 4z = 9之间的夹角为α。
判断平面P1与平面P2是否垂直。
练习题五:平行线面角的计算5. 平面P:3x - 2y + 4z = 7和直线L:x = 1 + 2t, y = -2 + 3t, z = 3 - t 之间的夹角为β。
判断直线L与平面P是否平行。
练习题六:点到平面的距离计算6. 平面P:2x - y + z = 5上有一点A(1, -3, 2)。
求出点A到平面P的距离。
练习题七:平行平面之间的距离计算7. 已知平面P1:2x - 3y + z = 4和平面P2:4x - 6y + 2z = 8平行。
求出平面P1与平面P2之间的距离。
练习题八:垂直线面之间的距离计算8. 平面P:2x - y + 3z = 5与直线L:x = 1 + t, y = 2 - t, z = 3t之间的距离为d。
如何找出线面夹角和面面夹角
线面角在哪里?【例题1】如图,已知EA ⊥平面ABC ,FC ⊥平面ABC ,△ABC 是正三角形,D 是的中点,且1AB AE ==,2CF =(Ⅰ) 求证:AD ⊥平面BCF(Ⅱ)求直线DF 与平面BEF 所成角的正弦值能否通过观察找到线面夹角。
通常来说,要过斜线上一点做面的垂线。
那么,问题来了,点往面上做垂线,垂足如何确定?先看下面的题目,思考一下:在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两互相垂直,且OA OB OC ==,M 是AB 边的中点,则OM 与平面ABC 所成角的大小是__________________(用反三角函数表示)【分析】一方面,设OA=OB=OC=1,可以通过等体积法只关注点O 到面ABC 的距离:11113322A OBC OBC V OA S OA OC OB -∆=⨯⨯=⨯⨯⨯⨯= 111!332A OBC O ABC ABC V V d S OA CM AM --∆==⨯⨯=⨯⨯⨯⨯= 就可以得到点O 到面ABC 的距离。
一方面,做出垂面——CB 垂直于OM ,CB 垂直于OA ,因此CB 垂直于面AOM ,所以,面ACB 垂直于面AOM 。
也就说,面AOM 是面ACB 的垂面。
A FEDC B O M C BA根据定理两个面垂直,在一个面内垂直于交线的直线垂直于另一个面。
因此只需在三角形AOM 中,过点O 做交线AM 的垂线即可。
那么问题又来了——刚才的例题1咋整?过点E 找到面ADF 中的垂面,然后在垂面中过点E 做垂面与面ADF 交线的垂线,即可。
是否有垂面?面DAF 与面AFC 互相垂直!(怎么证?有没滴办法塞?)面面夹角在哪里?【例题2】在60°角的二面角的棱上有两个点A 、B 、AC 、BD 分别是这个二面角的两个面内,且都垂直于AB ,若AB=5,AC=3,BD=8,则CD=__________?问题1:什么是二面角?A FE DCB M CB 垂足N A B D C二面角要用“二面角的平面角”来度量。
线线角_线面角_二面角的一些题目
线线角与线面角、二面角一、目标1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法.2.理解直线与平面所成角的概念,并掌握求线面角常用方法.并了解求线二面角常用方法3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法.三、典型例题例1. 如图,正方形ABCD所在平面与正方形ABEF所在平面成60ο角,求异面直线AD与BF所成角的余弦值.例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B所成的角.例3. 如图,在棱长为a的正方体ABCD—A1B1C1D1中,求:(1)面A1ABB1与面ABCD所成角的大小;(2)二面角C1—BD—C的正切值。
ADC1D1A1B1CBDACB F EA BC DAD CBB 1D 1ADC 1BC A 1二、重要题型1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 .2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A).46(B).36 (C).62(D).633.平面α与直线a 所成的角为3π,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为(A).30ο (B).45ο (C).60ο (D).90ο5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上,当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值是 .6. 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC —-D 的大小。
高中数学直线与平面所成的角精选题
直线与平面所成的角精选题29道一.选择题(共11小题)1.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.82.如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]3.已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.4.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.5.如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A.B.C.D.6.正三棱锥P﹣ABC的侧面都是直角三角形,E,F分别是AB,BC的中点,则PB与平面PEF所成角的正弦值为()A.B.C.D.7.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°8.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.19.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A.B.C.D.10.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0B.C.D.11.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}二.填空题(共16小题)12.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.13.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为.14.如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.15.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF ==a,G是EF的中点,则GB与平面AGC所成角的正弦值为.16.如图,已知正三棱柱ABC﹣A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成角的正弦值为.17.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为.18.如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为.19.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BDD1B1所成角的正弦值为.20.已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,,平面ABCD⊥平面P AD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.21.正方体ABCD﹣A1B1C1D1中,则C1A与平面ABCD所成角的正弦值为.22.如图:二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成角为45°,则AB与平面β所成角的正弦值是.23.如图,正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为2,则AC1与面ABB1A1所成的角为.24.如图,在棱长为2的正方体中ABCD﹣A1B1C1D1,点M是AD的中点,动点P在底面ABCD内(包括边界),若B1P∥平面A1BM,则C1P与底面ABCD所成角的正切值的取值范围是.25.已知正六棱锥底面边长为a,体积为a3,则侧棱与底面所成的角为.26.已知A∈α,p∉α,=(﹣,,),平面α的一个法向量=(0,﹣,﹣),则直线P A与平面α所成的角为.27.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是.三.解答题(共2小题)28.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.29.如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.直线与平面所成的角精选题29道参考答案与试题解析一.选择题(共11小题)1.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.8【分析】画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.【点评】本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.2.如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.3.已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.4.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB1D1D的一个法向量.∴cos<,>==.∴BC1与平面BB1D1D所成角的正弦值为故选:D.【点评】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系这一利用向量方法解决了抽象的立体几何问题.5.如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A.B.C.D.【分析】根据题意得ED∥BF,进而得到直线DE与平面BB1C1C所成的角等于直线BF 与平面BB1C1C所成的角.利用几何体的结构特征得到∠FBG=.即可得到答案.【解答】解:取AC的中点为F,连接BF、DF.因为在直三棱柱ABC﹣A1B1C1中,CC1∥BB1,又因为DF是三角形ACC1的中位线,故DF=CC1=BB1=BE,故四边形BEDF是平行四边形,所以ED∥BF.过点F作FG垂直于BC交BC与点G,由题意得∠FBG即为所求的角.因为AB=1,AC=2,BC=,所以∠ABC=,∠BCA=,直角三角形斜边中线BF是斜边AC的一半,故BF=AC=CF,所以∠FBG=∠BCA=.故选:A.【点评】解决此类问题的关键是熟悉线面角的作法,即由线上的一点作平面的垂线再连接斜足与垂足则得到线面角.6.正三棱锥P﹣ABC的侧面都是直角三角形,E,F分别是AB,BC的中点,则PB与平面PEF所成角的正弦值为()A.B.C.D.【分析】以P为原点,P A为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【解答】解:∵正三棱锥P﹣ABC的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,P A为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设P A=PB=PC=2,则A(2,0,0),B(0,2,0),C(0,0,2),E(1,1,0),F(0,1,1),=(0,2,0),=(1,1,0),=(0,1,1),设平面PEF的法向量=(x,y,z),则,取x=1,得=(1,﹣1,1),设PB与平面PEF所成角为θ,则sinθ===.∴PB与平面PEF所成角的正弦值为.故选:C.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【分析】由纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角.【解答】解:可设A所在的纬线圈的圆心为O',OO'垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAO'为40°且OA⊥AH,在Rt△OHA中,O'A⊥OH,∴∠OHA=∠OAO'=40°,另解:画出截面图,如下图所示,其中CD是赤道所在平面的截线.l是点A处的水平面的截线,由题意可得OA⊥l,AB是晷针所在直线.m是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得m∥CD,根据线面垂直的定义可得AB⊥m,由于∠AOC=40°,m∥CD,所以∠OAG=∠AOC=40°,由于∠OAG+∠GAE=∠BAE+∠GAE=90°,所以∠BAE=∠OAG=40°,也即晷针与A处的水平面所成角为∠BAE=40°,故选:B.【点评】本题是立体几何在生活中的运用,考查空间线面角的定义和求法,属于基础题.8.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,在三棱锥E﹣ABD中,V E﹣ABD=S△ABD×EC=××2×2×=在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD=×2×=2∴V A﹣BDE=×S△EBD×h=×2×h=∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题9.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A.B.C.D.【分析】以B为坐标原点,建立空间直角坐标系,利用与平面AB1C1所的一个法向量的夹角,求出则BB1与平面AB1C1所成的角.【解答】解:以B为坐标原点,以与BC垂直的直线为x轴,BC为y轴,建立空间直角坐标系,则A(,1,0),B1(0,0,3),C1(0,2,3),=(﹣,﹣1,3),=(0,2,0),=(0,0,3).设平面AB1C1所的一个法向量为=(x,y,z)则即,取z=1,则得=(,0,1),∵cos<,>===,∴BB1与平面AB1C1所成的角的正弦值为,∴BB1与平面AB1C1所成的角为故选:A.【点评】本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.10.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0B.C.D.【分析】由正四面体ABCD,可得所有棱长都相等.①点E是线段AC的中点,BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.利用反证法可以证明.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.设直线BE与平面ACD所成的角为θ,可得cosθ=.于是可得在该四面体绕CD旋转的过程中,可得直线BE与平面α所成角为,.【解答】解:由正四面体ABCD,可得所有棱长都相等.①∵点E是线段AC的中点,∴BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.反证法:若直线BE与平面α所成角是,则BE⊥平面α.则在某一过程必有BE⊥CD.事实上,在该四面体绕CD旋转的过程中,BE与CD是不可能垂直的,因此假设错位,于是直线BE与平面α所成角不可能是90°.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.则E,O,D三点在同一条直线上.设直线BE与平面ACD所成的角为θ,可得cosθ=.∴θ>.于是可得在该四面体绕CD旋转的过程中,可得直线BE与平面α所成角为,.综上可得:直线BE与平面α所成角不可能是.故选:D.【点评】本题考查了正四面体的性质、线面垂直性质定理、正三角形的性质、线面角,考查了数形结合方法、推理能力与计算能力,属于难题.11.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}【分析】设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点.分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可证出平面A1MN∥平面D1AE,从而得到A1F是平面A1MN内的直线.由此将点F在线段MN上运动并加以观察,即可得到A1F 与平面BCC1B1所成角取最大值、最小值的位置,由此不难得到A1F与平面BCC1B1所成角的正切取值范围.【解答】解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则∵A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,∴A1M∥平面D1AE.同理可得MN ∥平面D1AE,∵A1M、MN是平面A1MN内的相交直线∴平面A1MN∥平面D1AE,由此结合A1F∥平面D1AE,可得直线A1F⊂平面A1MN,即点F是线段MN上上的动点.设直线A1F与平面BCC1B1所成角为θ运动点F并加以观察,可得当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1,此时所成角θ达到最小值,满足tanθ==2;当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ==2∴A1F与平面BCC1B1所成角的正切取值范围为[2,2]故选:D.【点评】本题给出正方体中侧面BCC1B1内动点F满足A1F∥平面D1AE,求A1F与平面BCC1B1所成角的正切取值范围,着重考查了正方体的性质、直线与平面所成角、空间面面平行与线面平行的位置关系判定等知识,属于中档题.二.填空题(共16小题)12.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为40π.【分析】利用已知条件求出圆锥的母线长,利用直线与平面所成角求解底面半径,然后求解圆锥的侧面积.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠ASB==.△SAB的面积为5,可得sin∠ASB=5,即×=5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:=2.则该圆锥的侧面积:=40π.故答案为:40π.【点评】本题考查圆锥的结构特征,母线与底面所成角,圆锥的截面面积的求法,考查空间想象能力以及计算能力.13.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为8π.【分析】利用已知条件求出母线长度,然后求解底面半径,以及圆锥的高.然后求解体积即可.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.【点评】本题考查圆锥的体积的求法,母线以及底面所成角的应用,考查转化思想以及计算能力.14.如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.【分析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连接AD,从而∠ADC为二面角α﹣l﹣β的平面角,连接CB,则∠ABC为AB与平面β所成的角,在直角三角形ABC中求出此角即可.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D连接AD,有三垂线定理可知AD⊥l,故∠ADC为二面角α﹣l﹣β的平面角,为60°又由已知,∠ABD=30°连接CB,则∠ABC为AB与平面β所成的角设AD=2,则AC=,CD=1AB==4∴sin∠ABC=;故答案为.【点评】本题主要考查了平面与平面之间的位置关系,以及直线与平面所成角,考查空间想象能力、运算能力和推理论证能力,属于基础题.15.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF==a,G是EF的中点,则GB与平面AGC所成角的正弦值为.【分析】由面面垂直的性质证明CB⊥AG,用勾股定理证明AG⊥BG,得到AG⊥平面CBG,从而面AGC⊥面BGC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,故∠BGH是GB与平面AGC所成的角,解Rt△CBG,可得GB与平面AGC所成角的正弦值.【解答】解:∵ABCD是正方形,∴CB⊥AB,∵面ABCD⊥面ABEF且交于AB,∴CB⊥面ABEF.∵AG,GB⊂面ABEF,∴CB⊥AG,CB⊥BG,又AD=2a,AF=a,ABEF是矩形,G是EF的中点,∴AG=BG=a,AB=2a,∴AB2=AG2+BG2,∴AG⊥BG,∵BG∩BC=B,∴AG⊥平面CBG,而AG⊂面AGC,故平面AGC⊥平面BGC.在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,∴∠BGH是GB与平面AGC 所成的角.在Rt△CBG中,BH==,BG=a,∴sin∠BGH==.故答案为:.【点评】本题考查面面垂直的判定方法,以及求线面成的角的求法,考查学生的计算能力,属于中档题.16.如图,已知正三棱柱ABC﹣A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成角的正弦值为.【分析】如图,先证出B1D⊥平面AC1,过A点作AG⊥CD,证AG⊥平面B1DC,可知∠ADG即为直线AD与平面B1DC所成角,求其正弦即可.【解答】解:如图,连接B1D易证B1D⊥平面AC1,过A点作AG⊥CD,则由B1D⊥平面AC1,得AG⊥B1D由线面垂直的判定定理得AG⊥平面B1DC,于是∠ADG即为直线AD与平面B1DC所成角,由已知,不妨令棱长为2,则可得AD==CD,由等面积法算得AG==所以直线AD与面DCB1的正弦值为;故答案为.【点评】考查正棱柱的性质以及线面角的求法.考查空间想象能力以及点线面的位置关系17.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为.【分析】由题意连接A1C1,则∠AC1A1为所求的角,在△AC1A1计算出此角的正弦值即可.【解答】解:连接A1C1,在长方体ABCD﹣A1B1C1D1中,∴A1A⊥平面A1B1C1D1,则∠AC1A1为AC1与平面A1B1C1D1所成角.在△AC1A1中,sin∠AC1A1===.故答案为:.【点评】本题主要考查了求线面角的过程:作、证、求,用一个线面垂直关系,属于中档题.18.如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为4.【分析】建立空间直角坐标系,设棱柱的高为a,求出平面ACD1的一个法向量,令,求出a的值即可.【解答】解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设DD1=a,则A(2,0,0),C(0,2,0),D1(0,0,a),故,设平面ACD1的一个法向量为,则,可取,故,又直线CC1与平面ACD1所成角的正弦值为,∴,解得a=4.故答案为:4.【点评】本题考查了空间向量在立体几何中的运用,考查计算能力,属于基础题.19.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BDD1B1所成角的正弦值为.【分析】连接A1C1交B1D1于O,连接BO,则可得∠C1BO为BC1与平面BBD1B1所成角,利用正弦函数,即可求得结论.【解答】解:连接A1C1交B1D1于O,连接BO,则∵长方体ABCD﹣A1B1C1D1中,AB=BC=2∴C1O⊥平面BDD1B1∴∠C1BO为BC1与平面BDD1B1所成角∵C1O=A1C1=,BC1=∴sin∠C1BO===故答案为:【点评】本题考查线面角,解题的关键是正确作出线面角,属于中档题.20.已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,,平面ABCD⊥平面P AD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.【分析】以O为原点,OA为x轴,过O作AB平行线为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出直线BM与平面PCO所成角的正弦值.【解答】解:以O为原点,OA为x轴,过O作AB平行线为y轴,OP为z轴,建立空间直角坐标系,B(1,2,0),P(0,0,2),C(﹣1,2,0),M(﹣,1,1),O(0,0,0),,,设平面PCO的法向量=(x,y,z),,可得=(2,1,0),设直线BM与平面PCO所成角为θ,则sinθ=|os|=||=故答案为:【点评】本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.正方体ABCD﹣A1B1C1D1中,则C1A与平面ABCD所成角的正弦值为.【分析】设正方体ABCD﹣A1B1C1D1的棱长为1,以D为原点,建立空间直角坐标系,利用向量法能求出C1A与平面ABCD所成角的正弦值.【解答】解:设正方体ABCD﹣A1B1C1D1的棱长为1,以D为原点,建立空间直角坐标系,A(1,0,0),C1(0,1,1),=(﹣1,1,1),平面ABCD的法向量=(0,0,1),设C1A与平面ABCD所成角为θ,则sinθ=|cos<>|==.∴C1A与平面ABCD所成角的正弦值为.故答案为:.【点评】本题考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.22.如图:二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成角为45°,则AB与平面β所成角的正弦值是.【分析】根据二面角和直线和平面所成角的定义,先作出对应的平面角,结合三角形的边角关系进行求解即可.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=,Rt△ABD中,AB=,∴Rt△ABC中,sin∠ABC==,故答案为:.【点评】本题主要考查线面垂直的定义与性质、二面角的平面角的定义和直线与平面所成角的定义及求法等知识.23.如图,正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为2,则AC1与面ABB1A1所成的角为.【分析】取A1B1中点D,连结C1D,AD,推导出C1D⊥A1B1,C1D⊥AA1,从而AC1与面ABB1A1所成的角为∠DAC1,由此能求出AC1与面ABB1A1所成的角.【解答】解:取A1B1中点D,连结C1D,AD,∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为2,∴C1D⊥A1B1,C1D⊥AA1,∵A1B1∩AA1=A1,∴C1D⊥平面ABB1A1,∴AC1与面ABB1A1所成的角为∠DAC1,∵C1D==,AD==3,∴tan∠DAC1==,∴∠DAC1=.∴AC1与面ABB1A1所成的角为.故答案为:.【点评】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.24.如图,在棱长为2的正方体中ABCD﹣A1B1C1D1,点M是AD的中点,动点P在底面ABCD内(包括边界),若B1P∥平面A1BM,则C1P与底面ABCD所成角的正切值的取值范围是.【分析】取BC的中点N,连接DN、B1N、B1D,利用面面平行的判定定理可证得面B1DN ∥面A1BM,从而确定点P在线段DN上运动;连接CP、C1P,则∠C1PC为直线C1P与面ABCD所成的角,而tan∠C1PC==,于是求出线段CP的取值范围即可得解.【解答】解:如图所示,取BC的中点N,连接DN、B1N、B1D,则B1N∥A1M,DN∥BM,∵B1N∩DN=N,B1N、DN⊂面B1DN,A1M∩BM=M,A1M、BM⊂面A1BM,∴面B1DN∥面A1BM,∵B1P∥平面A1BM,且点P在底面ABCD上,∴点P在线段DN上运动.连接CP、C1P,则∠C1PC为直线C1P与面ABCD所成的角,∴tan∠C1PC==.在Rt△CDN中,当点P与点D重合时,CP最长为2;当CP⊥DN时,CP最短为,即CP∈[,2],∴tan∠C1PC∈[1,].故答案为:[1,].【点评】本题考查空间中直线与平面的夹角问题、线面平行关系,熟练运用面面平行的判定定理与性质定理是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.25.已知正六棱锥底面边长为a,体积为a3,则侧棱与底面所成的角为45°.【分析】由已知条件推导出棱锥的高h=a,侧棱长为a,由此能求出侧棱与底面所成的角的大小.【解答】解:∵正六棱锥的底面边长为a,∴S底面积=6×=a2,∵体积为a 3,∴棱锥的高h=a,∴侧棱长为a∴侧棱与底面所成的角为45°,故答案为:45°.【点评】本题考查侧棱与底面所成的角的大小的求法,是中档题,解题时要注意正六棱锥的结构特征的合理运用.26.已知A∈α,p∉α,=(﹣,,),平面α的一个法向量=(0,﹣,﹣),则直线P A与平面α所成的角为60°.【分析】设直线P A与平面α所成的角为θ.利用sinθ=|cos<,>|,即可得出.【解答】解:设直线P A与平面α所成的角为θ.则sinθ=|cos<,>|==.∵θ∈[0°,90°].∴θ=60°.故答案为:60°.【点评】本题考查了利用向量的夹角公式求线面角、数量积运算及其模的计算公式,考查了推理能力与计算能力,属于中档题.27.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是8.【分析】设直角三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,根据直角三棱锥的性质可知,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由V C﹣C′PQ=V C′﹣CPQ,能求出△PQC'的面积的最小值.【解答】解:设直角三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,根据直角三棱锥的性质可知:,∵直线CC’与平面C’PQ成的角为30°,∴h=2=,∴=,,∴xy≥8,再由体积可知:V C﹣C′PQ=V C′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8.故答案为:8.【点评】本题考查三角形面积的最小值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.三.解答题(共2小题)28.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC 折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【分析】(1)利用正方形的性质可得BF垂直于面PEF,然后利用平面与平面垂直的判断定理证明即可.(2)利用等体积法可求出点P到面ABCD的距离,进而求出线面角.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE=,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE=,又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.【点评】本题主要考查点、直线、平面的位置关系.直线与平面所成角的求法.几何法的应用,考查转化思想以及计算能力.29.如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面P AB;法二、证明MN∥平面P AB,转化为证明平面NEM∥平面P AB,在△P AC中,过N作NE ⊥AC,垂足为E,连接ME,由已知P A⊥底面ABCD,可得P A∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面P AB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面P AD,在平面P AD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面P AB,NM⊄平面P AB,∴MN∥平面P AB;法二、。
经典导学案——立体几何向量法求线线角与线面角
§3.2立体几何中的向量方法(4)向量法求线线角与线面角一、学习目标1.理解直线与平面所成角的概念.2.掌握利用向量方法解决线线、线面 、面面的夹角的求法.二、问题导学问题1:什么叫异面直线所成的角?它的范围是什么?怎样用定义法求它的大小? 问题2:怎样通过向量的运算来求异面直线所成的角?设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ, 则〈a ,b 〉与θ ,cos θ= 。
问题3:用向量的数量积可以求异面直线所成的角,能否求线面角?如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,θ=〈a ,n 〉, 则sin φ= 。
三、例题探究例1.如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D 的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角.变式:在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于 ( )A .30°B .45°C .60°D .90°例2.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.变式:如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,P A⊥底面ABCD,且P A=AD=AB=2BC,M、N分别为PC、PB的中点.求BD与平面ADMN 所成的角θ.四、练一练(时间:5分钟)1. 1.若平面α的法向量为μ,直线l 的方向向量为v , 直线l 与平面α的夹角为θ,则下列关系式成立的是 ( ) A .cos θ=μ·v |μ||v| B .cos θ=|μ·v||μ||υ| C .sin θ=μ·v |μ||v| D .sin θ=|μ·v||μ||v|2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A , 则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178D .233.正三棱柱ABC —A 1B 1C 1的所有棱长相等,则AC 1与面BB 1C 1C 所成角的余弦值为( ) A .54 B .104 C .52 D .1024.已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,CC 1=2,则直线BC 1和平面DBB 1D 1所成角的正弦值为 ( ) A.32 B.52 C.105 D.10105.正四棱锥S —ABCD ,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角为 .ABCD 1E 1F 1A 1B 1C 1D【参考答案】§3.2立体几何中的向量方法(4)向量法求线线角与线面角一、学习目标1.理解直线与平面所成角的概念.2.掌握利用向量方法解决线线、线面 、面面的夹角的求法. 用向量方法求空间中的角 角的分类 向量求法范围异面直线 所成的角设两异面直线所成的角为θ,它们的方向向量为a ,b , 则cos θ= |cos 〈a ,b 〉| = . |a·b ||a |·|b |(0,π2]直线与平面所成的角 设直线l 与平面α所成的角为θ,l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos |〈a ,n 〉= . |a·n ||a ||n |[0,π2]二面角设二面角α—l —β的平面角为θ,平面α、β的法向量为n 1,n 2,则|cos θ|=|cos 〈n 1,n 1〉|=|n 1·n 2||n 1|·|n 2|.[0,π]设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ,则〈a ,b 〉与θ相等或互补,∴cos θ=|a ·b ||a |·|b |.2.求直线与平面所成的角如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,θ=〈a ,n 〉,则sin φ=|cos θ|=|cos 〈a ,n 〉|=|a ·n ||a ||n |.二、问题导学问题1:什么叫异面直线所成的角?它的范围是什么?怎样用定义法求它的大小? 问题2:怎样通过向量的运算来求异面直线所成的角?设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ, 则〈a ,b 〉与θ ,cos θ= 。
空间角(空间线线、线面、面面成角问题)练习题(答案)
空间角练习题1.二面角是指( D )A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有( D )A 1条或2条交线B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( B )A 5B 20 CD4.在直二面角α-l-β中,RtΔABC在平面α内,斜边BC在棱l上,若AB 与面β所成的角为600,则AC与平面β所成的角为( A )A 300B 450 C600 D 12005.如图,射线BD、BA、BC两两互相垂直,AB=BC=1,BD=,则弧度数为的二面角是( A )A D-AC-B B A-CD-BC A-BC-D D A-BD-C6.△ABC在平面α的射影是△A1B1C1,如果△ABC所在平面和平面α成θ角,有(B)A S△A1B1C1=S△ABC·sinθB S△A1B1C1=S△ABC·cosθC S△ABC =S△A1B1C1·sinθD S△ABC=S△A1B1C1·cosθ7.如图,若P为二面角M-l-N的面N内一点,PB⊥l,B为垂足,A为l上一点,且∠PAB=α,PA与平面M所成角为β,二面角M-l-N的大小为γ,则有( B )A sinα=sinβsinγB sinβ=sinαsinγC sinγ=sinαsinβD 以上都不对8.在600的二面角的棱上有两点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段,已知:AB=6,AC=3,BD=4,则CD= 7cm 。
9.已知△ABC和平面α,∠A=300,∠B=600,AB=2,ABα,且平面ABC与α所成角为300,则点C到平面α的距离为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线面角与线线角专练(小练习一)【知识网络】
1、异面直线所成的角:(1)范围:(0,]2π
θ∈;
(2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90];(3)求法;
【典型例题】
例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( )
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45角
D 、11AC 与1B C 成60角
(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )
A 、2个
B 、4个
C 、6个
D 、8个
(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( )
A .90º
B .60º
C .45º
D .30º
(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.
例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。
(I )若D 为BC 的中点,E 为AD 上不同于
A 、D 的任意一点,证明EF ⊥FC 1;
(II )试问:若AB =2a ,在线段AD 上的E
点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面
PAB ⊥底面ABCD.
(Ⅰ)证明:BC ⊥侧面PAB;
(Ⅱ)证明: 侧面PAD ⊥侧面PAB;
(Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D
P
A B C H S M
线面角与线线角专练(小练习二)
例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
如图,3:4:,6
5cos ==∠PB PA ABC 求直线PB 和平面PAC 所成角的大小.
例5.如图,四面体ABCS 中,SA ,SB ,SC 两两垂直,∠SBA=45°,∠SBC=60°,
M 为AB 的中点,求:
(1)BC 与平面SAB 所成的角;
(2)SC 与平面ABC 所成角的正弦值。
例6.如图,已知正四棱柱ABCD —A 1B 1C 1D 1中,底面边长
AB =2,侧棱BB 1的长为4,过点B 作B 1C 的垂线交侧棱
CC 1于点E ,交B 1C 于点F ,
⑴求证:A 1C ⊥平面BDE ;
⑵求A 1B 与平面BDE 所成角的正弦值。
例7.已知等腰∆ABC 中,AC = BC = 2,∠ACB = 120︒,
∆ABC 所在平面外的一点P 到三角形三顶点的距离都等于4,
求直线PC 与平面ABC 所成的角。