初三数学期末模拟试卷
九年级数学期末模拟精品测试题及答案,精品3套
(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。
(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。
人教版九年级数学第一学期期末检测模拟试卷(5)
人教版九年级数学第一学期期末检测模拟试卷(5)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)3.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对4.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣55.(3分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球6.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°8.(3分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.9.(3分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.10.(3分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.(3分)如图,P A、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=度.13.(3分)某商品原价289元,经过连续两次降价后,售价为256元.设平均每次降价的百分率为x,则x的值为.14.(3分)如图,直线y=x+1与双曲线y=相交于点A(m,2),则不等式x+1>的解集是.三、解答题(本大题共11小题,共78分)15.(6分)解方程:(1)x2+4x﹣1=0;(2)(x﹣3)2+4(x﹣3)=0.16.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为;(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.18.(6分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.19.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.20.(6分)在直角坐标系中,直线y=x+m与双曲线y=在第一象限交于点A,在第三象限交于点D,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.(1)求m的值;(2)求△ABD的面积.21.(6分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为;若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为个.22.(8分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?23.(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?24.(8分)某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?25.(12分)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(﹣1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.人教版九年级数学第一学期期末检测模拟试卷(5)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断即可.【解答】解:A、是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、不是中心对称图形;故选:A.2.(3分)点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【分析】直接利用关于原点对称点的性质进而得出答案.【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.3.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选:B.4.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律得到点(0,0)平移后所得对应点的坐标为(3,﹣5),然后根据顶点式写出平移得到的抛物线的解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为y=2(x﹣3)2﹣5.故选:A.5.(3分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选:B.6.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°【分析】根据平行线的性质可证∠D=∠AOD=50°,又根据三角形外角与内角的关系可证∠ACO=∠OAC=∠AOD=25°.【解答】解:∵OA∥DE,∴∠D=∠AOD=50°,∵OA=OC,∴∠ACO=∠OAC=∠AOD=25°.故选:D.7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°【分析】根据弧长公式l=,即可求解.【解答】解:设圆心角是n度,根据题意得=,解得:n=60.故选:C.8.(3分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.【分析】本题可先由一次函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:∵函数y=ax+b的图象经过一、二、三象限∴a>0,b>0,∵a>0时,抛物线开口向上,排除D;∵a>0,b>0时,对称轴x=﹣<0,排除A、C.故选:B.9.(3分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.10.(3分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16【分析】连接BO并延长交圆于点E,连接AE,根据三角函数可求得BE的长;再根据圆内接正方形的性质求得其边长,从而可得到其面积.【解答】解:如图,连接BO并延长交圆于点E,连接AE,则∠E=∠C=30°,∠EAB=90°;∴直径BE==2,∵直径是圆内接正方形的对角线长,∴圆内接正方形的边长等于∴⊙O的内接正方形的面积为2.故选:A.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.【分析】求出一次抛一枚硬币正面朝上的概率即可.【解答】解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.12.(3分)如图,P A、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=60度.【分析】连接OA,BO,由圆周角定理知可知∠AOB=2∠E=120°,P A、PB分别切⊙O于点A、B,利用切线的性质可知∠OAP=∠OBP=90°,根据四边形内角和可求得∠P=180°﹣∠AOB=60°.【解答】解:连接OA,BO;∵∠AOB=2∠E=120°,∴∠OAP=∠OBP=90°,∴∠P=180°﹣∠AOB=60°.13.(3分)某商品原价289元,经过连续两次降价后,售价为256元.设平均每次降价的百分率为x,则x的值为.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:设平均每次降价的百分率为x,根据题意得:289×(1﹣x)2=256,解得:x=或x=(舍去),故答案为.14.(3分)如图,直线y=x+1与双曲线y=相交于点A(m,2),则不等式x+1>的解集是﹣4<x<0或x>2.【分析】写出直线y=x+1在双曲线y=上方部分的x的取值范围即可.【解答】解:∵点A(m,2)在直线y=x+1,∴2=m+1,解得m=2.则A(2,2),将其代入双曲线y=得到:k=2×2=4,∴双曲线的解析式为:y=,∴<解得或,∴直线y=x+1与双曲线y=的另一交点坐标是(﹣4,﹣1),∴不等式x+1>的解集是﹣4<x<0或x>2.故答案是:﹣4<x<0或x>2.三、解答题(本大题共11小题,共75分)15.(6分)解方程:(1)x2+4x﹣1=0;(2)(x﹣3)2+4(x﹣3)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=,∴x1=﹣2+,x2=﹣2﹣;(2)(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1.16.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为(﹣2,3);(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.【分析】(1)先画出直角坐标系,然后根据第二象限点的坐标特征写出A点坐标;(2)先利用网格特点和旋转的性质画出点A和B的对应点A1、B1,即可得到△OA1B1,再利用勾股定理计算出OA和OB,然后根据扇形面积公式计算S扇形OAA1﹣S扇形BOB1的即可.【解答】解:(1)如图1,点A的坐标为(﹣2,3);(2)如图2,△OA1B1为所作;OA==,OB==线段AB扫过的面积=S扇形OAA1﹣S扇形BOB1=﹣=π.17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.【分析】因为圆柱形油槽装入油后形成弓形,可以考虑用垂径定理解答.【解答】解:由题意得出:OC⊥AB于点D,由垂径定理知,点D为AB的中点,AB=2AD,∵直径是52cm,∴OB=26cm,∴OD=OC﹣CD=26﹣16=10(cm),由勾股定理知,BD==24(cm),∴AB=48cm.18.(6分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.19.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【分析】(1)由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ABC的度数;(2)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;(3)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∠BAC=30°,∵∠ACB=90°,∴AB=2BC=8,∴OA=4,∴劣弧AC的长为=.20.(6分)在直角坐标系中,直线y=x+m与双曲线y=在第一象限交于点A,在第三象限交于点D,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.(1)求m的值;(2)求△ABD的面积.【分析】(1)由三角形AOB的面积,可得出m的值为2.(2)求出A、B的坐标,进而可根据S△ABD=AD•(x A﹣x B)求出△ABD的面积.【解答】解:(1)设A(x,y),∵直线y=x+m与双曲线y=在第一象限交于点A,S△AOB=1,∴xy=1,即xy=m=2,∴m=2,(2)联立两函数的方程,解得或,∴A点坐标为(﹣1,+1),D(﹣﹣1,﹣+1),∴S△ABD=(+1)(﹣1++1)=3+.21.(6分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为4个.【分析】(1)根据反比例函数的性质得1﹣2m>0,然后解不等式得到m的取值范围;(2)①根据平行四边形的性质得AD∥OB,AD=OB=2,易得D点坐标为(2,3),然后根据反比例函数图象上点的坐标特征得1﹣2m=6,则反比例函数解析式为y=;②根据反比例函数的图象关于原点中心对称可得点D关于原点的对称点P满足OP=OD,则此时P点坐标为(﹣2,﹣3);再根据反比例函数y=的图象关于直线y=x对称,可得点D(2,3)关于直线y=x对称点P满足OP=OD,此时P点坐标为(3,2),易得点(3,2)关于原点的对称点P也满足OP=OD,此时P点坐标为(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,所以以D点为顶点可画出点P1,P2;以O点顶点可画出点P3,P4,如图.【解答】解:(1)根据题意得1﹣2m>0,解得m<;(2)①∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,又∵A点坐标为(0,3),∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴反比例函数解析式为y=;②∵反比例函数y=的图象关于原点中心对称,∴当点P与点D关于原点对称,则OD=OP,此时P点坐标为(﹣2,﹣3),∵反比例函数y=的图象关于直线y=x对称,∴点P与点D(2,3)关于直线y=x对称时满足OP=OD,此时P点坐标为(3,2),点(3,2)关于原点的对称点也满足OP=OD,此时P点坐标为(﹣3,﹣2),综上所述,P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,则以D点为圆心,DO为半径画弧交反比例函数图象于点P1,P2,则点P1,P2满足条件;以O点为圆心,OD为半径画弧交反比例函数图象于点P3,P4,则点P3,P4也满足条件,如图,作线段OD的垂直平分线,与反比例函数的图象无交点.22.(8分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【分析】画树状图展示所有6种等可能的结果,找出两数之积为3的倍数的结果数,这样可计算出甲获胜的概率和乙获胜的概率,然后通过比较两概率的大小可判断这样的游戏规则对甲乙双方是否公平.【解答】解:这样的游戏规则对甲乙双方不公平.理由如下:画树状图为:共用6种等可能的结果,其中两数之积为3的倍数的结果数为4,所以甲获胜的概率==,乙获胜的概率==,因为>,所以这样的游戏规则对甲乙双方不公平.23.(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?【分析】(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.【解答】解:(1)设y与x之间的函数表达式为y=,根据题意得:50=,解得k=400,∴y与x之间的函数表达式为y=;(2)∵x=5,∴y=400÷5=80,解得:y=80;答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.24.(8分)某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?【分析】(1)设涨x元,利用单件利润乘以销售量得到总利润得到(50﹣40+x)(500﹣10x)=8000,然后解方程即可;(2)设每件涨x元,利润为y元,则y=(50﹣40+x)(500﹣10x),然后利用二次函数的性质解决问题.【解答】解:(1)设涨x元,根据题意得(50﹣40+x)(500﹣10x)=8000,整理得x2﹣40x+300=0,解得x1=10,x2=30,当x=10时,50+10=60;当x=30时,50+30=80,此时售价应定为每件60元或80元,利润为8000元;(2)设每件涨x元,利润为y元,则y=(50﹣40+x)(500﹣10x)=﹣10x2+400x+5000=﹣10(x﹣20)2+9000,∵a=﹣10<0,∴当x=20时,y有最大值,最大值为9000,∴要想获得的利润最大,销售价应定为70元.25.(12分)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(﹣1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.【分析】(1)∠ABO=60°则∠ADO=60°,在直角△AOD中,根据三角函数就可以求出OD的长,则可以求出D的坐标.(2)若点C的坐标为(﹣1,0),在直角△CDO中,根据三角函数就可以求出∠CDO的度数.进而得到∠CDA 的度数.从而判断过D,C的直线与△AOB的外接圆的位置关系.(3)函数经过O,A两点,因而对称轴是OA的垂直平分线与圆的交点,过交点作OA的垂线,利用三角函数,就可以求出OA的垂直平分线与圆的交点的坐标,再根据待定系数法就可以求出函数的解析式.【解答】解:(1)连接AD,则∠ADO=∠B=60°,在Rt△ADO中,∠ADO=60°,所以OD=OA÷=3÷=,所以D点的坐标是(0,);(2)猜想:CD与圆相切,∵∠AOD是直角,∴AD是圆的直径,又∵tan∠CDO ===,∠CDO=30°,∴∠CDA=∠CDO+∠ADO=90°,即CD⊥AD,∴CD切外接圆于点D;(3)依题意可设二次函数的解析式为:y=α(x﹣0)(x﹣3),由此得顶点坐标的横坐标为:x ==;即顶点在OA的垂直平分线上,作OA的垂直平分线EF,则得∠EF A =∠B=30°,即得到EF =EA =可得一个顶点坐标为(,),同理可得另一个顶点坐标为(,),分别将两顶点代入y=α(x﹣0)(x﹣3)可解得α的值分别为,,则得到二次函数的解析式是y =x(x﹣3)或y =x(x﹣3).第21页(共21页)。
北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷
北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷命题人:初三数学备课组审核人:初三数学备课组考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》、《概率》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.A卷面成绩90% (满分90分)B过程性评价(满分10分)学业成绩总评=A+B(满分100分)考生须知1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡8页。
全卷共三大题,28道小题。
2.本试卷满分100分,考试时间120分钟。
3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。
4.考试结束,将答题卡交回。
第Ⅰ卷(选择题共16分)一、选择题(共16分,每题2分,以下每题只有一个....正确的选项) 1.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,下列航天图标是中心对称图形的是()A.B.C.D.班级姓名考号座位号密封线----------------------------------------------------------------------------------------------------------------------2.抛物线先向左平移2个单位,再向下平移1个单位长度,所得新 抛物线的解析式为( ) A . B . C . D .3.用配方法解方程时,原方程变形正确的是( ) A . B . C . D .4.下列语句所描述的事件是随机事件的是( ) A .经过任意两点画一条直线B .任意画一个五边形,其外角和为C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 5.已知点,、,在二次函数的图象上.若, 则与的大小关系是( ) A . B . C . D .6.刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定 圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割 圆术”的过程中,作了一个如图所示的圆内接正八边形.若的半径为1, 则这个圆内接正八边形的面积为( ) A . B .C .D .7.如图,将绕点逆时针旋转,旋转角为,得到, 这时点旋转后的对应点恰好在直线上,则下列结论不一定正确的是 ( )A .B .C .D .8.如果x =5是关于的一元二次方程的一个根,那么关于 的一元二次方程的解为( ) A .x 1=-4,x 2=2 B .x 1=-2,x 2=4 C .x 1=-1,x 2=3 D . x 1=-3,x 2=121y x =-+2(2)2y x =-++2(2)y x =--2(2)y x =-+2(2)2y x =--+2250x x --=2(1)6x -=2(2)9x -=2(1)6x +=2(2)9x +=360°1(A x 1)y 2(B x 2)y 224y x x =-++121x x >>1y 2y y 1!y 212y y =12y y >12y y <O !p 2p 4ABC D A (0180)a a °<<°ADE D B D BC ACD EAD Ð=ÐABC ADC Ð=ÐEAC a Ð=180EDC a Ð=°-x ()(4)x m x m n --+=x (1)(3)x m x m n +-+-=第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.请你写出一个开口向上,且经过(1,0)的抛物线的解析式_______.10.抛物线的顶点坐标是_______.11.若是关于的方程的解,则的值为_______.12.若抛物线与轴的一个交点坐标为,则该抛物线的对称轴 为直线_______.13.如图,在中是直径,,,,那么的长 等于_______.第13题图第14题图14.如图,为的直径,,点为上一点,,则 图中阴影部分的面积为_______.(结果保留π)15.手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”、“画心”、“拖尾”三部分组成(这三部分都是矩形 形状),分隔这三部分的其余部分统称为“隔水”.图中手卷长1000 cm , 宽40 cm ,引首和拖尾完全相同,其宽度都为100 cm ,若隔水的宽度为 x cm ,画心的面积为15200 cm 2,根据题意,可列方程是_______.2(2)1y x =--3x =x 26ax bx -=6a −2b +20232y ax bx =+x (3,0)-O !AB CD AB ^30BAC Ð=°2OD =DC AB O !4AB =C O !30ABC Ð=°16.某工厂用甲、乙两种原料制作,,三种型号的工艺品,三种型号 工艺品的重量及所含甲、乙两种原料的重量如下:工艺品型号含甲种原料的重量/kg 含乙种原料的重量/kg工艺品的重量/kg3 4 7 3 2 5235现要用甲、乙两种原料共31 kg ,制作5个工艺品,且每种型号至少 制作1个.(1)若31 kg 原料恰好全部用完,则制作型工艺品的个数为_______;(2)若使用甲种原料不超过13 kg ,同时使用乙种原料最多,则制作方案中,,三种型号工艺品的个数依次为_______.三、解答题(共68分,其中第17-21、25题每题5分,第22-24、26题每题 6分,第27-28题7分) 17.解下列方程:.18.根据江心洲地质水文条件量身打造的“新时代号”泥水平衡盾构机,是目前世界上最先进的盾构设备之一,被誉为“国之重器”.如图1,盾构 机核心部件——刀盘的形状是一个圆形.如图2,当机器暂停时,刀盘露 在地上部分的跨度AB =12米,拱高(弧的中点到弦的距离CD )3米,求 盾构机刀盘的半径.19.下面是小明设计的“过圆上一点作这个圆的切线”的尺规作图过程. 已知:⊙O 及圆上一点A .求作:直线AB ,使得AB 为⊙O 的切线,A 为切点. 小明的作法如下:① 连接OA 并延长到点C ;② 分别以点A ,C 为圆心,大于长为半径作弧,两弧交于点D(点D 在直线OA 上方);A B C A B C A A B C x (x +3)=2x +612AC密 封 线 -----------------------------------------------------------------------------------------------------------------------③ 以点D 为圆心,DA 长为半径作⊙D ;④ 连接CD 并延长,交⊙D 于点B ,作直线AB . 则直线AB 就是所求作的直线.根据小明设计的尺规作图过程,完成下列问题: (1)使用直尺和圆规,完成作图;(保留作图痕迹) (2)完成下面的证明. 证明:连接AD .∵ _______=AD ,∴ 点C 在⊙D 上,CB 是⊙D 的直径. ∴ _______=90°.(_______) ∴ AB ⊥_______. ∵ OA 是⊙O 的半径, ∴ AB 是⊙O 的切线.(_______) 20.如图,在平面直角坐标系xOy 中,△OAB 的顶点坐标分别为O (0,0),A (5,0), B (4,-3).(1)作出△OAB 关于原点O 成中心对称的图形△OA 1B 1(点A 与点A 1 对应),并写出点B 1的坐标;(2)将△OAB 绕点O 顺时针旋转90°得到△OA 2B 2,点B 旋转后的对应 点为B 2,画出旋转后的图形△OA 2B 2,并写出点B 2的坐标;(3)在(2)的条件下,求点B 经过的路径的长.21.已知关于x 的一元二次方程. (1)利用判别式判断方程实数根的情况;(2)若该方程只有一个根小于2,求m 的取值范围.BB2!x 2−(m −1)x −(3m +6)=0班级姓名 考号 座位号 密 封 线 ----------------------------------------------------------------------------------------------------------------------22.已知抛物线图象上部分点的横坐标x 与纵坐标y 的 对应值,如下表:x … -2 -1 0 1 2 3 … y…-5343…(1)求此抛物线的解析式,并画出其图象;(2)结合图象,直接写出不等式的解集;(3)结合图象,直接写出当时,y 的取值范围.23.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小明购买了“二十四节气”主题邮票,他将“立春”、 “清明”、“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背 面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“立春”的概率是_______;(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后 再从中随机抽取一张邮票.请用列举法求出小明两次抽取的邮票中 至少有一张是“雨水”的概率(这三张邮票依次分别用字母A ,B , C 表示).y =ax 2+bx +c (a ≠0)ax 2+bx +c <3x <224.已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D 、B 、C 三点, ∠DOC =2∠ACD .(1)求证:直线AC 是圆O 的切线; (2)若OD ⊥OC ,∠ACB =75°,圆O 的半径为4,求BC 的长.25.2023年4月16日,在世界泳联跳水世界杯首站比赛中,中国队共收获9金2银,位列奖牌榜第一.赛场上运动员优美的翻腾、漂亮的入水令人赞叹不已.在10米跳台跳水训练时,运动员起跳后在空中的运动路线 可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到 入水的过程中,运动员的竖直高度y (单位:米)与水平距离x (单位: 米)近似满足函数关系. 某跳水运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的数据如下:水平距离x /m 0 0.2 0.4 0.6 0.8 1.6 2 竖直高度y /m10.0010.4510.6010.4510.005.201.00① 根据上述数据,直接写出该运动员竖直高度的最大值,并求出 满足的函数关系;② 运动员必须在距水面5 m 前完成规定的翻腾动作并调整好入水 姿势,否则就会出现失误.在这次训练中,测得运动员在空中 调整好入水姿势时,水平距离为1.6 m ,判断此次跳水会不会出现失误,并说明理由;(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数 关系.如图,记该运动员第一次训练的 入水点为A ,若运动员在区域AB 内(含A ,B )入水能达到压水花 的要求,则第二次训练_______达到要求(填“能”或“不能”).y =a (x −h )2+k (a <0)y =a (x −h )2+k (a <0)y =−4.16(x −0.38)2+10.60图226.在平面直角坐标系xOy 中,点,在抛物线上. (1)当,时,比较m 与n 的大小,并说明理由;(2)若存在,使得,求的取值范围.27.如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,D 为AB 边上一点,DE ⊥AB 于D ,连接BE ,P 为BE 中点.(1)连接PD 、PC ,判断PD 与PC 的数量关系,并直接写出∠DPC 的 度数;(2)如图2,将△ADE 绕点A 顺时针旋转α度(0°<α<180°). ① 请你依据题意补全图形; ② 在旋转过程中,∠DPC 的度数是否发生改变?若不变,写出它的 度数,并证明;若变化,请说明理由.28.对于平面内任意一点P ,过P 作PM ⊥l 1于点M ,PN ⊥l 2于点N ,连接MN ,则称MN 的长度为点P 关于l 1和l 2的垂点距离.特别地,点P 在两相交 直线l 1、l 2的交点时,记垂点距离为0.(1)已知A (1,2),则点A 关于x 轴和y 轴的垂点距离为_______; (2)若点P 在直线上运动,则点P 关于x 轴和y 轴的垂点距离 的最小值为________;(3)若点P 在以Q (0,1)为圆心,半径为1的⊙Q 上运动,求点P 关于 x 轴和直线的垂点距离h 的取值范围.A (x 0,m )B (x 0+2,n )y =x 2−2bx +1b =5x 0=4−3<x 0<1m >n >1b y =34x +3y =3x +3图1密 封 线 -----------------------------------------------------------------------------------------------------------------------。
【压轴卷】初三数学下期末模拟试卷带答案
【压轴卷】初三数学下期末模拟试卷带答案一、选择题1.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .2.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .1 3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60° 4.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒5.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B .C .D .6.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x =(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .47.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内»OB上一点,∠BMO=120°,则⊙C 的半径长为( )A .6B .5C .3D .32 10.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 11.下列计算错误的是( )A .a 2÷a 0•a 2=a 4B .a 2÷(a 0•a 2)=1C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.5 12.下列计算正确的是( )A .()3473=a b a bB .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.15.如图,点A 在双曲线y=4x上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.16.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____.17.分式方程32x x 2--+22x-=1的解为________. 18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.计算:103212sin45(2π)-+--+-o .22.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.23.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?25.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B 级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为,,,,a b c d e)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率.26.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.2.A解析:A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.5.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D6.C解析:C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.7.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.C解析:C【解析】【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【详解】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵∠AOB=90°,∴AB是⊙C的直径,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长=3,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.10.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.11.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意;∵a 2÷(a 0•a 2)=1,∴选项B 不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C 不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D 符合题意.故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半 解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可. 详解:扇形的圆心角是120°,半径为6, 则扇形的弧长是:1206180π⋅=4π, 所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r ,则2πr =4π,解得:r =2.所以圆锥的底面半径是2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.15.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.16.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m 由分母可知分式方程的增根是3当x=3时3-5=-m 解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)=416=14.故答案为14.考点:列表法与树状图法;概率公式.三、解答题21.1 3【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式122121 32=+-⨯+=12121 313=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.23.(1)AD=95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;理由见解析. 【解析】【分析】(1)由勾股定理易求得AB 的长;可连接CD ,由圆周角定理知CD ⊥AB ,易知△ACD ∽△ABC ,可得关于AC 、AD 、AB 的比例关系式,即可求出AD 的长.(2)当ED 与 O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.【详解】(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm ;连接CD ,∵BC 为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.24.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图25.(1)60;(2)54°;(3)1500户;(4)见解析,2 5 .【解析】【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为:54°(3)9 10000150060⨯=(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中e的结果有8种∴P(选中e)=82205=.【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.26.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.。
2022-2023年北师大版九年级数学第一学期期末模拟试卷含答案
2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.55.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>29.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:710.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是.12.已知=,则=.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x <0)上,D点在双曲线y=(x>0)上,则k的值为6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是.22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数【分析】根据分式有意义可得中x≠0.【解答】解:函数y=中,自变量x的取值范围是x≠0,故选:C.3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)2=0,则x1=x2=2,故选:B.4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.5【分析】根据平行线分线段成比例定理得到=,即=,然后利用比例性质求DF的长.【解答】解:∵直线a∥b∥c,∴=,即=,∴DF=.故选:D.5.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)【分析】依次把各个选项的横坐标代入反比例函数y=的解析式中,得到纵坐标的值,即可得到答案.【解答】解:A.把x=3代入y=得:y==﹣4,即A项错误,B.把x=﹣2代入y=得:y==6,即B项正确,C.把x=﹣2代入y=得:y==6,即C项错误,D.把x=﹣3代入y=得:y==4,即D项错误,故选:B.6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连结菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>2【分析】设出点A的坐标,可得点B的坐标.易得△ABC为直角三角形,面积等于×AC×BC,把相关数值代入求值即可.【解答】解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(﹣x,﹣y),k=xy=1∵AC平行于y轴,BC平行于x轴,∴△ABC的直角三角形,∴AC=2y,BC=2x,∴S=×2y×2x=2xy=2.故选:B.9.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:7【分析】由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根据AD:AF:AB=1:2:4,可求出三个相似三角形的面积比.进而可求出△ADE、四边形DFGE、四边形FBCG 的面积比.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD:AF:AB=1:2:4,∴S△ADE:S△AFG:S△ABC=1:4:16,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,16a,则S四边形DFGE和S四边形FBCG分别是3a,12a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:12.故选:C.10.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④【分析】证明Rt△CFG≌Rt△CDG,得出①正确;在证明△ADE≌△DCG得出AE=DG,得出AE=AG,②不正确;证出GH是△AFD的中位线,得出GH∥AF,证出∠AFD=90°,即AF⊥DE,③正确;证明△ADE∽△F AE,得出===2,得出DE=2AE,AE=2EF,因此DF=4EF,④正确;即可得出答案.【解答】解:连接CG交ED于点H.如图所示:∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG(HL),∴GF=GD,①正确.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,在△ADE和△DCG中,,∴△ADE≌△DCG(ASA),∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AE=AG,②不正确;∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE,③正确;∵AD=AB,AB=2AE,∴AD=2AE,∵∠AFE=90°=∠DAE,∠AEF=∠DEA,∴△ADE∽△F AE,∴===2,∴DE=2AE,AE=2EF,∴DF=4EF,④正确;故选:C.二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=412.已知=,则=.【分析】依据比例的性质,即可得到=.【解答】解:∵=,∴7a﹣7b=3a+3b,∴4a=10b,∴=,故答案为:.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率【分析】先画树状图展示所有9种等可能的结果数,再找出其中小智和小慧被分到同一个项目标组进行志愿服务的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小智和小慧被分到同一个项目标组进行志愿服务的结果数为3,所以小智和小慧被分到同一个项目标组进行志愿服务的概率为=.14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是【解答】解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为6.【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【解答】解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.【分析】利用因式分解法求解可得.【解答】解:∵2x2﹣5x+3=0,∴(x﹣1)(2x﹣3)=0,则x﹣1=0或2x﹣3=0,解得x=1或x=1.5.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.【分析】(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值大于反比例函数的值的x的取值范围,就是对应的一次函数的图象在反比例函数的图象的上边的自变量的取值范围.【解答】解:(1)把A(﹣4,2)代入y=得:m=﹣8,则反比例函数的解析式是:y=﹣;把y=﹣4代入y=﹣,得:x=n=2,则B的坐标是(2,﹣4).根据题意得:,解得:,则一次函数的解析式是:y=﹣x﹣2;(2)使一次函数的函数值小于反比例函数的函数值的x的取值范围是:﹣4<x<0或x >2.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=15%;(2)补全条形统计图;(3)这次调查结果的众数是偶尔使用;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?【分析】(1)由“从不使用”的人数及其对应百分比求得总人数,继而用“经常使用”的人数除以总人数可得m的值;(2)根据各类别人数之和等于总人数求得“偶尔使用”的人数即可补全条形图;(3)根据众数的定义求解可得;(4)用总人数乘以样本中“经常使用”的人数对应的百分比可得.【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?【分析】先根据销售利润=每件利润×数量,再设出单价应定为x元,再根据这个等式列出方程,即可求出答案.【解答】解:设销售单价定为x元,根据题意得:(x﹣40)[500﹣(x﹣50)÷0.1]=8000.解得:x1=60,x2=80当售价为60时,月成本[500﹣(60﹣50)÷0.1]×40=16000>10000,所以舍去.当售价为80时,月成本[500﹣(80﹣50)÷0.1]×40=8000<10000.答:销售单价定为80元.20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.【解答】证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是或.【分析】(1)证明∠ECD+∠EDC=90°即可解决问题.(2)由△CFE∽△EFD,得,由此即可解决问题.(3)分两种情形,当△BCE∽△FGD时,当△BCE∽△FDG时,分别计算即可.【解答】(1)证明:∵EC、ED分别为∠BCD、∠ADC的角平分线,∴∠BCE=∠DCE,∠ADE=∠CDE,∵BC∥AD,∴∠BCD+∠ADC=180°,∴2∠ECD+2∠EDC=180°,∴∠ECD+∠EDC=90°,22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM ∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.【解答】解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB=,∵∠BCD=120°,∴∠CBD=30°,∴OC=BC=,∴OB=OC=,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CM=BC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD=∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB=,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQ=B'P=,∴B'Q=BQ=,∴AQ=AB+BQ=,在Rt△AQB'中,根据勾股定理得,AB'==3,即:AM+AN的最小值为3,故答案为3.∴∠CED=90°.即CE⊥DE;(2)解:∵∠EAD=∠EFD,∠ADE=∠FDE,DE=DE,∴△EAD≌△EFD(AAS),∴EF=EA,∵E为AB的中点,∴AE=EF=3∵∠CED=90°,∴∠CEF+∠FED=90°,∵EF⊥CD,∴∠FED+∠EDF=90°,∴∠CEF=∠EDF,∴△CFE∽△EFD,∴,即CF•DF=EF•EF,∴CF•DF=9.(3)解:①当△BCE∽△FGD时,∵∠BCE=∠AED,∴∠FED=∠FGD,∴ED=DG,∴∠EDF=∠GDF,∴△EDC≌△GDC(SAS),∴∠ECD=∠GCD,∵∠BCE+∠ECD+∠DCG=180°,∴∠BCE=∠AED=60°,设BC=x,则BE=x,∴AE=x,∴AD=3x,∴.②当△BCE∽△FDG时,∠BCE=∠FDG,∵∠BCE=∠ECF,∴∠ECF=∠FDG,∴EC∥DG,∴∠BCE=∠CGD,∴∠CGD=∠FDG,∴CD=CG.∵S△CDG=,∴FG=AB.∵EC∥DG,∴=,∴.综合以上可得的值为或.故答案为:或.。
2022-2023学年广东省中山市名校数学九年级第一学期期末综合测试模拟试题含解析
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,已知扇形BOD , DE ⊥OB 于点E ,若ED =OE =2,则阴影部分面积为( )A .22-2B .-2πC .π-2D .π2.下列事件中,必然事件是( )A .抛掷1个均匀的骰子,出现6点向上B .366人中至少有2人的生日相同C .两直线被第三条直线所截,同位角相等D .实数的绝对值是非负数3.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是( )A .铜陵市明天将有75%的时间降水B .铜陵市明天将有75%的地区降水C .铜陵市明天降水的可能性比较大D .铜陵市明天肯定下雨4.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x (cm )统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm 的概率是( ) 组别(cm )x ≤160 160<x ≤170 170<x ≤180 x >180 人数15 42 38 5 A .0.05 B .0.38 C .0.57 D .0.955.cos60︒的值等于( )A .12B .22C 3D 36.已知抛物线223y x x =--,则下列说法正确的是( )A .抛物线开口向下B .抛物线的对称轴是直线1x =-C .当1x =时,y 的最大值为4-D .抛物线与y 轴的交点为()0,3-7.如图,二次函数y =ax 2+bx +c 的图象与x 轴的一个交点坐标是(3,0),对称轴为直线x =1,下列结论:①abc >0;②2a +b =0;③4a ﹣2b +c >0;④当y >0时,﹣1<x <3;⑤b <c .其中正确的个数是( )A .2B .3C .4D .58.一元二次方程220x x -=的解为( )A .10x =,22x =B .0x =C .2x =D .12x =-,20x =9.下列事件中,必然事件是( )A .2a 一定是正数B .八边形的外角和等于360︒C .明天是晴天D .中秋节晚上能看到月亮10.按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE =∠1.A .1 个B .2 个C .1 个D .4 个11.已知四边形ABCD 是平行四边形,下列结论中正确的有( )①当AB =BC 时,四边形ABCD 是菱形;②当AC ⊥BD 时,四边形ABCD 是菱形;③当∠ABC =90°时,四边形ABCD 是菱形:④当AC =BD 时,四边形ABCD 是菱形;A .3个B .4个C .1个D .2个12.⊙O 的半径为5,圆心O 到直线l 的距离为3,下列位置关系正确的是( )A .B .C .D .二、填空题(每题4分,共24分)13.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是4,那么另一个三角形的面积为 .14.已知x =1是方程x 2﹣a =0的根,则a =__.15.如图,抛物线211322y x x =+-与x 轴的负半轴交于点A ,与y 轴交于点B ,连接AB ,点,D E 分别是直线1x =-与抛物线上的点,若点,,,A B D E 围成的四边形是平行四边形,则点E 的坐标为__________.16.如图,反比例函数k y x=的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.17.已知正六边形的外接圆半径为2,则它的内切圆半径为______.18.设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为__________.三、解答题(共78分)19.(8分)如图,已知A (﹣4,0),B (0,4),现以A 点为位似中心,相似比为9:4,将OB 向右侧放大,B 点的对应点为C .(1)求C 点坐标及直线BC 的解析式:表示,请你直接写出S 与t 的函数关系.20.(8分)如图,一次函数y =kx+b 与反比例函数y =m x (x <0)的图象相交于点A 、点B ,与X 轴交于点C ,其中点A (﹣1,3)和点B (﹣3,n ).(1)填空:m = ,n = .(2)求一次函数的解析式和△AOB 的面积.(3)根据图象回答:当x 为何值时,kx+b≥m x(请直接写出答案) .21.(8分)ABC ∆内接于⊙O ,AB 是直径,030ABC ∠=,点D 在⊙O 上.(1)如图,若弦CD 交直径AB 于点E ,连接DB ,线段CF 是点C 到BD 的垂线.①问CDF ∠的度数和点D 的位置有关吗?请说明理由.②若DFC ∆的面积是ACB ∆的面积的9倍,求CBF ∠的正弦值.(2)若⊙O 的半径长为2,22CD =,求BD 的长度.22.(10分)如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414, 1.732)23.(10分)如图①,在平面直角坐标系中,圆心为P (x ,y )的动圆经过点A (1,2)且与x 轴相切于点B . (1)当x =2时,求⊙P 的半径;(2)求y 关于x 的函数解析式;判断此函数图象的形状;并在图②中画出此函数的图象;(3)当⊙P 的半径为1时,若⊙P 与以上(2)中所得函数图象相交于点C 、D ,其中交点D (m ,n )在点C 的右侧,请利用图②,求cos ∠APD 的大小.24.(10分)如图,点(11)A ﹣,是反比例函数(0)k y k x=<上一点,过点A 作AC x ⊥轴于点C ,点0(1)B ,为x 轴上一点,连接AB .(1)求反比例函数的解析式;(2)求ABC的面积.25.(12分)已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<1.结合图像,直接写出a的取值范围.26.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3 ﹣52﹣2 ﹣1 0 1 2523 …y … 3 54m ﹣1 0 ﹣1 0543 …其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.③关于x 的方程x 2﹣2|x|=a 有4个实数根时,a 的取值范围是 .参考答案一、选择题(每题4分,共48分)1、B【分析】由题意可得△ODE 为等腰直角三角形,可得出扇形圆心角为45°,再根据扇形和三角形的面积公式即可得到结论.【详解】解:∵DE ⊥OB ,OE=DE=2,∴△ODE 为等腰直角三角形,∴∠O=45°,.∴S 阴影部分=S 扇形BOD -S △OED 22 2.12π⨯⨯=-- 故答案为:B .【点睛】本题考查的是扇形面积计算、等腰直角三角形的性质,利用转化法求阴影部分的面积是解题的关键.2、D【分析】根据概率、平行线的性质、负数的性质对各选项进行判断.【详解】A. 抛掷1个均匀的骰子,出现6点向上的概率为16,错误. B.367人中至少有2人的生日相同,错误.C.两条平行线被第三条直线所截,同位角相等,错误.D. 实数的绝对值是非负数,正确.故答案为:D .【点睛】本题考查了必然事件的性质以及判定,掌握概率、平行线的性质、负数的性质是解题的关键.3、C【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.A 、铜陵市明天将有75%的时间降水,故此选项错误;B 、铜陵市明天将有75%的地区降水,故此选项错误;C 、明天降水的可能性为75%,比较大,故此选项正确;D 、明天肯定下雨,故此选项错误;故选:C .【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生. 4、D【分析】先计算出样本中身高不高于180cm 的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不高于180cm 的频率=1005100-=0.1, 所以估计他的身高不高于180cm 的概率是0.1.故选:D .【点睛】本题考查了概率,灵活的利用频率估计概率是解题的关键.5、A【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值.6、D【分析】根据二次函数的性质对A 、B 进行判断;根据二次函数图象上点的坐标特征对C 进行判断;利用抛物线与轴交点坐标对D 进行判断.【详解】A 、a=1>0,则抛物线223y x x =--的开口向上,所以A 选项错误;B 、抛物线的对称轴为直线x=1,所以B 选项错误;C 、当x=1时,y 有最小值为4-,所以C 选项错误;D 、当x=0时,y=-3,故抛物线与y 轴的交点为()0,3-,所以D 选项正确.故选:D .【点睛】7、B【分析】根据二次函数y =ax 2+bx +c 的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a <0;∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a >0,所以②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;∵抛物线与x 轴的一个交点坐标是(3,0),对称轴为直线x =1,∴抛物线与x 轴的另一个交点坐标是(﹣1,0),∴x =﹣2时,y <0,∴4a ﹣2b +c <0,所以③错误;∵抛物线与x 轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x <3时,y >0,所以④正确;∵x =﹣1时,y =0,∴a ﹣b +c =0,而b =﹣2a ,∴c =﹣3a ,∴b ﹣c =﹣2a +3a =a <0,即b <c ,所以⑤正确.故选B .【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.8、A【分析】根据因式分解法中的提取公因式法进行求解即可; 【详解】21220,(2)0,0,2x x x x x x -=-===本题主要考查了一元二次方程因式分解法中的提取公因式法,准确计算是解题的关键.9、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.11、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.12、B【分析】根据圆O 的半径和圆心O 到直线l 的距离的大小,相交:d <r ;相切:d =r ;相离:d >r ;即可选出答案.【详解】解:∵⊙O 的半径为5,圆心O 到直线l 的距离为3,∵5>3,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故选:B .【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.二、填空题(每题4分,共24分)13、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.14、1【分析】把x =1代入方程x 2﹣a =0得1﹣a =0,然后解关于a 的方程即可.【详解】解:把x =1代入方程x 2﹣a =0得1﹣a =0,解得a =1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15、()4,3-或()2,0或()2,2-- 【分析】根据二次函数211y=x x 322+-与x 轴的负半轴交于点A ,与y 轴交于点B .直接令x=0和y=0求出A ,B 的坐标.再根据平行四边形的性质分情况求出点E 的坐标.【详解】由抛物线的表达式求得点,A B 的坐标分别为()()3,0,0,3--.由题意知当AB 为平行四边形的边时,//AB DE ,且AB DE =,∴线段DE 可由线段AB 平移得到.∵点D 在直线1x =-上,①当点B 的对应点为1D 时,如图,需先将AB 向左平移1个单位长度,此时点A 的对应点1E 的横坐标为4-,将4x =-代入211322y x x =+-, 得3y =,∴1(4,3)E -.②当点A 的对应点为2D 时,同理,先将AB 向右平移2个单位长度,可得点B 的对应点2E 的横坐标为2, 将2x =代入211322y x x =+-得0y =,∴2(2,0)E 当AB 为平行四边形的对角线时,可知AB 的中点坐标为13,22⎛⎫-- ⎪⎝⎭, ∵3D 在直线1x =-上,∴根据对称性可知3E 的横坐标为2-,将2x =-代入211322y x x =+- 得2y =-,∴3(2,2)E --.综上所述,点E 的坐标为()4,3-或()2,0或()2,2--.【点睛】 本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.16、满足2y x=的第三象限点均可,如(-1,-2) 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S=|k|.【详解】解:∵图象上的点与坐标轴围成的矩形面积为2,∴|k|=2,∴反比例函数y=k x 的图象在一、三象限,k >0,∴k=2,∴此反比例函数的解析式为2y x=. ∴第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足2y x =的第三象限点均可,如(-1,-2) 【点睛】本题考查的是反比例函数系数k 的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.17、3【解析】解:如图,连接OA 、OB ,OG .∵六边形ABCDEF 是边长为2的正六边形,∴△OAB 是等边三角形,∴∠OAB =60°,∴OG =OA •sin60°=2×32=3, ∴半径为2的正六边形的内切圆的半径为3.故答案为3.【点睛】本题考查了正多边形和圆、等边三角形的判定与性质;熟练掌握正多边形的性质,证明△OAB 是等边三角形是解决问题的关键.18、123y y y >>【分析】根据点A 、B 、C 的横坐标利用二次函数图象上点的坐标特征即可求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线y =−(x +1)2+1上的三点,∴y 1=0,y 2=−3,y 3=−8,∵0>−3>−8,∴123y y y >>.故答案为:123y y y >>.【点睛】本题考查了二次函数图象上点的坐标特征,根据点的坐标利用二次函数图象上点的坐标特征求出纵坐标是解题的关键.三、解答题(共78分)19、(1)C 点坐标为(5,9),y =x +1;(2)S =5t (t >0)【分析】(1)过C 点向x 轴作垂线,垂足为D ,由位似图形性质可知:△ABO ∽△ACD ,且49AO BO AD CD ==.由已知A (﹣1,0),B (0,1),可知:AO =BO =1.根据待定系数法即可求出直线BC 的解析式;(2)根据BCP APC ABP S S S ∆∆∆=-即可得出结论.【详解】(1)过C 点向x 轴作垂线,垂足为D .由位似图形性质可知:△ABO ∽△ACD ,∴49AO BO AD CD ==. 由已知A (﹣1,0),B (0,1),可知:AO =BO =1,∴AD =CD =9,∴C 点坐标为(5,9).设直线BC 的解析式为y =kx +b ,∴459bk b=⎧⎨+=⎩,解得:14kb=⎧⎨=⎩,∴直线BC的解析是为:y=x+1;(2)由题意得:1111()2(94)52222BCP APC ABPS S S AP CD AP OB AP CD OB t t∆∆∆=-=⋅-⋅=⋅-=⨯⨯-=∴S=5t(t>0).【点睛】本题把一次函数与位似图形相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.20、(1) ﹣3,1;(2) y=x+4,4;(3)﹣3≤x≤﹣1.【分析】(1)已知反比例函数y=mx过点A(﹣1,3),B(﹣3,n)分别代入求得m、n的值即可;(2)用待定系数法求出一次函数的解析式,再求得一次函数与x轴的交点坐标,根据S△AOB=S△AOC﹣S△BOC即可求得△AOB的面积;(3)观察图象,确定一次函数图象在反比例函数图象上方时对应的x的取值范围即可.【详解】(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)∵S△AOB=S△AOC﹣S△BOC∴S△AOB =×4×3﹣×4×1=4(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点睛】本题考查了反比例函数与一次函数交点问题、用待定系数法求解析式、用图象法解不等式及用三角形面积的和差求三角形的面积,知识点较为综合但题目难度不大.21、(1)没有关系,∠CDF=∠CAB=60°;(2)31010;(3)62+或62-【解析】(1)①根据同弧所对的圆周角解答即可;②利用锐角三角函数的定义求出AC与BC、DF与CF的关系,利用三角形的面积公式得出22910CDFABCS CFS BC==,然后根据正弦的定义可求出CBF∠的正弦值;(2)分两种情况求解:①当D点在直径AB下方的圆弧上时;当D点在直径AB上方的圆弧上时. 【详解】解:(1)①没有关系,理由如下:当D在直径AB的上方时,如下图,∵AB为直径,∴∠ACB=90°;∵∠ABC=30°,∴∠CAB=60°;∴∠CDF=∠CAB=60°;当D在直径AB的下方时,如下图∵∠CAB =60°,∴∠CDB =180°-∠CAB =120°, ∴∠CDF =60°.②∵CF ⊥BD ,AB 为直径;∴ ∠ACB =∠CFD =90°;由①得,∠CDF =∠CAB =60°,∴ 33tan60BC BC AC ==;33tan60CF CF DF ==; ∵21326ABC BC SAC BC =⋅=;21326CDF CF S CF DF =⋅=; ∴22910CDF ABC S CF S BC ==;∴3101s 0in CF BC CBF =∠= (2)∵半径为2,22CD =,∴弧CD 所对圆心角90COD ∠=①当D 点在直径AB 下方的圆弧上时;如图,连结OD ,过D 作DE ⊥AB 于E ;由(1)知,60CAB ∠=,∴60AOC ∠=;∴180609030BOD ∠=--=;OD =2,∴3OE =1DE =,23BE =;∴()222212384362BD BE DE +=+-=-②当D 点在直径AB 上方的圆弧上时,如图,连结OD ,过D 作DF ⊥AB 于F ;此时906030DOA ∠=-=; ∴3OE =,1DE =,23BF =+; ∴()222212384362BD BF DF =+=++=+=+;综上所述:BD 的长为62-或62+.【点睛】 本题考查了圆周角定理的推论,锐角三角函数的定义,勾股定理及其逆定理的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.22、(1)点B 距水平面AE 的高度BH 为5米.(2)宣传牌CD 高约2.7米.【分析】(1)过B 作DE 的垂线,设垂足为G .分别在Rt △ABH 中,通过解直角三角形求出BH 、AH.(2)在△ADE 解直角三角形求出DE 的长,进而可求出EH 即BG 的长,在Rt △CBG 中,∠CBG=45°,则CG=BG ,由此可求出CG 的长然后根据CD=CG+GE ﹣DE 即可求出宣传牌的高度.【详解】解:(1)过B 作BG ⊥DE 于G ,在Rt △ABF 中,i=tan ∠333=,∴∠BAH=30° ∴BH=12AB=5(米). 答:点B 距水平面AE 的高度BH 为5米.(2)由(1)得:BH=5,3∴3在Rt △BGC 中,∠CBG=45°,∴CG=BG=53+15. 在Rt △ADE 中,∠DAE=60°,AE=15, ∴DE=3AE=153.∴CD=CG+GE ﹣DE=53+15+5﹣153=20﹣103≈2.7(米).答:宣传牌CD 高约2.7米.23、(1)圆P 的半径为54;(2)画出函数图象,如图②所示;见解析;(3)cos ∠APD =PE PD=52-. 【解析】(1)由题意得到AP=PB ,求出y 的值,即为圆P 的半径;(2)利用两点间的距离公式,根据AP=PB ,确定出y 关于x 的函数解析式,画出函数图象即可;(3)画出相应图形,求出m 的值,进而确定出所求角的余弦值即可.【详解】(1)由x =2,得到P (2,y ),连接AP ,PB ,∵圆P 与x 轴相切,∴PB ⊥x 轴,即PB=y ,由AP=PB ,得到21(2)y y +-= ,解得:y =54,则圆P 的半径为54(2)同(1),由AP=PB ,得到(x ﹣1)2+(y ﹣2)2=y 2,整理得:21114y x =-+() 图象为开口向上的抛物线,画出函数图象,如图②所示;(3)连接CD ,连接AP 并延长,交x 轴于点F ,设PE=a ,则有EF =a +1,ED = 21a -,∴D 坐标为(21a -,a +1),代入抛物线解析式得:211(1)14a a +=-+,解得:2a =-+2a =--,即PE 2,在Rt △PED 中,PE 2,PD =1,则cos ∠APD =PE PD 2. 【点睛】本题属于圆的综合题,涉及的知识点主要有两点间的距离公式,勾股定理,二次函数的图象和性质,圆的定义,圆的切线的性质,弄清题意是解决本题的关键.24、(1)1y x=-;(2)ABC 的面积为1. 【分析】(1)把点()11A ﹣,代入反比例函数k y x=即可求出比例函数的解析式; (2)利用A ,B 点坐标进而得出AC ,BC 的长,然后根据三角形的面积公式求解即可.【详解】(1)点()11A ﹣,是反比例函数()0k y k x=<上一点, 111k ∴⨯=﹣=﹣, 故反比例函数的解析式为:1y x =-; (2)点()11A ﹣,,点()10,B AC x ⊥,轴, 21BC AC ∴=,=,故ABC 的面积为:12112⨯⨯=. 【点睛】此题主要考查了待定系数法求反比例函数解析式,坐标与图形的性质,三角形的面积公式,熟练掌握待定系数法是解题关键.25、(1)a+2;2;(2)-2或6±(3)8a ≤--【分析】(1)将点B 的坐标代入解析式,求得c 的值;将点A 代入解析式,从而求得b ;;(2)由题意可得AO=1,设C 点坐标为(x,y ),然后利用三角形的面积求出点C 的纵坐标,然后代入顶点坐标公式求得a 的值;(3)结合图像,若x >1时,y <1,则顶点纵坐标大于等于1,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B (0,2)代入解析式得:c=2将A (-1,0)代入解析式得: a ×(-1)2+b ×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C 点坐标为(x,y ) 则1112y ⨯⨯= 解得:2y =±当y=2时,2424ac b a-= 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+= 解得:a=-2当y=-2时,2424ac b a-=- 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <1,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于1 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--8a ≥-+(舍去)∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.26、(1)1;(2)作图见解析;(3)①函数y=x 2﹣2|x|的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大;(答案不唯一)(4) 3,3,2,﹣1<a<1.【解析】(1)把x=-2代入y=x2-2|x|得y=1,即m=1,故答案为:1;(2)如图所示;(3)由函数图象知:①函数y=x2-2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=1有3个实数根;②如图,∵y=x2-2|x|的图象与直线y=2有两个交点,∴x2-2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2-2|x|=a有4个实数根,∴a的取值范围是-1<a<1,故答案为:3,3,2,-1<a<1.。
2023-2024学年苏科版九年级数学上册期末考试模拟试卷 (含答案)
九年级数学(上)期末考试模拟试卷1一、选择题(本大题有8小题,每小题3分,共24分)1. 若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .2∶1B .1∶2C .4∶1D .1∶42. s i n 60°的值是( )A .12B .3C .2D .33.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是( )每天使用零花钱(单位:元)510152025人数25896A .20、15B .20、20C .20、17.5D .15、154. 如图,点D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,若DE ∥BC ,EF ∥AB ,则下列比例式一定成立的是( )A . =B . =C . =D . =5. 如图,AB为⊙O 的直径,点C ,D 在圆上,若∠BAC =25°,则∠D =( )A . 50°B . 55°C . 65°D . 70°6.如果一个正多边形的外角是锐角,且它的余弦值是,那么它是( )A .等边三角形B .正六边形C .正八边形D .正十二边形7.二次函数y =x 2+bx 的对称轴为直线x =1,若关于x 的方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有实数解,则t 的取值范围是( )A .t ≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .t <38. 已知二次函数(m 是实数),当自变量任取,时,分别与之对应的函数AD DB DE BC BF BC EF AD AE ECBF FC EF AB DE BC 第4题第5题26y x x m =-+1x 2x值,满足>,则,应满足的关系式是()A .B .C .D . 二、填空题(本大题共8个小题,每小题4分,共32分)9. 已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是.10. 二次函数y =-(x +2)2+3的图象的最大值是_____.11.如果在比例尺为1∶1000000的地图上,甲、乙两地的图上距离是5.8c m ,那么甲、乙两地的实际距离是 km .12.在Rt △ABC 中,∠C =90°,co sA =,则∠A = 度. 13. 将抛物线y =﹣3x 2向上平移2个单位,再向右1个平移单位所得抛物线的表达式为 .14.如图,A 、B 、C 是正方形网格中的格点,将△ABC 绕A 点逆时针旋转45°得到△ADE ,则t anD 的值为 .15. 如图,在等边三角形ABC 中,D 为BC 的中点,弧ADB 交AC 于点E ,若AB =2,则弧DE 的长为 .16. 如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +5上运动,过点A 作AB ⊥x 轴于点B ,以AB 为斜边作Rt △ABC ,则AB 边上的中线CD 的最小值为 .三、解答题(本大题9个小题,共86分)17.(本题10分)(1)计算:2s i n 60°-3t an 45°+9;(2)解方程:x 2-4x -1=0.1y 2y 1y 2y 1x 2x 1233x x -<-1233x x ->-12|3||3|x x -<-12|3||3|x x ->-12第14题第15题第16题18.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,-1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2∶1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.19. (本题8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.20. (本题8分)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦A B于点D.已知:AB=16cm,CD=4cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.21.(本题10分)如图,大楼A N上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DE M=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度。
2023届山西省(太原地区公立学校数学九年级第一学期期末综合测试试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( )A .B .C .D .2.如图,在ABC ∆中,10AB =,8AC =,6BC =,以边AB 的中点O 为圆心作半圆,使BC 与半圆相切,点,P Q 分别是边AC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .8B .9C .10D .123.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适( ) 选手甲 乙 丙 丁 方差1.52.63.5 3.68A .甲B .乙C .丙D .丁 4.如图,厂房屋顶人字架(等腰三角形)的跨度BC =10m ,∠B =36°,D 为底边BC 的中点,则上弦AB 的长约为( )(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A .3.6mB .6.2mC .8.5mD .12.4m5.已知正多边形的一个内角是135°,则这个正多边形的边数是( )A .3B .4C .6D .86.如图,一张矩形纸片ABCD 的长AB a =,宽BC b.=将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b (= )A .2:1B .2:1C .3:3D .3:27.二次根式x 3-中,x 的取值范围是( )A .x 3≥B .x 3>C .x 3≤D .x 3<8.方程5x 2=6x ﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A .5、6、﹣8B .5,﹣6,﹣8C .5,﹣6,8D .6,5,﹣89.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .10.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.12.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm13.如图,D是反比例函数kyx=(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与323y x=-+的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.14.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______. 17.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.18.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD 长度为__cm.三、解答题(共66分)19.(10分)解方程:()12410x x -+=.()2()()229241x x -=+20.(6分)如图,在O 中,弦CD 垂直于直径AB ,垂足为E ,连结AC ,将ACE ∆沿AC 翻转得到ACF ∆,直线FC 与直线AB 相交于点G .(1)求证:FG 是O 的切线;(2)若B 为OG 的中点,①求证:四边形OCBD 是菱形;②若23CE =,求O 的半径长. 21.(6分)已知正比例函数12y x =的图象与反比例函数2(0k y k x =≠的图象交于一点M ,且M 点的横坐标为1. (1)求反比例函数的解析式;(2)当25x ≤≤时,求反比例函数2(0k y k x=≠的取值范围 22.(8分)如图,在△ABC 中,D 为BC 边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC 的长23.(8分)阅读下列材料,关于x 的方程:x +1x =c +1c 的解是x 1=c ,x 2=1c ;x ﹣1x =c ﹣1c 的解是x 1=c ,x 2=﹣1c;x +2x=c +2c 的解是x 1=c ,x 2=2c ;x +3x =c +3c 的解是x 1=c ,x 2=3c ;…… (1)请观察上述方程与解的特征,比较关于x 的方程x +a x =c +a c (a ≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+33x-=a+33a-.24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(10分)已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?26.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?参考答案一、选择题(每小题3分,共30分)1、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.2、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,∵AB=20,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP2A=90°,∴OP2∥BC.∵O为AB的中点,∴P2C=P2A,OP2=12BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=12AC=4=OQ2.∴P2Q2最小值为OQ2-OP2=4-2=2,如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=AO+OQ2=5+4=9,∴PQ长的最大值与最小值的和是20.故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.3、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A .【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.4、B【分析】先根据等腰三角形的性质得出BD =12BC =5m ,AD ⊥BC ,再由cos B =BD AB,∠B =36°知AB =cos BD B ,代入计算可得.【详解】∵△ABC 是等腰三角形,且BD =CD , ∴BD =12BC =5m ,AD ⊥BC , 在Rt △ABD 中,∵cos B =BD AB,∠B =36°, ∴AB =cos BD B =5cos36︒≈6.2(m ),故选:B . 【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt △ABD ,再利用三角函数求解.5、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°, ∴边数=360845︒=︒, ∴这个正多边形的边数是1.故选:D .【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.6、B【分析】根据折叠性质得到AF =12AB =12a ,再根据相似多边形的性质得到AB AD AD AF =,即12a b b a =,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF ,∴AF =12AB =12a , ∵矩形AFED 与矩形ABCD 相似, ∴AB AD AD AF =,即12a b b a =, ∴a ∶b.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等. 7、A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.∴x-3≥0,解得x≥3.故选A.【点睛】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.8、C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x 2=6x ﹣8化成一元二次方程一般形式是5x 2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C .【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.9、A【分析】根据题意结合图形,分情况讨论:①02x ≤≤时,根据12APQ S AQ AP ∆=⋅,列出函数关系式,从而得到函数图象;②24x ≤≤时,根据''''APQ CP Q ABQ AP D ABCD S S S S S ∆∆∆∆=---正方形列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当02x ≤≤时,∵正方形的边长为2cm , ∴21122APQ y S AQ AP x ∆==⋅=; ②当24x ≤≤时,APQ y S ∆=''''CP Q ABQ AP D ABCD S S S S ∆∆∆=---正方形()()()21112242222222x x x =⨯---⨯⨯--⨯⨯- 2122x x =-+, 所以,y 与x 之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A 选项图象符合,故选A .【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.10、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A 袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A 不是必然事件; B .C .袋子中有4个黑球,有可能摸到的全部是黑球,B 、C 有可能不发生,所以B 、C 不是必然事件;D .白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D 正确.故选D .【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.二、填空题(每小题3分,共24分)11、(3±,32). 【分析】连接PQ 、OP ,如图,根据切线的性质得PQ ⊥OQ ,再利用勾股定理得到21OP -当OP 最小时,OQ 最小,然后求出OP 的最小值,得到OQ 的最小值,于是得到结论.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在Rt △OPQ 中,OQ 22OP PQ -21OP -当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 221-3设点Q 的横坐标为a ,∴S △OPQ =12×1312×2×|a , ∴a =3, ∴Q 223(3)2⎛⎫- ⎪ ⎪⎝⎭32, ∴Q 点的坐标为(32±,32), 故答案为(3,32). 【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.12、12π 【分析】根据弧长公式180n r l π=代入可得结论. 【详解】解:根据题意,扇形的弧长为12018==12180180n r l πππ⨯⨯=, 故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.13、-1【详解】解:∵2y x =+的图象经过点C ,∴C (0,1), 将点C 代入一次函数y=-x+m 中,得m=1,∴y=-x+1,令y=0得x=1,∴A (1,0),∴S △AOC =12×OA×OC=1, ∵四边形DCAE 的面积为4,∴S 矩形OCDE =4-1=1,∴k=-1故答案为:-1.14、5【解析】试题解析:∵半径为10的半圆的弧长为:12×2π×10=10π ∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r ,则2πr=10π解得r=515、55【解析】分析:∵∠ACB 与∠AOB 是AB 所对的圆周角和圆心角,∠ACB =35º,∴∠AOB=2∠ACB=70°.∵OA=OB ,∴∠OAB=∠OBA=18070255︒-︒=︒. 16、80y x= 【分析】根据速度=路程÷时间,即可得出y 与x 的函数关系式.【详解】解:∵速度=路程÷时间, ∴80y x= 故答案为:80y x =【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.17、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.18、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.三、解答题(共66分)19、(1)x 1=2+3,x 2=2﹣3;(2)x 1=45,x 2=1. 【分析】解一元二次方程常用的方法有因式分解法和公式法,方程2410x x -+=在整式范围内不能因式分解,所以选择公式法即可求解;而方程229(2)4(1)x x -=+移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x 2﹣4x+4=3,(x ﹣2)2=3,x ﹣2=±3,所以x 1=2+3,x 2=2﹣3;(2)9(x ﹣2)2﹣4(x+1)2=0,[3(x ﹣2)+2(x+1)][3(x ﹣2)﹣2(x+1)]=0,3(x ﹣2)+2(x+1)=0或3(x ﹣2)﹣2(x+1)=0,所以x 1=45,x 2=1. 【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.20、(1)见解析;(2)①见解析,②1【分析】(1)连接OC ,由OA=OC 得∠OAC=∠OCA ,结合折叠的性质得∠OCA=∠FAC ,于是可判断OC ∥AF ,然后根据切线的性质得直线FC 与⊙O 相切;(2)①连接OD 、BD ,利用直角三角形斜边上的中线的性质可证得CB=OC=OD=BD ,再根据菱形的判定定理即可判定;②首先证明△OBC 是等边三角形,在Rt △OCE 中,根据222OC OE CE =+,构建方程即可解决问题;【详解】(1)如图,连接OC ,∵OA=OC ,∴∠OAC=∠OCA ,由翻折的性质,有∠OAC=∠FAC ,∠AEC=∠AFC=90°,∴∠FAC=∠OCA ,∴OC ∥AF ,∴∠OCG=∠AFC=90°,故FG 是⊙O 的切线;(2)①如图,连接OD 、BD ,∵CD 垂直于直径AB ,∴OC=OD ,BC=BD ,又∵B 为OG 的中点, ∴12CB OG =, ∴CB=OB ,又∵OB=OC ,∴CB=OC ,则有CB=OC=OD=BD ,故四边形OCBD 是菱形;②由①知,△OBC 是等边三角形,∵CD 垂直于直径AB ,∴30OCE ∠=, ∴12OE OC =, 设⊙O 的半径长为R ,在Rt △OCE 中,有222OC OE CE =+,即2221()(23)2R R =+,解之得:4R =,⊙O 的半径长为:1.【点睛】本题属于圆综合题,考查了切线的判定,等边三角形的判定和性质,直角三角形斜边上的中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想解决问题.21、(1)22y x=;(2)215x ≤≤. 【分析】(1)根据M 点的横坐标为1,求出k 的值,得到反比例函数的解析式;(2)求出x=2,x=5时y 的取值,再根据反比例函数的增减性求出y 的取值范围.【详解】(1)正比例函数12y x =的图象与反比例函数()20k y k x=≠的图象交于一点M ,且M 点的横坐标为1. 1,2212M M M x y x ∴===⨯=,122M M k x y ∴=⋅=⨯=,∴反比例函数的解析式为22y x =; (2)在反比例函数22y x =中,当22,1x y ==, 当225,5x y ==, 在反比例函数22y x=中,20k =>, ∴当0x >时,2y 随x 的增大而减小,∴当25x ≤≤时,反比例函数()20k y k x =≠的取值范围为215x ≤≤. 【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.22、AC =【分析】根据相似三角形的判定定理可得△CAD ∽△CBA ,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD +BD=6∵∠CAD=∠B,∠C=∠C∴△CAD ∽△CBA ∴AC DC BC AC=∴26424AC BC CD =•=⨯=解得:AC =或-即AC =【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23、(1)方程的解为x 1=c ,x 2=a c ,验证见解析;(2)x =a 与x =363a a --都为分式方程的解. 【分析】(1)根据材料即可判断方程的解,然后代入到方程的左右两边检验即可;(2)将方程左右两边同时减去3,变为题干中的形式,即可得出答案.【详解】(1)方程的解为x 1=c ,x 2=a c , 验证:当x =c 时,∵左边=c +a c ,右边=c +a c, ∴左边=右边,∴x =c 是x +a x=c +a c 的解, 同理可得:x =a c 是x +a x=c +a c 的解; (2)方程整理得:(x ﹣3)+33x -=(a ﹣3)+33a -, 解得:x ﹣3=a ﹣3或x ﹣3=33a -,即x =a 或x =363a a --, 经检验x =a 与x =363a a --都为分式方程的解. 【点睛】本题主要为材料理解题,理解材料中方程的根的由来是解题的关键.24、 (1)180y x =-+;(2) 每件商品的销售价应定为130元或150元;(3)售价定为140元/件时,每天最大利润1600W =元.【分析】(1)待定系数法求解可得;(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【详解】(1)设y 与x 之间的函数关系式为()0y kx b k =+≠,由所给函数图象可知:1305015030k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩. 故y 与x 的函数关系式为180y x =-+;(2)根据题意,得:()()1001801500x x --+=,整理,得:2280195000x x -+=,解得:130x =或150x =,答:每件商品的销售价应定为130元或150元;(3)∵180y x =-+,∴()()()100100180W x y x x =-=--+228018000x x =-+- 2(140)1600x =--+,∴当140x =时,1600W =最大,∴售价定为140元/件时,每天最大利润1600W =元.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.25、(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩ 解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.26、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣172)2+7870∴当x=172时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×14+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.。
人教版九年级数学期末模拟试卷(三)
人教版九年级数学期末模拟试卷(三)一、单选题1.如图,用剪刀沿虚线将一个正六边形纸片剪掉一个三角形,发现剩下的纸片的周长比原来的纸片的周长小,能正确解释这一现象的数学( )A .两点确定一条直线B .经过一点只有一条直线C .垂线段最短D .两点之间,线段最短2.下列各式正确的是( ) A .16=±4B .2(3)-=3C .64-=﹣8D .43﹣4=33.已知实数a 和b 在数轴上的位置关系如图所示,则结论错误是( )A .a >bB .a ﹣4>b ﹣4C .﹣4a >﹣4bD .44a b>4.()()3a b a ---化简后,正确结果( ) A .﹣b ﹣3B .b +3C .3﹣bD .b ﹣35.据3月9日《四川日报》报道,一款对新冠病毒具有消杀功能的纳米喷雾剂被四川大学的科学家研制出来,该喷雾剂不仅可以使用在口罩上,减少白色塑料的环境污染以及降低病毒二次传染,还可以用于公共卫生的大规模新冠病毒消杀.其中一种组成物——“植物多酚”分子直径为32纳米(1纳米=0.000000001米),32纳米用科学记数法表示正确的是( ) A .92810-⨯米 B .83.210⨯﹣米 C .103.210⨯﹣米D .93.210⨯﹣米6.方孔铜钱应天圆地方之说,古代入们认为天是圆的(圆形),地是方的(正方形),所以秦朝以后铸钱大多以“外圆内方”为型.如图中是一枚清代的“乾隆通宝”,“外圆”直径为a ,内方边长为b ,则这枚钱币的面积可以表示为( )A .πa 2﹣b 2B .222a b π-C .224a b π-D .228a b π-7.为推广和普及冰雪运动,某中学举办“青春梦想,活力飞Young ”冬奥知识竞赛.为了了解全校2800名学生的竞赛成绩,从中抽取了100名学生的竞赛成绩进行统计分析,以下说法正确的是( )A .抽取的100名学生是总体的一个样本B .每名学生的竞赛成绩是个体C .全校2800名学生是总体D .100名学生是样本容量8.如图,关于四边形ABCD 的4个结论正确的是( ) ①它两组对边分别相等; ②它是矩形;③它是平行四边形; ④它有一个角是直角.A .由①推出③,由③和④推出②B .由④推出②,由②推出①,由①推出③C .由②推出④,由④推出①D .由③推出④,由①和④推出② 9.在△ABC 中,AB =AC >BC ,小明按照下面的方法作图:①以B 为圆心BC 为半径画弧,交AC 于点D ;②分别以C 、D 为圆心大于12CD 为半径画弧,两弧交于点M ;③作射线BM,交AC于点E.根据小明画出的图形,判断下列说法正确的是()A.E是AC中点B.∠ABE=∠CBEC.BE⊥AC D.△ABC的内心一定在线段BE上10.如图,将边长6cm的正方形纸片沿虚线剪开,剪成两个全等梯形.已知裁剪线与正方形的一边夹角为60°,则梯形纸片中较短的底边长为()A.(3﹣3)cm B.(3﹣23)cm C.(6﹣3)cm D.(6﹣23)cm11.关于x的分式方程1122mx x+=--有增根,则(1)m﹣=()A.﹣1 B.1 C.2 D.512.如图1,小明在路灯下笔直的向远离路灯方向行走,将其抽象成如图2所示的几何图形.已知路灯灯泡距地面的距离AB等于4米,小明CD身高1.5米,小明距离路灯灯泡的正下方距离BC等于4米,当小明走到E点时,发现影子长度增加2米,则小明走过的距离CE等于()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间13.已知,如图,⊙O的半径为6,正六边形ABCDEF与⊙O相切于点C、F,则CF的长度是()A.2πB.3πC.4πD.5π14.如图是反比例函数y1=2x和y2=4x-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象交于A、B两点,点P(﹣5.5,0)在x轴上,则△P AB的面积为()A.3 B.6 C.8.25 D.16.515.已知,二次函数2y ax bx c=++图象如图所示,则下列结论正确的有()①abc<0;②2a+b=0;③4a+2b+c>0;④a+b≥m(am+b)(其中,m为任意实数)A.1个B.2个C.3个D.4个16.如图,现有A、B、C三点,在数轴上分别表示﹣2、0、4,三点在数轴上同时开始运动,点A向左运动,运动速度是2/s,点B、C都是向右运动,运动速度分别是3/s、4/s,甲、乙两名同学提出不同的观点.甲:5AC﹣6AB的值不变;乙:5BC﹣10AB的值不变.则下列选项中,正确的是()A.甲正确,乙错误B.乙正确,甲错误C.甲乙均正确D.甲乙均错误二、填空题17.已知2m=8n=4,则m=_____,2m+3n=_____.18.一个几何体的三视图如图所示,则这个几何体是_____;它的侧面积是_____cm2.19.已知,如图,Rt△ABC中,∠ABC=90°,∠BAC=60°,A(1,0),AB=2.(1)点C坐标为_____.(2)若y轴上存在点M,使得∠AMB=∠BCA,则这样的点有_____个.三、解答题20.已知关于x的不等式155a xa x-<-.(1)当a=2022时,求此不等式解集.(2)a为何值,该不等式有解,并求出其解集.21.现有甲乙两个矩形,其边长如图所示(a>0),周长分别为C甲和C乙,面积分别为S甲和S乙.(1)用含a的代数式表示C甲=;C乙=;S甲=;S乙=.(2)通过观察,小明发现“甲、乙两个矩形的周长相等,与a值无关”;小亮发现“a值越大,甲、乙两个矩形的面积之差越大”.你认为两位同学的结论都正确吗?如果不正确,请对错误同学的结论说明理由.22.为了宣传冬奥精神,普及青少年冬奥小知识,让学生知道更多的冬奥知识,某中学举行了一次“冬奥知识竞赛”,为了解这次竞赛成绩情况,抽取部分学生成绩(成绩取整数,满分为100分)作为样本,并将结果分为A、B、C、D四类,其中60分及以下为D类,61~80分为C类,81~99分为B类,100分为A类,绘制了如下的条形统计图和扇形统计图,请结合此图回答下列问题:(1)请把图1中条形统计图补充完整;(2)此样本数据的中位数落在范围内;(3)若这次竞赛成绩100分的学生可获奖,全校共1000名学生,请估计全校获奖人数约为人;(4)若甲、乙、丙、丁四名同学都为满分,现需要选取2名同学代表学校去参加全市比赛,请用树状图或表格分析甲和丙同学同时被选中的概率.23.如图,在平面直角坐标系中,点A(﹣5,m),B(m﹣3,m),其中m>0,直线y=kx﹣1与y轴相交于C点.(1)求点C坐标.(2)若m=2,①求△ABC的面积;②若点A和点B在直线y=kx﹣1的两侧,求k的取值范围;(3)当k=﹣1时,直线y=kx﹣1与线段AB的交点为P点(不与A点、B点重合),且AP<2,求m的取值范围.24.如图1,在等腰△ABC中,AB=AC=12,以AB为直径的⊙O交BC于点D,交AC于点E,点M为AC边上一点.(1)若40BAC∠︒=.求BD的长度;(2)如图2,连接DM,当DM⊥AC时,求证:DM是⊙O的切线;(3)如图3,在(2)的条件下,延长MD,交AB的延长线于N,若DN=8,求MC的长.25.新型建材(即新型建筑材料)是区别于传统的砖瓦、灰砂石等建材的建筑材料新品种,行业内将新型建筑材料的范围作了明确的界定,即新型建筑材料主要包括新型墙体材料、新型防水保温隔热密封材料和装饰装修材料三大类,某开发商承建一精密实验室,要求全部使用新型建筑材料,经调查发现:新型建筑材料总成本包括装饰装修材料成本、新型墙体材料成本和新型防水保温隔热密封材料成本,其中装饰装修材料成本固定不变为100万元,新型墙体材料成本与建筑面积x(m2)成正比,新型防水保温隔热密封材料成本与建筑面积x(m2)的平方成正比,在建筑过程中,设新型建筑材料总成本为y(万元),获得如下数据:x(单位:m2)20 50y(单位:万元)240 600(1)求新型建筑材料总成本为y(万元)与建筑面积x(m2)的函数表达式;(2)在建筑过型中,开发商测算出此时每平方米的平均成本为12万元,求此时完成的建筑面积;(3)设建设该厂房每平方米的毛利润为Q(万元)且有Q=kx+b(k≠0),已知当x=50时,Q为12.5万元,且此时开发商总纯利润W最大,求k、b的值.(纯利润=毛利润﹣成本)26.如图1,等腰直角三角形ABC中,∠A=90°,AB=AC=102cm,D为AB边上一点,tan∠ACD=15,点P由C点出发,以2cm/s的速度向终点B运动,连接PD,将PD绕点D逆时针旋转90°,得到线段DQ,连接PQ.(1)填空:BC=,BD=;(2)点P运动几秒,DQ最短;(3)如图2,当Q点运动到直线AB下方时,连接BQ,若S△BDQ=8,求tan∠BDQ;(4)在点P运动过程中,若∠BPQ=15°,请直接写出BP的长.。
大兴区2023~2024学年度第一学期期末检测初三数学试题及答案
初三数学试卷第1页(共6页)大兴区2023~2024学年度第一学期期末检测初三数学2024.01考生须知1.本试卷共6页,共三道大题,28道小题,满分100分,考试时间120分钟㊂2.在答题卡上准确填写学校名称㊁准考证号,并将条形码贴在指定区域㊂3.题目答案一律填涂或书写在答题卡上,在试卷上作答无效㊂4.在答题卡上,选择题㊁作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答㊂5.考试结束,请将答题卡交回㊂一㊁选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.2023航空航天大兴论坛于11月15日至17日在北京大兴国际机场临空经济区举办,共设置了数字民航 电动航空 商业航天 通航维修 四场专题论坛.若某位航天科研工作者随机选择一个专题论坛参与活动,则他选中 电动航空 的概率是A.1B.12C.14D.182.下列图形中,是中心对称图形而不是轴对称图形的为㊀㊀A.㊀ B.㊀C.㊀D.3.关于一元二次方程x 2-3x -1=0的根的情况,下列说法正确的是A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断4.抛物线y =(x -2)2+1的对称轴是A.x =-2B.x =2C.x =-1D.x =15.在平面直角坐标系xOy 中,将抛物线y =3x 2先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是A.y =3(x +4)2-1B.y =3(x +4)2+1C.y =3(x -4)2-1D.y =3(x -4)2+1初三数学试卷第2页(共6页)6.若圆的半径为1,则60ʎ的圆心角所对的弧长为A.π2B.πC.π6D.π37.如图,菱形OABC 的顶点A ,B ,C 在☉O 上,过点B 作☉O 的切线交OA 的延长线于点D.若☉O 的半径为2,则BD 的长为A.2 B.22C.23D.48.如图,点A ,B 在☉O 上,且点A ,O ,B 不在同一条直线上,点P 是☉O 上一个动点(点P 不与点A ,B 重合),在点P 运动的过程中,有如下四个结论:①恰好存在一点P ,使得øPAB =90ʎ;②若直线OP 垂直于AB ,则øOAP =øOBP ;③øAPB 的大小始终不变.上述结论中,所有∙∙正确结论的序号是A.①②B.①③C.②③D.①②③二㊁填空题(共16分,每题2分)9.若(a -3)x 2-3x -4=0是关于x 的一元二次方程,则a 的取值范围是.10.若关于x 的一元二次方程x 2-3x +m =0有一个根为1,则m 的值为.11.在平面直角坐标系xOy 中,若点(2,y 1),(4,y 2)在抛物线y =2(x -3)2-4上,则y 1y 2(填 > , = 或 < ).12.如图,四边形ABCD 内接于☉O ,点E 在AD 的延长线上,若øCDE =80ʎ,则øABC 的度数是ʎ.13.如图,әABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,若AD =2,BC =6,则әABC 的周长为.初三数学试卷第3页(共6页)14.写出一个过点(0,1)且当自变量x >0时,函数值y 随x 的增大而增大的二次函数的解析式.15.杭州亚运会的吉祥物 琮琮 宸宸 莲莲 组合名为 江南忆 ,出自唐朝诗人白居易的名句 江南忆,最忆是杭州 ,它融合了杭州的历史人文㊁自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.经统计,某商店吉祥物 江南忆 6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物 江南忆 6月份到8月份销售量的月平均增长率为x ,则可列方程为.16.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a(2,1).给出下面三个结论:①2a -b =0;②a +b +c >1;③关于x 的一元二次方程ax 2+bx +c -m =0(m <1)有两个异号实数根.上述结论中,所有正确结论的序号是.三㊁解答题(共68分,第17-21题每题5分,第22题6分,第23题5分,第24-26题每题6分,第27-28题,每题7分)解答应写出文字说明㊁演算步骤或证明的过程.17.解方程:x 2+8x =9.18.已知a 是方程x 2-2x -1=0的一个根,求代数式(a -1)2+a (a -2)的值.19.已知关于x 的一元二次方程x 2-x +2m -2=0有两个实数根.(1)求m 的取值范围;(2)当m 取最大整数值时,求方程的根.20.已知抛物线y =x 2+bx +c 经过点(1,0),(0,-3).(1)求抛物线的解析式;(2)求该抛物线的顶点坐标.21.如图,在әABC 中,øC =45ʎ,AB =2,☉O 为әABC 的外接圆,求☉O 的半径.22.2023年9月23日至10月8日,第19届亚运会在杭州举行.中国队以201枚金牌㊁111枚银牌㊁71枚铜牌的优异成绩,位居奖牌榜首.为弘扬体育运动精神,某校对八㊁九年级学生进行了杭州亚运会知识竞赛(测试满分为100分,得分x均为不小于80的整数),并从其中分别随机抽取了20名学生的测试成绩,整理㊁描述和分析如下(成绩得分用x表示,共分成四组:A.80ɤx<85;B.85ɤx<90;C.90ɤx<95;D.95ɤxɤ100).a.八年级20名学生的成绩是:80,82,83,83,85,85,86,87,89,90,90,91,94,95,95,95,95,96,99,100.b.九年级20名学生的成绩在C组中的数据是:90,90,91,92,92,93,93,94.c.八㊁九年级抽取的学生竞赛成绩的平均数㊁中位数㊁众数如下:年级平均数中位数众数八年级9090m九年级90n100d.九年级抽取的学生竞赛成绩扇形统计图如下:根据以上信息,解答下列问题:(1)写出表中m,n的值及九年级抽取的学生竞赛成绩在D组的人数;(2)若该校九年级共400人参加了此次知识竞赛活动,估计九年级竞赛成绩不低于90分的人数是;(3)为了进一步弘扬体育运动精神,学校决定组织学生开展亚运精神宣讲活动,准备从九年级抽取的竞赛成绩在D组的学生中,随机选取一名担任宣讲员,另一名担任主持人.若甲㊁乙是抽取的成绩在D组的两名学生,用画树状图或列表的方法,求甲㊁乙两人同时被选上的概率.初三数学试卷第4页(共6页)初三数学试卷第5页(共6页)23.在平面直角坐标系xOy 中,函数y =kx +b (k ʂ0)的图象经过点A (-1,2)和B (1,4).(1)求该函数的解析式;(2)当x >2时,对于x 的每一个值,函数y =12x +n 的值小于函数y =kx +b (k ʂ0)的值且大于5,直接写出n 的值.24.如图,AB 是☉O 的直径,点C 在☉O 上,连接AC ,BC ,过点O 作OD ʅBC 于点D ,过点C作直线CE 交OD 延长线于点E ,使得øE =øB.(1)求证:CE 为☉O 的切线;(2)若DE =6,CE =35,求OD 的长.25.如图1,某公园一个圆形喷水池,在喷水池中心O 处竖直安装一根高度为1.25m 的水管OA ,A 处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O 的最远水平距离OB 为2.5m,水流竖直高度的最高处位置C 距离喷水池中心O 的水平距离OD 为1m.(1)求喷出水流的竖直高度y (m)与距离水池中心O 的水平距离x (m)之间的关系式,并求水流最大竖直高度CD 的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若水管OA 的高度增加0.64m 时,则水流离喷水池中心O 的最远水平距离为m.初三数学试卷第6页(共6页)26.在平面直角坐标系xOy 中,点(2,m )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t.(1)当m =c 时,求t 的值;(2)点(-1,y 1),(3,y 2)在抛物线上,若c <m ,请比较y 1,y 2的大小,并说明理由.27.在әABC 中,øBAC =90ʎ,AB =AC ,点P 为BA 的延长线上一点,线段PC 顺时针旋转90ʎ得到线段PD ,连接BD.(1)依题意补全图形;(2)求证:øACP =øDPB ;(3)用等式表示线段BC ,BP ,BD 之间的数量关系,并证明.28.如图,在平面直角坐标系xOy 中,已知点M (0,t ),N (0,t +2),对于坐标平面内的一点P ,给出如下定义:若øMPN =30ʎ,则称点P 为线段MN 的 亲近点 .(1)当t =0时,①在点A (23,0),B (3,2),C (-23,2),D (-1,-3)中,线段MN 的 亲近点 的是;②点P 在直线y =1上,若点P 为线段MN 的 亲近点,则点P 的坐标为;(2)若直线y =-3x -3上总存在线段MN 的 亲近点 ,则t 的取值范围是.大兴区2023~2024学年度第一学期期末检测初三数学参考答案及评分标准一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)三、解答题(共68分,第17-21题每题5分,第22题6分,第23题5分,第24-26题每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明的过程.17. 解: x 2+8x =9.x 2+8x +16=9+16. ··································································· 1分(x +4)2=25. ………………………………………………………………2分x +4=±5. ············································································· 3分 解得x 1=1,x 2=-9. ································································ 5分18. 解: 2(1)(2)a a a −+−=22212a a a a −++− ····························································· 2分 =2241a a −+ ········································································ 3分 ∵a 是方程2210x x −−=的一个根,∴2210a a −−=,∴221a a −=. ······································································· 4分∴原式2221a a =+(-)211=⨯+=3 ·············································································· 5分19. 解:(1)∵方程有两个实数根,0∴∆≥ ················································································· 1分∵Δ=(-1) 2-4×1×(2m -2)188m =−+ 98m =− 980m ∴−≥98m ∴≤ ················································································ 2分(2)98m ≤,m 为最大整数,m ∴=1. ··············································································· 3分∴x 2﹣x =0.解得:x 1=0,x 2=1. ································································ 5分 20.解:(1)∵抛物线2+y x bx c =+经过点(1,0),(0,-3),∴1+03b c c +=⎧⎨=−⎩.··········································································2分解得2-3b c =⎧⎨=⎩.∴22-3y x x =+. ·····································································3分 (2)y =22-3x x +.()21-4x =+∴顶点坐标为(-1,-4). ··························································· 5分21. 解:连接OA ,OB ,············································1分∵∠C =45°,∴∠AOB =2∠C =90°. ··········································2分 在Rt △AOB 中,∵OA 2+OB 2=AB 2, AB =2,OA =OB ,∴2 OA 2=4. ························································4分 ∴ OA 2=2.∴OA (舍负).∴⊙O . ···········································5分 22.解:(1)m =95,n =90.5,九年级抽取的学生竞赛成绩在D 组的人数为4人; ···· 3分 (2)240. ····················································································· 4分 (3)设D 组的另外两名同学为丙,丁.宣讲员 甲 乙 丙 丁主持人 乙 丙 丁 甲 丙 丁 甲 乙 丁 甲 乙 丙由树状图可以看出,所有可能出现的结果共12种,这些结果出现的可能性相等. 甲和乙同时被选上的结果有2种, 所以P (甲乙同时被选上)=21126=. ································································ 6分23. 解:(1)把A (-1,2)和B (1,4)代入y=kx+b(k ≠0)中,24k b ,k b .−+=⎧⎨+=⎩………………………………………………………………1分解得:13k ,b .=⎧⎨=⎩………………………………………………………………2分 所以该函数的解析式为y=x +3. ················································· 3分 (2)n=4 ······················································································· 5分24.(1)证明:连接OC .∵OB=OC , ∴∠B =∠OCB. ∵∠E =∠B ,∴∠E =∠OCB . ·······························································1分 ∵OD ⊥BC , ∴∠E +∠DCE =90°. ∴∠OCB +∠DCE =90°. ∴∠OCE =90°. 即OC ⊥CE.∴CE 是⊙O 的切线.···························································2分 (2)∵OD ⊥BC ,∴∠CDE =90°.在Rt △CDE 中,DE =6 , CE=∴CD3.= …………………………..........................……… 3分 ∵OE ⊥BC , ∴BC =2CD =6.∴DE=BC . ………………………………………………………………4分 ∵AB 是直径, ∴∠ACB =90°. ∴∠CDE=∠ACB. 在△ABC 与△CED 中,B E,BC DE ACB CDE.∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△CED. ……………………………………….………5分 ∴AC=CD=3.∵O 是AB 的中点,D 是BC 的中点,∴1322OD AC ==. ···································································· 6分25.解:(1)由题意,A 点坐标为(0,1.25),B 点坐标为(2.5,0). …………………………1分设抛物线的解析式为y =a (x -1)2+k (a ≠0) …………….………………….… 2分 ∵抛物线经过点A ,点B .∴ ()21250251.a k,a .k.=+⎧⎪⎨=−+⎪⎩解得:1225a ,k ..=−⎧⎨=⎩∴y =-(x -1)2+2.25(0≤x ≤2.5). ……………………………….…………… 3分 ∴x =1时,y =2.25.∴水流喷出的最大高度为2.25 m. ………………………………..……… 4分(2)2.7 ························································································ 6分 26. 解:(1)∵点(2,m )在20y ax bx c(a )=++>上,∴m =4a +2b +c .又∵m =c ,∴4a +2b =0.∴b =-2a . ∴2122b a t a a−=−=−=. …………..………………………………………2分 (2)∵点(2,m )在抛物线2(0)y ax bx c a 上, ∴m =4a +2b +c.∵c < m ,∴m - c>0.∴m -c =4a +2b >0.∴2a +b >0. ············································································ 3分 ∵点(-1,y 1),(3,y 2)在抛物线2(0)yax bx c a 上,∴y 1=a -b+c ,y 2=9a+3b+c,∴y 2-y 1=(9a+3b+c )-( a -b+c )=8a +4b =4(2a+b ). ································ 4分 ∵2a +b >0,∴4(2a +b )>0,∴y 2-y 1>0.∴y 2>y 1. ………………………………………………………………….6分27. (1)解:补全图形如图所示; (1)分(2)证明:∵∠BAC =90°, ∴∠ACP +∠APC =90°.∵以P 为中心,将线段PC 顺时针旋转90°得到线段PD ,∴∠DPC =90°.∴∠APC +∠BPD =90°.∴∠ACP =∠DPB . ···························································· 3分 (3)线段BC ,BP ,BD =BD +BC. ………………4分证明:过点P 作PE ⊥PB 交BC 的延长线于点E .∵PE ⊥PB ,∴∠BPE =90°.∵∠DPC =90°,∴∠1+∠BPC =∠2+∠BPC =90°.∴∠1=∠2. ······································································· 5分 ∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°.∵∠BPE =90°,∴∠PBE =∠PEB =45°.∴PB =PE . ········································································ 6分 在△PBD 与△PEC 中,12.PB PE PD PC =⎧⎪∠=∠⎨⎪=⎩,, ∴△PBD ≌△PEC .∴BD =EC .∵BE ==.BP =BD +BC .····························································· 7分28. 解:(1)① A ,C ; ········································································ 2分②()21,,)21,+; ······················································ 5分 (2)-11 ≤ t ≤ 3. ············································································ 7分。
启迪教育初三数学期末模拟试卷
初三数 学模似测试卷注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;1、化简2(-2)的结果正确的是A 、-2B 、2C 、±2D 、42、下列平面图形中,既是轴对称图形,又是中心对称图形的是3、下列事件是必然事件的是A 、东胜区明天下雪B 、这次数学测验得100分C 、太阳从东边升起D 、公鸡能飞上天 4、 二次函数2)2(3+-=x y -3的顶点坐标为A 、(-2,3)B 、(2,3)C 、(-2,-3)D 、(2,-3) 5、半径分别为5cm 和2cm 的两圆相切,则两圆的圆心距为A 、3cmB 、7cmC 、3cm 或7cmD 、以上答案均不正确6、某型号的手机连续两次降价,每个售价由原来的1185元降到了580元.设平均每次降价的百分率为x ,则列出方程正确的是A 、()118515802=+x B 、()580111852=+x学校: 班级: 姓名: 学号:--------------------------------------------装 ---------------------------------------- 订 -------------------------------C 、()118515802=-x D 、()580111852=-x7、小明测路灯a 的高度,已知小明的身高为b ,则小明下列做法错误的是 A 、小明站在路灯旁拍照,测得照片中路灯与小明的高度分别为c 、d ,从而利用dc b a =,求出路灯a 的高度。
B 、上午同一时刻测得路灯与小明的影长分别为m 、n ,利用nm b a =,求出路灯a的高度。
C 、晚上在路灯下测得小明的影长为p ,小明距路灯的距离为q ,根据pq ba =,求出路灯a 的高度。
D 、晚上,小明在他与路灯中间放一面小镜子,使小明、路灯、镜子在一条直线上,且路灯在镜子中的反射光线正好落到小明的头顶,分别测得镜子距路灯与小明的距离为x 、y ,根据yx b a =,求出路灯a 的高度。
初三上期期末考试数学模拟试卷
第5题初三数学模拟试题班级: 姓名:A 卷 100分一、选择题(每小题3分,共30分) 1、若一元二次方程式x 2-2x -3599=0的两根为a 、b ,且a >b ,则2a -b =( ) A 、 -57 B 、63 C 、179 D 、1812、关于x 的方程(3-a )x 2-2x +1=0有实数根,则a 满足 ( ) A 、a ≠3 B 、a ≥2 C 、a >2且a ≠3 D 、a ≥2且a ≠33、下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等 4、已知一次函数1-=kx y 的图象与反比例函数xy 2=的图象的一个交点坐标为(2,1),那么另一个交点的坐标是( ) A .(-2,1)B .(-1,-2)C .(2,-1)D .(-1,2)5、如图,正方形网格中,△ABC 的顶点A 、B 、C 均在格点上, 则正确的是( ) A 、tanB=23 B 、cosB=32C 、sinB=552 D 、sinB=131326、某人沿着坡度为1∶3的山坡前进了1000 m ,则这人所在的位置升高了( )A 、1000mB 、500mC 、5003mD 、331000m7、如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k≤9B .2≤k≤8C .2≤k≤5D .5≤k≤88、如图,A B 是⊙O 直径,C D 为弦,C D A B ⊥于E ,则下列结论中,正确的个数是( )①∠A=∠D ,②∠ACB=90°,③CE=DE ,④CB =DB ,⑤DE 2 =AE ·BE 。
A .2 B .3 C .4 D .59、二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论,错误的是( )A .a 、b 异号B .当y=5时,x 的取值只能为0;C .4a+b=0D .当x= —1和x=5时,函数值相等。
甘肃省平凉市庄浪县2023-2024学年九年级上学期期末数学模拟试卷(含答案)
2023-2024学年甘肃省平凉市庄浪县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)关于x的一元二次方程(m﹣2)x2﹣5x+m2﹣4=0的常数项为0,则m的值是()A.0B.±2C.2D.﹣22.(3分)如图所示图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图,C是以AB为直径的⊙O上的一点,PC是⊙O的切线,PC∥AB,E为OA的中点,连接CE 并延长交⊙O于点D,若AB=4,则DE的长度为()A.B.C.D.24.(3分)直线y1=x+1与抛物线y2=﹣x2+3的图象如图,当y1>y2时,x的取值范围为()A.x>1B.x<﹣2C.﹣2<x<1D.x>1或x<﹣25.(3分)已知关于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一个根是0,则它的另一个根和m的值是()A.1,3B.3,1C.2,1D.1,26.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.10C.x(x+1)=10D.107.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象顶点在第一象限,且经过A(﹣1,0)、B(0,1)两个点,①abc<0;②﹣1<a<0;③0<b<1;④0<a+b+c<2,则上述说法正确的是()A.①②B.①③④C.①②④D.①②③④8.(3分)下列事件是随机事件的是()A.每周有7天B.袋中有三个红球,摸出一个球一定是红球C.在同一平面内,垂直于同一条直线的两条直线互相垂直D.任意购买一张车票,座位刚好靠窗口9.(3分)一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其他都相同,搅匀后任意摸出一个球,是红球的概率是()A.B.C.D.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A,点B(﹣1,0),则:①a+b>am2+bm(m≠1);②abc>0;③b2﹣4ac>0;④当y>0时,﹣1<x<3;⑤3a+c=0.其中正确的个数是()A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.(4分)已知点P(a,3)与点Q(﹣2,b)关于原点对称,则a﹣b=.12.(4分)某工厂要选一块矩形铁皮加工一个底面半径为20cm,高为cm的锥形漏斗,要求只能有一条接缝(接缝忽略不计),要想用料最省,矩形的边长分别是.13.(4分)在⊙O中,AB是直径,AB=4,C是圆上除A、B外的一点,D、E分别是、的中点,M是弦DE的中点,则CM的取值范围是.14.(4分)若x=2是一元二次方程x2+a=0的解,则a的值为.15.(4分)如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间.掷铁饼者张开的双臂与肩宽可以近似看成一张拉满弦的弓,弧长约为米,“弓”所在的圆的半径约0.75米,则“弓”所对的圆心角为度.16.(4分)如果一个二次函数图象开口向下,对称轴为x=1,则该二次函数表达式可以为.(任意写出一个符合条件的即可)三.解答题(共5小题,满分38分)17.(8分)(1)计算:;(2)解方程:2x2﹣7x+6=0.18.(4分)已知关于x的一元二次方程x2﹣2x+m=2有两个不相等的实数根.(1)求m的取值范围;(2)当m=1时,求方程x2﹣2x+m=2的解.19.(8分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件40元,如何定价才能使每星期的利润最大?最大利润是多少?设每件商品涨价x元,每星期的利润为y元(Ⅰ)分析:根据问题中的数量关系,用含x的式子填表.原价每件涨价1元每件涨价2元…每件涨价x元每件利润(元)202122…每星期销量(件)300290280…(Ⅱ)由以上分析,用含x的式子表示y,并求出问题的解.20.(8分)农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.21.(10分)作图题.(1)尺规作图:如图①,点A是直线L外一点,点B在直线L上,请在直线L上找到一点P,使P A=PB (不写作法,保留作图痕迹);(2)作出旋转变换后的像:将图②中的△ABC绕点O顺时针方向旋转90°后得到△A′B′C′.四.解答题(共6小题,满分58分)22.(8分)今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A 级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.23.(10分)央广网2020年11月24日消息,贵州省宣布最后的9个贫困县脱贫.其中某县某果农2017年的年收入为2万元,由于党的精准扶贫的相关政策的落实,2019年年收入增加到4.5万元,求平均每年年收入的增长率.24.(10分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?25.(10分)已知关于x的一元二次方程x2﹣kx﹣2=0,求证:无论k为何值,方程总有两个不相等的实数根.26.(8分)国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,直线l经过点A,∠ABD=∠DAE=30°.试说明直线l与⊙O相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.(1)请你根据小明的思考,写出解决这一问题的过程;(2)图2中,若AD,AB=4,求DC的长.27.(12分)在端午节前夕,三位同学到某超市调研一种粽子的销售情况,请根据小丽提供的信息,解答小华和小明提出的问题.2023-2024学年甘肃省平凉市庄浪县九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵关于x的一元二次方程(m﹣2)x2﹣5x+m2﹣4=0的常数项为0,∴m﹣2≠0且m2﹣4=0,解得:m=﹣2,故选:D.2.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称图形,又是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.3.【解答】解:连接CO并延长交⊙O于F,连接DF,如图,∵PC是⊙O的切线,∴CF⊥PC,∵PC∥AB,∴AB⊥CF,∵E为OA的中点,AB=4,∴OE=1,OC=2,在Rt△OCE中,CE,∵CF为直径,∴∠CDF=90°,∵∠COE=∠CDF,∠OCE=∠DCF,∴△COE∽△DCF,∴,即,∴CD,∴DE=CD﹣CE.故选:C.4.【解答】解:∵由图象可知,当x<﹣2或x>1时,直线y1=x+1的图象位于抛物线y2=﹣x2+3的图象的上方∴当x<﹣2或x>1时,y1>y2故选:D.5.【解答】解:将x=0代入(2x﹣m)(mx+1)=(3x+1)(mx﹣1),∴﹣m=1×(﹣1)∴m=1∴原方程化为:(2x﹣1)(x+1)=(3x+1)(x﹣1)∴化简可得:x2﹣3x=0∴x=3或x=0,故它的另一根为3,m的值是1.故选:B.6.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:10;故选:B.7.【解答】解:∵由抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴b>0,∵抛物线交y的正半轴,∴c>0,∴abc<0,所以①正确;∵点(0,1)和(﹣1,0)都在抛物线y=ax2+bx+c上,∴c=1,a﹣b+c=0,∴a=b﹣c=b﹣1,b=a+c=a+1,而a<0,b>0,∴﹣1<a<0,0<b<1,所以②③正确;∵a+b+c=a+a+1+1=2a+2,而a<0,∴2a+2<2,即a+b+c<2,∵抛物线与x轴的一个交点坐标为(﹣1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,∴x=1时,y>0,即a+b+c>0,∴0<a+b+c<2,所以④正确;故选:D.8.【解答】解:A、每周有7天,是必然事件,故此选项错误;B、袋中有三个红球,摸出一个球一定是红球,是必然事件,故此选项错误;C、在同一平面内,垂直于同一条直线的两条直线互相垂直,是必然事件,故此选项错误;D、任意购买一张车票,座位刚好靠窗口,是随机事件,符合题意.故选:D.9.【解答】解:袋子中球的总数为2+3+5=10,而红球有2个,则从中任摸一球,恰为红球的概率为.故选:A.10.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,∴当x=1时,二次函数的最大值为a+b+c,∵二次函数的最大值为a+b+c,∴a+b+c>am2+bm+c(m≠1),∴a+b>am2+bm(m≠1),∴①正确;②∵二次函数对称轴在y轴右侧,与y轴交在正半轴,∴ab<0,c>0,abc<0∴②不正确;③∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,∴③正确;④∵对称轴为x=1,点B(﹣1,0),∴点A(3,0),∴由图象可知当y>0时,﹣1<x<3,∴④正确;⑤将(﹣1,0)代入y=ax2+bx+c得:0=a﹣b+c,∵对称轴为x1,∴b=﹣2a,∴0=a﹣(﹣2a)+c,即3a+c=0,故⑤正确,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵点P(a,3)与点Q(﹣2,b)关于原点成中心对称,∴a=2,b=﹣3,∴a﹣b=2+3=5.故答案为:5.12.【解答】解:底面半径为20cm,高为cm,由勾股定理知:R =60,∵l=40π,∴扇形的圆心角=40π×180÷60π=120°,在一长方形内画出一半径为60,圆心角为120°的扇形,如图,在矩形ABCD中,EF⊥AB,∠AFG=120°,AD=EF=AF=FG=60cm,∵∠FGB=∠EFG=∠AFG﹣∠AFE=120°﹣90°=30°,∴FB=FG•sin30°=30cm,AB=AF+FB=60+30=90cm.故本题答案为:90cm,60cm.13.【解答】解:如图,连接OD,OE,OC,OM.∵,,∴∠AOD=∠DOC,∠EOC=∠EOB,∵AB是直径,∴∠AOB=180°,∴∠DOE=∠DOC+∠EOC(∠AOC+∠BOC)=90°,∵OD=OE=2,∴DE=2,∵DM=ME,∴OM DE,∵OC=2,∴2CM,当C,A重合时,CM的值最大,最大值为,∵C是圆上除A、B外的一点,故答案为2CM.14.【解答】解:∵x=2是一元二次方程x2+a=0的解,∴4+a=0,解得a=﹣4.故答案为﹣4.15.【解答】解:设“弓”所在的圆的弧长圆心角度数是n°,则,解得:n=150,故答案为:150.16.【解答】解:∵一个二次函数图象开口向下,对称轴为x=1,∴该函数的解析式可以为y=﹣(x﹣1)2,故答案为:y=﹣(x﹣1)2(答案不唯一).三.解答题(共5小题,满分38分)17.【解答】解:(1)原式=5+2﹣22=7;(2)∵2x2﹣7x+6=0,∴(x﹣2)(2x﹣3)=0,∴x﹣2=0或2x﹣3=0,解得x1=2,x2=1.5.18.【解答】解:(1)由题意可得,Δ=(﹣2)2﹣4(m﹣2)=12﹣4m,∵方程有两个不相等的实数根,∴Δ=12﹣4m>0.解得m<3;(2)当m=1时,原方程为x2﹣2x﹣1=0,(x﹣1)2=2,解得x1=1,x2=1.19.【解答】解:(Ⅰ)分析:根据问题中的数量关系,用含x的式子填表.原价每件涨价1元每件涨价2元…每件涨价x元每件利润(元)202122…20+x每星期销量(件)300290280…300﹣10x 故答案为:20+x,300﹣10x;(Ⅱ)由题意可得:y=(20+x)(300﹣10x)=﹣10x2+100x+6000=﹣10(x﹣5)2+6250,则每件售价为:65元,答:当定价为每件65使每星期的利润最大,最大利润是6250元.20.【解答】解:(1)40﹣25=15故矩形的宽为(1分)∴s ABCD25=187.5(2分)(2)设利用xm的墙作为矩形羊圈的长,则宽为,设矩形的面积为ym2则y=x•x2+20x(x﹣20)2+200,(5分)∵a0,故当x=20时,y的最大值为200,(7分)∵200>187.5,故张大伯设计不合理,应设计为长20m,宽10m利用20m墙的矩形羊圈.(8分)21.【解答】解:四.解答题(共6小题,满分58分)22.【解答】解:(1)21÷35%=60户,60﹣9﹣21﹣9=21户,故答案为:60,补全条形统计图如图所示:(2)1500750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,∴P(选中e),23.【解答】解:设平均每年年收入的增长率为x,依题意得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:平均每年年收入的增长率为50%.24.【解答】解:(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,由题意得:y=(130﹣80+x)(500﹣2x)=﹣2x2+400x+25000∵每件售价不能高于240元∴130+x≤240∴x≤110∴y与x的函数关系式为y=﹣2x2+400x+25000,自变量x的取值范围为0<x≤110,且x为正整数.(2)∵y=﹣2x2+400x+25000=﹣2(x﹣100)2+45000∴当x=100时,y有最大值45000元.∴每件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元.(3)令y=40000,得:﹣2x2+400x+25000=40000解得:x1=50,x2=150∵0<x≤110∴x=50,即每件商品的涨价为50元时,每个月的利润恰为40000元;由二次函数的性质及问题的实际意义,可知当50≤x≤110,且x为正整数时,每个月的利润不低于40000元.∴每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤110,且x为正整数时,每个月的利润不低于40000元.25.【解答】证明:在方程x2﹣kx﹣2=0中,Δ=(﹣k)2﹣4×1×(﹣2)=k2+8≥8,∴无论k为何值,方程总有两个不相等的实数根.26.【解答】(1)证明:过A作直径AF,连接DF,如图2所示:∵AF是⊙O的直径,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵∠ABD=∠AFD,∠ABD=∠DAE,∴∠AFD=∠DAE,∴∠DAE+∠DAF=90°,即∠OAE=90°,∴OA⊥AE,∵点A是半径OA的外端,∴直线l与⊙O相切;(2)解:过点A作AG⊥BD,垂足为点G,∴∠AGB=∠AGD=90°,∵∠ABD=30°,∴∠AFD=30°,∴直径AF=2AD BC,∵∠ABD=30°,AB=4,∴AG2,BG AG=2,∴DG,∴BD=BG+DG,∵BC是直径,∴∠BDC=90°,∴.27.【解答】解:每个粽子的定价为x元,(x﹣2)×[500﹣(x﹣3)×100]=800,解得,x1=4,x2=6,∵x≤2×240%,∴x≤4.8,∴每个粽子的定价为4元;设获得的利润为y,则y=(x﹣2)×[500﹣(x﹣3)×100]=﹣100(x﹣5)2+900,∵x≤4.8,∴当x=4.8时,y取得最大值,此时y=896,即800元的销售利润不是最多,当定价每个4.8元时,才会使每天的利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年紫石中学初三数学期末模拟试卷(1)
一.选择题(24分)
1.下列二次根式中,最简二次根式是( ) A.2 B.
8 C. 12 D. 18
2.下列图形中,既是轴对称图形又是中心对称图形的是( )
3.若相交两圆的半径分别为4和7,则它们的圆心距可能是 A .2 B .3 C . 6 D .11
4.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为 ( ) A 、-1 B 、1 C 、1或-1 D 、0.5
5若关于X 的一元二次方程036)1(2
=++-x x k 有实数根,则实数k 的取值范围( )
A.k ≤4,且k ≠1
B.k <4, 且k ≠1
C. .k <4
D. k ≤4
6、在下列四边形内作圆,一定可以与四条边都相切是-----------------------------------( ) A .菱形 B .等腰梯形 C .平行四边形 D .矩形 7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:
①因为a >0,所以函数y 有最大值; ②该函数图象关于直线1x =-对称; ③当2x =-时,函数y 的值大于0;
④当31x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是
A .1
B .2
C .3
D .4 8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆 心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段 DA 与y 轴交于点
E ,则△ABE 面积的最大值是
A .22
B .22
C . 2
D . 83
二.填空题(30分)
9.在Rt △ABC 中,∠ C =90°,若BC 1,AB 5,则tan A 的值为 .
10. 在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是
.
11.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是 .
12.将抛物线2
3y x =向右平移2个单位后得到新的抛物线,则新抛物线的解析式是 .
13.已知:如图,∠APC =60度, AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么AB
DC 的值为 .
14.一个三角形的三边长均满足方程2
680x x -+=,则此三角形的
周长为 .
15.一个圆锥形零件的母线长为4,底面半径为1,则这个圆锥形零件的全面积
是 .
16.如图,将⊙O 沿着弦AB 翻折,劣弧恰好经过圆心O ,若⊙O 的半径为4,
则弦AB 的长度等于__ .
17.如图,⊙O 的半径为2,1C 是函数212y x =
的图象,2C 是函数21
2
y x =-的图象,3C 是函数y =3x 的图象,则阴影部分的面积是 .
18.如图,已知Rt △ABC 中,AC =6,BC = 8,过直角顶点C 作1CA ⊥AB ,垂足为1A ,再过1A 作11A C ⊥BC ,垂足为1C ,过1C 作12C A ⊥AB ,垂足为2A ,再过2A 作22A C ⊥BC ,
垂足为2C ,…,这样一直做下去,得到了一组线段1CA ,11A C ,12C A ,…,则1CA = ,1
n n n n
C A A C +(其中n 为正整数)= .
三.解答题
19.计算(每题5分,共15分) (1)27 ÷
3
2
+ ( 2 -1 )2
(2)4x 2
-8x-1=0(用配方法)
(3)0
2
30cos 260tan 60sin 3-+
20.(8分) 已知关于x 的一元二次方程x 2-(m -1)x +m +2=0.(8分) (1)若方程有两个相等的实数根,求m 的值;
(2)若方程的两实数根之积等于m 2-9m +2,求6+m 的值
21.(8分)如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E .
(1)若AD =10,4
sin
5
ADC ∠=
,求AC 的长和tan B 的值; (2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan 2
α
的值(用sin α和cos α的值表示).
.
22.(本题满分7分)一枚棋子放在边长为1个单位长度的正六边形 ABCDEF 的顶点A 处,通过摸球来确定该棋子的走法,其规则是:在 一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀 后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1 个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位 长度.
棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)
23.(8分)已知:如图,正方形ABCD 的边长为a ,BM ,DN 分别平分正方形的两个外角,且满足
45MAN ∠=︒,连结MC ,NC ,MN .
(1)填空:与△ABM 相似的三角形是△ ,BM DN ⋅= ;(用含a 的代
数式表示)
(2)求MCN ∠的度数;
(3)猜想线段BM ,DN 和MN 之间的等量关系并 证明你的结论.
D
E
24.(8分) 已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与 ⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于点E . (1)求证:直线DE 是⊙O 的切线;
(2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求DF AF
的值.多
少?
25.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件。
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?
(2)如果你是该商场经理,你将如何决策?使商场平均每天能获得最大盈利是
26.(10分) 已知:如图,AB 是⊙O 的直径,点E 是OA 上任意一点,过点E 作弦CD AB ⊥,点F 是BC
上任一点,连结AF 交CE 于H ,连结AC 、CF 、BD 、OD . (1)求证:ACH AFC △∽△;
(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并证明你的猜想; (3)试探究:当点E 位于何处时,△AEC 的面积与△BOD 的面积之
比为1:2?并加以证明.
27.(10分)受不法投机商炒作的影响,去年黑豆价格出现了大幅度波动.1至3月份,黑
豆价格大幅度上涨,其价格y 1 (万元/吨)与月份x (1≤x ≤3,且x 取整数)之间的关系如下表:
月份x 1 2 3 价格y 1 (万元/吨)
2.6
2.8
3
而从4月份起,黑豆价格大幅度走低,其价格y 2/吨)与月份x (4≤x ≤6,且x
取整数)之间的函数关系如图所示. (1)请观察题中的表格,用所学过的一次函数、反比例
函数或二次函数的有关知识,直接写出黑豆价格y 1 (万元/吨)与月份x 之间所满足的函数关系式;观察 右图,直接写出黑豆价格y 2 (万元/吨)与月份x 之间 所满足的一次函数关系式;
(2)某食品加工厂每月均在上旬进货,去年1至3月份的黑豆进货量p 1 (吨)与月份x 之间
所满足的函数关系式为p 1=-10x +180 (1≤x ≤3,且x 取整数);4至6月份黑豆进货量p 2(吨)与月份x 之间所满足的函数关系式为p 2=30x -30 (4≤x ≤6,且x 取整数).求在前6个月中该加工厂的黑豆进货金额最大的月份和该月的进货金额;
(3)去年7月份黑豆价格在6月的基础上下降了a %,进货量在6月份的基础上增加了2a %.
使得7月份进货金额为363万元,请你计算出a 的最大整数值. (参考数据:7.13≈,2.25≈,4.26≈,6.27≈)
O
x
6
5
4 25题图
2.6 2.4
2.2 y 2
28.(14分)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B (3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ 垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC 重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.。