历年初三数学中考题型训练 填空、选择专题
中考数学填空题专项练习经典测试(含答案解析)(2)
一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.184.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 14.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.17.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.22.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)23.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.28.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.29.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.30.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.C5.A6.C7.A8.B9.C10.C11.A12.C13.B14.D15.B二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .6.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x +10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。
2022年人教版数学中考复习:选择、填空综合训练2及答案
选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,下列结论:①abc >0;②4a +2b +c >0;③13<a <23;④b >c.其中含所有正确结论的选项是( )第10题图A .①②③B .①③④C .②③④D .①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 .13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 .第16题图17.如图,在△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为.第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是.选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( D )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( D )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( A )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( C )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( A )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( B )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( C )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( C )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( D )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是( B )第10题图A.①②③B.①③④C.②③④D.①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 (-3,-1) .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 23. 13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 5 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 m >2 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 219 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 49π .第16题图17.如图,在△ABC 中,AB =AC =12厘米,∠B =∠C ,BC =9厘米,点D 为AB 的中点.如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为3厘米/秒,则当△BPD 与△CQP 全等时,v 的值为 2.25或3 .第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是 2S2-S .。
中考数学复习专题训练精选试题及答案
中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
中考数学之选填题专项训练( 共4套 )
中考数学之选填题专项训练(1)一、选择题1. 在实数,,0,中,最小的实数是().A. B. C.0D.2. 如图所示的几何体的俯视图是().A. B. C. D.3. 如图,在中,,,点是边上任意一点,过点作交于点,则的度数是().A. B. C. D.4. 下列计算正确的是().A. B. C. D.5. 为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()A.92分,96分B.94分,96分C.96分,96分D.96分,100分6. 计算的结果正确的是().A.1B.C.5D.97. 如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.8. 用配方法解一元二次方程,配方正确的是().A. B. C. D.9. 如图,是的直径,弦,垂足为点.连接,.如果,,那么图中阴影部分的面积是().A. B. C. D.10. 如图,有一块半径为1m,圆心角为90∘的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.14m B.34m C.√154m D.√32m11. 人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第个图形用图表示,那么图㊿中的白色小正方形地砖的块数是().…A.150B.200C.355D.50512. 如图,在中,,,将绕点旋转得到,使点的对应点落在上,在上取点,使,那么点到的距离等于().A. B. C. D.二、填空题13.因式分解:________.14.如图,在中,四边形为菱形,点在上,则的度数是________.15.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.16.如图,在直角坐标系中,点,是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,,,,使得四边形的周长最小,这个最小周长的值为________.中考数学之选填题专项训练(2)一、选择题1. 计算1−3的结果是()A.2B.−2C.4D.−42. 用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3. 计算2a2⋅3a4的结果是()A.5a6B.5a8C.6a6D.6a84. 无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5. 在一次数学测试中,小明的成绩为72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6. 如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0, −1)对应点的坐标为()A.(0, 0)B.(1, 2)C.(1, 3)D.(3, 1)AB同样长为半径画弧,两弧交于点C,7. 如图,已知线段AB,分别以A,B为圆心,大于12D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CADB.CD平分∠ACBC.AB⊥CDD.AB=CD8. 下列是关于某个四边形的三个结论:①它的对角线相等;①它是一个正方形;①它是一个矩形.下列推理过程正确的是()A.由①推出①,由①推出①B.由①推出①,由①推出①C.由①推出①,由①推出①D.由①推出①,由①推出①9. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B. C. D.10. 把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A.7+3√2B.7+4√2C.8+3√2D.8+4√2 二、填空题11.因式分解:x 2−9=________. 12.计算1x −13x 的结果是________.13.如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是________.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与s 乙2,则s 甲2________s 乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55∘,则∠C 的度数为________.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为________.(用含a,b的代数式表示)中考数学之选填题专项训练(3)一、选择题1. 实数2,0,−2,√2中,为负数的是()A.2B.0C.−2D.√22. 某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×1083. 将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A. B. C. D.4. 如图,点A,B,C,D,E均在⊙O上,∠BAC=15∘,∠CED=30∘,则∠BOD的度数为()A.45∘B.60∘C.75∘D.90∘5. 如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cmB.10cmC.8cmD.3.2cm6. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.12B.13C.14D.167. 长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.78. 如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形9. 如图,等腰直角三角形ABC 中,∠ABC =90∘,BA =BC ,将BC 绕点B 顺时针旋转θ(0∘<θ<90∘),得到BP ,连结CP ,过点A 作AH ⊥CP 交CP 的延长线于点H ,连结AP ,则∠PAH 的度数( )A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小10. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.若甲、乙两车都能顺利返回A 地,则B 地最远可距离A 地( )A.120kmB.140kmC.160kmD.180km二、填空题11.分解因式:1−x 2=________.12.关于x ,y 的二元一次方程组{x +y =2,A =0 的解为{x =1,y =1, 则多项式A 可以是________(写出一个即可).13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为________.14.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2√3,则m的值为________.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是________元.16.将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的________(填序号).①√2,①1,①√2−1,①√3,①√3.2中考数学之选填题专项训练(4)一、选择题1. 2020年3月9日,我国第54颗北斗导航卫星成功发射,轨道高度约为36000000米.36000000这个数用科学记数法应表示为()A.0.36×108B.36×107C.3.6×108D.3.6×1072. 如图是由四个相同的小正方体组成的立体图形,它的主视图为()A. B. C. D.3. 已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.24. 一次函数y=2x−1的图象大致是()A. B. C. D.5. 如图,在直角坐标系中,△OAB的顶点为O(0, 0),A(4, 3),B(3, 0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(−1, −1)B.(-,−1)C.(−1,-)D.(−2, −1)6. 不等式3(1−x)>2−4x的解集在数轴上表示正确的是()A. B. C. D.7. 如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60∘得到△A′B′C′,则它们重叠部分的面积是()A.2B.C.D.8. 用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2−①B.①×(−3)−①C.①×(−2)+①D.①-①×39. 如图,在等腰△ABC中,AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,EF的长为半径作弧相交于点H,作射线AH;大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于①分别以点A,B为圆心,大于12点O;①以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2√5B.10C.4D.510. 已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n−m=1时,b−a有最小值B.当n−m=1时,b−a有最大值C.当b−a=1时,n−m无最小值D.当b−a=1时,n−m有最大值二、填空题11.分解因式:x2−9=________.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:________,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是________.14.如图,在半径为的圆形纸片中,剪一个圆心角为90∘的最大扇形(阴影部分),则这个扇形的面积为________;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为________.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程________.。
人教版九年级数学中考复习:选择、填空综合训练1
选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为.14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为.第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020=.第18题图选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( D )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( C )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( C )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( C )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( B )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( A )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( C )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( B )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3<-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为 x≥-3且x≠1且x≠2.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为 1 .14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为 18 .第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为 300 步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为16π3-4 3 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是 S1=32S2.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020= 1346+674 2 .第18题图。
初三历年中考真题数学试卷
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16 - √25C. πD. -π2. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b > 03. 下列函数中,自变量x的取值范围是全体实数的是()A. y = 1/xB. y = √(x - 1)C. y = x²D. y = |x|4. 已知一次函数y = kx + b的图象经过点A(1,2),B(3,-4),则下列结论正确的是()A. k > 0,b > 0B. k < 0,b > 0C. k > 0,b < 0D. k < 0,b < 05. 在直角坐标系中,点P(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)6. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是()A. 24cmB. 26cmC. 28cmD. 30cm7. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 5x - 2 = 0D. 4x + 3 = 98. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°9. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解为()A. x = 2,x = 3B. x = 1,x = 4C. x = 2,x = 2D. x = 3,x = 310. 下列函数中,奇函数是()A. y = x²B. y = |x|C. y = x³D. y = x + 1二、填空题(每题3分,共30分)11. 计算:-5 + 3 - 2 - (-1) = ________12. 化简:3x² - 5x + 2 - (2x² - 3x + 1) = ________13. 已知函数y = 2x - 1,当x = 3时,y的值为 ________14. 在直角坐标系中,点A(-2,3)关于x轴的对称点是 ________15. 一个等边三角形的边长为6cm,则该三角形的周长是 ________16. 解方程:2(x - 3) = 5 + 3(x + 2)17. 已知∠A = 30°,∠B = 45°,则∠C的度数是 ________18. 化简:√(9x²) = ________19. 计算下列函数的值:y = 3x - 2,当x = -1时,y = ________20. 解方程:2x² - 5x + 2 = 0三、解答题(每题10分,共40分)21. 已知一次函数y = kx + b的图象经过点A(1,-2),B(3,6),求该函数的解析式。
中考初三数学试题及答案
中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 一个等腰三角形的顶角为40°,那么它的底角是:A. 70°B. 40°C. 50°D. 60°答案:D4. 下列哪个方程是一元二次方程?A. 2x + 3 = 0B. x² - 4x + 4 = 0C. 3x - 2 = 0D. x² - 2xy + y² = 0答案:B5. 一个数的平方根是2,那么这个数是:A. 4C. 2D. -2答案:A6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B7. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 7C. 6答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数是________。
答案:±712. 一个数的平方是16,这个数是________。
答案:±413. 一个数的立方根是-2,这个数是________。
答案:-814. 一个三角形的内角和是________。
答案:180°15. 一个等差数列的首项是2,公差是3,那么它的第5项是________。
答案:1716. 一个等比数列的首项是3,公比是2,那么它的第4项是________。
答案:4817. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是________。
近十年中考数学选择填空精选
近十年福州中考数学真题选择填空精选谢艳辉10.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是A.0a >B. 0c <C.240b ac -<D.0a b c ++>15.如图,直线y =,点1A 坐标为(1,0),过点1A 作x 的垂线交直线于点1B B ,以原点O 为圆心,1O B 长为半径画弧交x 轴于点2A ;再过点2A x 的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点5A 的坐标为( , )。
2009-10.如图3, A D 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为 A D 上任意一点,若5A C =,则四边形ACBP 周长的最大值是( ) A .15 B .20 C .15+.15+14. 如图4,AB 是⊙O 的直径,点C 在⊙O 上 ,OD ∥AC ,若BD=1,则BC 的长为15.如图5,已知A 、B 、C 、D 、E 是反比例函数16y x=(0x >)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示).2008-10.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006B .2007C .2008D .2009xyA xB CD E O 图5 314.如图,A B 是⊙的弦,O C AB ⊥于点C ,若8cm AB =,3cm O C =,则⊙O 的半径为 cm .2008-15.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .2007-5.如图2,O 中,弦A B 的长为6cm ,圆心O 到A B 的距离为4cm ,则O 的半径长为( )A .3cmB .4cmC .5cmD .6cm6.只用下列一种正多边形不能镶嵌成平面图案的是( ) A .正三角形B .正方形C .正五边形D .正六边形8.下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等 9.已知一次函数(1)y a x b =-+的图象如图3所示,那么a 的取值范围是( ) A .1a > B .1a < C .0a > D .0a <10.如图4所示,二次函数2(0)y ax bx c a =++≠的图象经过点(12)-,,且与x 轴交点的横坐2y x=xyOP 1P 2P 3P 412 3 4 (第15题)(第14题)图40 1 3 5 7 9 11 13 A图6图2 图3标分别为12x x ,,其中121x -<<-,201x <<,下列结论:①420a b c -+<; ②20a b -<; ③1a <-; ④284b a ac +>.其中正确的有( ) A .1个B .2个C .3个D .4个15.如图6,45AOB ∠= ,过O A 上到点O 的距离分别为1357911 ,,,,,,的点作O A 的垂线与O B 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.观察图中的规律,求出第10个黑色梯形的面积10S = .2006-7.如图3,已知AB 为⊙O 的弦,OC ⊥AB,垂足为C,若OA= 10,AB=16, 则弦心距OC 的长为A.12B.10C.6D.89.如图4,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的侧面积是A.36лB.18лC.12лD.9л 10.如图5,在7×12的正方形网格中有一只 可爱的小狐狸,算算看画面中由实线组成的相似三角形有A.4对B.3对C.2对D.1对14.如图6. ⊙O 的两条弦AF 、BE 的廷长线交于C 点,∠ACB 的平分线CD 过点O ,请直接写出图中一对相等 的线段: .15.如图7.点B 是线段AC 上一点,分别以AB 、BC 为边作等边△ABE 、△BCD,连接DE,已知△BDE的面积是4,AC=4,如果AB<BC 那么AB 的值是 .(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是 ;在前16个图案中有_个.第2008个图案是 .20055、如图2,AB 为⊙O 的直径,点C 在⊙O 上,∠B =50°, 则A 等于……………………( )A 、80°B 、60°C 、 50°D 、40°6、如图3,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的…………………………………………………………( ) A 、51B 、41 C 、31D 、1039、一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是……( ) A 、80πcm 2 B 、40πcm 2 C 、80cm 2 D 、40cm 210、如果012=-+x x ,那么代数式7223-+x x 的值为…………………………( ) A 、6 B 、8 C 、—6 D 、—813、如图5,某学习小组选一名身高为1.6m 的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测量该同学的影长为1.2m ,另一部分同学测量同一时刻旗杆影长为9m ,那么旗杆的高度是______m 。
中考数学选择填空题精选
中考数学选择填空题精选:一.选择题:1. 下列运算正确的是( )A.x 2 ²x 3 =x 6 B.x 2+x 2=2x 4 C.(-2x)2 =4x 2 D.(-2x)2 (-3x )3=6x5 2. “世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为 ( )A. 11.69³1410B. 1410169.1⨯C.1310169.1⨯D.14101169.0⨯3. 化简二次根式22aa a +-的结果是 ( ) A.2--a B. 2---a C.2-a D.2--a4. 不等式2)2(2-≤-x x 的非负整数解的个数为 ( )A .1B .2C .3D .45. 已知α为锐角,tan(90°-α)α的度数为( )A .30°B .45°C .60°D .75°6. 观察下列数表:1 2 3 4 … 第一行2 3 4 5 … 第二行3 4 5 6 … 第三行4 5 6 7 … 第四行根据数表所反映的规律,第n 行第n 列交叉点上的数应为( )A.12-n B.12+n C.12-n D.2n7. 若m x 11-=是方程022=+-m mx 的根,则m x -的值为……( ) A .0 B .1 C .-1 D .2 8.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠P=50°, 那么∠ACB 等于( )A. 40°B. 50°C. 65°D. 130°8. 如图,四边形ABCD 内接于⊙O ,若∠BOD=100,则∠DAB 的度数为 ( )A .50B .80C .100D .1309. 如果点A(m ,n)在第三象限,那么点B(0,m+n)在 ( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上10. 右上图是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数)。
中考数学总复习《选择、填空题》专项练习题含有答案
中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。
历年全国中考数学试题及答案(完整详细版)
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
中考数学复习选择题填空题专题训练精选
20XX年中考数学复习选择题填空题专题训练精选1选择填空题综合训练1、如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC 上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有( )①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.A.1个B.2个C.3个D.4个第1题第2题第3题2、如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB,且EF=②∠BAF=∠CAF;③S四边形 12AF DE12AB;ADFE;④∠BDF+∠FEC=2∠BAC,正确的个数是( )A.1B.2C.3D.43、如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2,其中正确的是( )A.②④ B.①④ C.②③ D.①③4、如图,分别以R t△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,DC DE22AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是( )A.②④ B.①③ C.②③④ D.①③④第4题第5题第6题第7题5、如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF;②∠CHF=45°;③GH=14BC;④FH2=HE·HB,正确结论的个数为( )A. 1个 B. 2个 C. 3个 D. 4个6、如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②AB⊥CM;③∠BMC=90°;④EF=EG;⑤△EFG是等腰直角三角形.上述结论中始终正确的序号有______7、如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.连接CE、CF、BD,AC、BD的交点为O,若CE⊥AB,AB=7,CD=3下列结论中:①AC=BD;②EF∥BD;③S四边形AECF AC EF;④EF=2572,⑤连接F0;则F0∥AB.正确的序号是___________8、如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S CDG的是( )A.①③S四边形DHGE;④图中有8个等腰三角形。
(完整版)九年级数学选择、填空压轴题训练(含答案)
九年级数学综合训练、选择题(本大题共9小题,共27.0分)1. 如图,在平面直角坐标系中2条直线为11 : y=-3x+3 , 12:y=-3x+9,直线l i交x轴于点A,交y轴于点B,直线12交x轴于点D,过点B作x轴的平行线交12于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a-b+c=0:②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 32. 如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如 A :ci r小表示a1=a2+a3,贝y a1的最小值为()M是反比例函数y=??(x>0)的图象上位于直线上方的A. 32B. 36C. 38D. 403. 如图,直线y= v3x-6分别交x轴,y轴于A, B,一点,MC /x轴交AB于C, MD AMC交AB于D,AC?BD=4,则k 的值为()A. -3B. -4C. -5D. -64.在平面直角坐标系xOy中,将一块含有45。
角的直角三角板如图放置,直角顶点C的坐标为(1, 0),顶点A的坐标为(0, 2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C'的坐标为()3A. (2,0)B. (2,0)5C. (2,0)D. (3,0)5.如图,在矩形ABCD中,AB v BC, E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME丄AF交BC于点M , 连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD?CM ;④点N为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个6.规定:如果关于x的一元二次方程ax2+bx+c=0 (a工0有两个实数根,且其中一个根是另一个根的 2 倍,则称这样的方程为“倍根方程” •现有下列结论:①方程X2+2X-8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③ 若关于x 的方程ax 2-6ax+c=0( a ^0是倍根方程,则抛物线y=ax 2-6ax+c 与x 轴的公共点的坐标是 (2, 0)和(4,0);4④ 若点(m , n )在反比例函数y=?的图象上,则关于 x 的方程mx 2+5x+ n=0是倍根方程.12. 如图,正方形 ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF 丄BG ;4???? 31② BN =§NF ; 四边形CGNF=[S 四边形ANGD .其中正确的结论的序号是 __________ .13. 已知:如图,在 A AOB 中,ZAOB=90 ° AO=3cm ,BO=4cm .将A AOB 绕顶点 0,按顺时针方向旋转到△A 1OB 1处,此时线段 OB 1与AB 的交点D 恰好为AB 的中点,则线段 B 1D= __________ cm .7. 上述结论中正确的有()A.①②B.③④C.②③D.②④如图,六边形 ABCDEF 的内角都相等,ZDAB=60 ° AB=DE ,则下列结论成立的个数是( ①AB/DE :②EF /AD /BC ;③AF=CD :④四边形 ACDF 是平行 四边形;⑤六边形ABCDEF 既是中心对称图形, 又是轴对称图 形.A. 2B. 3C. 4D. 58. 如图,在Rt A ABC 中,/C=90 °以A ABC 的一边为边画等腰三角形,他边上,则可以画出的不同的等腰三角形的个数最多为()A. 4B. 5C. 6D. 79. 如图,矩形ABCD 延长线于点F ,且中,AE _LBD 于点E ,CF 平分ZBCD ,交EA 的 BC=4,CD=2,给出下列结论:① ZBAE=ZCAD ;②/DBC=30°③AE=4v5;④AF=2需,其中正确结论的个数有(A. 1个B. 2个C. 3个 二、填空题(本大题共 10小题,共30.0分)10. D. 4个如图,在Rt A ABC 中,ZBAC=30 °以直角边AB 为直径作半圆交 AC 于点D , .(结果不取近似值)11. 延长ED 交BC 于点F , BC=2V 3,则图中阴影部分的面积为 1352斗23CS3 ah3如图,在6X 5的网格内填入1至6的数字后,使每行、每列、 每个小粗线宫中的数字不重复,则a>c= )使得它的第三个顶点在 △ABC 的其AB以AD 为边作等边A ADE , D G CB14. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点 0重合,AF 仅轴,将正六边形 ABCDEF 绕原15.如图,在Rt ^ABC 中,BC=2 , /BAC=30 °斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:① 若C 、O 两点关于AB 对称,则OA=2霭; ② C 、O 两点距离的最大值为 4; ③ 若AB 平分CO ,贝U AB ±30;??④ 斜边AB 的中点D 运动路径的长为-?其中正确的是 _______ (把你认为正确结论的序号都填上).16. ____________________________________________________________________ 如图,ZAOB 的边OB 与x 轴正半轴重合,点 P 是OA 上的一动点,点 N ( 3, 0)是OB 上的一定点, 点M 是ON 的中点,Z AOB=30° ,要使PM+PN 最小,则点 P 的坐标为 _________________________________________________ .17.在一条笔直的公路上有 A 、B 、C 三地,C 地位于A 、B 两地之间,甲车从 A 地沿这条公路匀速驶向 C 地,乙车从B 地沿这条公路匀速驶向 A 地,在甲车 出发至甲车到达 C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t ( h )之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发 1.5h 时,两车相距170km ;③乙车出发2寸人时,两车 相遇;④甲车到达 C 地时,两车相距40km .其中正确的是 ___________ (填写所 有正确结论的序号) OA=AB , ZOAB=90 °反比例函数y=??(x > 0)的图象经过A , B 两点•若18.如图,在平面直角坐标系中,点0顺时针旋转n 次,每次旋转60°当n=2017时,顶点A 的坐标为点A 的坐标为(n , 1),则19.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A (-1, 1), B (0, -2), C ( 1, 0),点P (0,2)绕点A旋转180。
中考数学九年级下册专题训练50题含参考答案
2023年2月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.2.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.B.C.D.3.如图是一个几何体的侧面展开图,这个几何体是()A.长方体B.圆柱C.球D.圆锥4.如图,已知点P为反比例函数y=-6x上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A.-6B.6C.3D.125.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则(). A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D .从中随机抽取7张,可能都是红桃 6.函数3xy x =+中,自变量x 的取值范围是( ) A .3x >-B .3x <-C .x≠-3D .x≠ 37.将抛物线22y x =-向右平移3个单位,再向下平移2个单位,所得抛物线解析式为( )A .()2232y x =-++ B .()2232y x =-+- C .()2232y x =--+D .()2232y x =---8.从正面、上面、左面三个方向看某一物体得到的图形如图所示,则这个物体是( )A .三棱锥B .三棱柱C .圆锥D .圆柱9.如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A .12B .11C .10D .910.若气象部门预报明天下雨的概率是70%,下列说法正确的是( ) A .明天下雨的可能性比较大 B .明天下雨的可能性比较小 C .明天一定会下雨D .明天一定不会下雨11.一个由两个一次性纸杯组成的几何体如图水平放置,它的俯视图是( )12.已知点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上,则下列结论正确的是( ) A .122y y >>B .212y y >>C .122y y >>D .212y y >>13.下图是几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的主视图为( )A .B .C .D .14.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-2,x 2=6;①12a +c >0;①当y >0时,x 的取值范围是-2≤x <2;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个15.如图是某几何体的三视图,则该几何体是( )16.若下列有一图形为二次函数2286y x x =-+的图形,则此图为( )A .B .C .D .17.已知二次函数21=++()y ax bx c b c ≠图象的最高点坐标为(-2,4),则一次函数22()4y b c x b ac =-+-图象可能在:A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限18.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是( ).A .14B .34C .29D .91619.二次函数y=ax2+bx+c (a 、b 、c 为常数,且a≠0)中x 与y 的部分对应值如下表:给出以下三个结论:(1)二次函数y=ax2+bx+c 最小值为﹣4; (2)若y <0,则x 的取值范围是0<x <2;(3)二次函数y=ax2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,则其中正确结论的个数是( )A .0B .1C .2D .320.如图,平行于x 轴的直线AC 分别交抛物线21y x =与223x y =于B 、C 两点,过点C作y 轴的平行线交1y 于点D ,直线DE ∥AC 交2y 于点E ,则DEAB的值是( )A .2B .32y =C .3D .3.二、填空题21.有6张同样的卡片,卡片上分别写上数字“1921”、“1994”、“1935”、“1949”、“1978”、“1980”,将这些卡片背面朝上,洗匀后随机从中抽出一张,抽到标有的数字是偶数的概率是______.22.抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,则a 的取值范围是________.23.事件A 发生的概率为15,大量重复做这种试验事件A 平均每100次发生的次数是___.24.已知二次函数245y x x =--的图像与x 轴交于A 、B 两点,顶点为C ,则①ABC 的面积为________.25.甲、乙两人分别从、、A B C 这3个景点随机选择2个景点游览,甲、乙两人选择的2个景点恰好相同的概率是________.26.在10以内的素数中,随机抽取其中的一个素数,则所抽取的素数是偶数的等可能性大小是______.27.一个几何体的三视图如图所示,则这个几何体的名称是___________.28.如图,P 是反比例函数y = 3x图象上一点,P A ①x 轴于点A ,则PAOS =_______________.29.写出抛物线y =2(x ﹣1)2图象上一对对称点的坐标,这对对称点的坐标可以是_____.30.如图,转盘的白色扇形和黑色扇形的圆心角分别为240°和120°.让转盘自由转动2次,则指针一次落在白色区域,另一次落在黑色区域的概率是________.31.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC ∆都在第一象限内,52AB AC ==,BC x ∕∕轴,且4BC =,点A 的坐标为()3,5.若将ABC ∆向下平移m 个单位长度,,A C 两点同时落在反比例函数图象上,则m 的值为_____.32.已知Rt △ABC ,①C =90°,AB =13,AC =12,以AC 所在直线为轴将此三角形旋转一周所得圆锥的侧面积是________.(结果保留π)33.若二次函数26y x x k =-+的最小值为2,则k =________.34.将图所示的Rt①ABC 绕AB 旋转一周所得的几何体的主视图是图中的________ (只填序号).35.如图,矩形ABCD 的顶点C ,D 在x 轴的正半轴上,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上,则矩形ABCD 的面积为__36.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__. 37.如图,将抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q .(1)点P 的坐标为______;(2)图中阴影部分的面积为_____.38.30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)39.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;①244b ac a->0;①ac -b +1=0;①OA·OB =ca-.其中正确结论的个数是______个.40.如图,在平面直角坐标系中.点A 、B 在反比例函数y =5x的图象上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM ,则线段OM 的长度是_____.三、解答题41.当自变量x 取何值时,函数512y x =+与54y x =-的值相等?这个函数值是多少? 42.抛物线2y ax bx c =++的对称轴为直线2x =,且顶点在x 轴上,与y 轴的交点为A ,A 点的坐标为()0,1,点()2,1B 在抛物线的对称轴上,直线1y =-与直线2x =相交于点C .(1)求该抛物线的函数表达式.(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线1y =-交于点D .试判断PBD ∆是否为等腰三角形,并说明理由.(3)作PE BD ⊥于点E ,当点P 从横坐标2013处运动到横坐标2019处时,请求出点E 运动的路径长.43.如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点(4,)A m 和(8,2)B --,与y 轴交于点C .(1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ;(3)过点A 作AD ①x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当ODAC S 四边形:ODES=3:1时,求点P 的坐标.44.我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表中,a=,b=,c=;(2)补全统计图;(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?45.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W (元)与x (天)之间的函数关系式; (2)求x 为何值时,日销售利润为900元?(3)直接写出哪一天销售这种水果的利润最大?最大日销售利润为多少元?46.在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为x 后放回,然后乙也从中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(),x y . (1)请用列表或画树状图的方法写出点P 所有可能的坐标; (2)求点P 在函数22y x =-+的图象上的概率.47.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =3;当x =12时,y =1.求x =-12时,y 的值.48.综合与探究如图,已知抛物线y =﹣x 2﹣2x +3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .其顶点为D ,对称轴是直线l ,且与x 轴交于点H .(1)求点A ,B ,C ,D 的坐标;(2)若点P 是该抛物线对称轴l 上的﹣个动点,求①PBC 周长的最小值;(3)若点E 是线段AC 上的一个动点(E 与A .C 不重合),过点E 作x 轴的垂线,与抛物线交于点F ,与x 轴交于点G .则在点E 运动的过程中,是否存在EF =2EG ?若存在,求出此时点E的坐标;若不存在,请说明理由.49.指出下列随机事件中,哪些是等可能事件,哪些是非等可能事件.①在一个装着3个白球、3个黑球(每个球除颜色外都相同)的袋中摸出一个球,摸出白球与摸出黑球;①掷一枚均匀的骰子,朝上一面的点数分别为1、2、3、4、5、6;①从4张扑克牌中(4张牌的花色分别为红桃、方块、梅花、黑桃)随意抽取一张,这张牌分别是红桃、方块、梅花、黑桃;①掷一枚图钉,钉尖着地与钉尖朝上.50.如图,①OAB的OA边在x轴上,其中B点坐标为(3,4)且OB=BA.(1)求经过A,B,O三点的抛物线的解析式;(2)将(1)中的抛物线沿x轴平移,设点A,B的对应点分别为点A′,B′,若四边形ABB′A′为菱形,求平移后的抛物线的解析式.参考答案:1.B【分析】根据左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知: 该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.2.B【详解】试题分析:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2.故选B.考点:二次函数图象与几何变换.3.D【分析】根据圆锥侧面展开图的特征即可求解.【详解】解:如图是一个几何体的侧面展开图,这个几何体是圆锥.故选:D.【点睛】本题主要考查几何体的展开图,解题的关键是根据几何体的展开图判断几何体的形状,难度不大.4.B【分析】设P(x,y),根据点P在反比例函数上得xy=-6,由反比例函数k的几何意义结合矩形的面积公式即可得出答案.【详解】设P(x,y),①点P在反比例函数y=-6x上,①xy=-6,①S四边形MONP=ON·OM=|xy|=|-6|=6.故答案为B.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图像上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k .5.A【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【详解】解: A 、黑桃数量多,故抽到黑桃的可能性更大,故正确;B 、黑桃张数多于红桃,故抽到两种花色的可能性不相同,故错误;C 、从中抽取5张可能会有2张红桃,也可能不是,故错误;D 、从中抽取7张,不可能全是红桃,故错误.故选A .【点睛】本题考查概率的意义.6.C【分析】根据分式中分母不为零计算即可.【详解】由题意得x+3≠0,解得:x≠-3,故选:C .【点睛】本题考查了函数自变量的取值范围,掌握知识点是解题关键.7.D【分析】根据二次函数图象左加右减在自变量,上加下减在函数值的平移规律进行求解.【详解】.解:抛物线 22y x =- 向右平移3个单位,得()22-3y x =-,再向下平移2个单位,得:()2222y x =---.故答案为:D .【点睛】此题主要考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.A【分析】由主视图和左视图可得知几何体为锥体,再根据俯视图是三角形即可判断其为三棱锥.【详解】解:①主视图和左视图均为三角形①该几何体为椎体①俯视图为三角形①该几何体为三棱锥.故选:A.【点睛】本题主要考查了几何体的三视图,良好的空间想象能力是解答本题的关键.9.D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;++=个小正方体.①这个几何体最少需要用6219故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.10.A【分析】根据“概率”的意义进行判断即可.【详解】解:A.明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意;B.明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项B不符合题意;C.明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D.明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项D不符合题意;故选:A.【点睛】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键.11.C【分析】根据俯视图是指从几何体的上面观察得出的图形作答.【详解】解:几何体的俯视图是:【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12.B【分析】根据题意可得当1x >-时,y 随x 的增大而增大,即可求解.【详解】解:①抛物线()()2120y a x a =++>,①抛物线的对称轴为直线1x =-,且开口向上,①当1x >-时,y 随x 的增大而增大,①当1x =-时,函数值最小,最小值为2,①点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上, ①212y y >>.故选:B【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.13.C【分析】由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形,从而确定答案.【详解】解:由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形.故选C .【点睛】本题主要考查由三视图判断几何体等知识点的理解和掌握,能正确画图是解此题的关键,难度不大.14.B【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(6, 0),则可对①进行判断;由对称轴方程得到b =-2a ,然后根据x =-1时函数值为0可得到3a +c =0,则可对①进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对①进行判断;根据二次函数的性质对①进行判断.【详解】解:①抛物线开口向下,顶点在x 轴上方,①抛物线与x 轴有两个交点,①①= b 2-4ac >0,①①正确;①抛物线的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),①抛物线与x 轴的另一个交点坐标为(6,0),①方程ax 2+bx +c =0的两个根是x 1=2,x 2=6,①①正确; ①22b a-=, ①b =-4a ,①x =-2时,y =0,①4a -2b +c =0,①4a +8a +c =0,即12a +c=0,①①错误;当-2<x <6时,y >0,①①错误;当x <0时,y 随x 的增大而增大,①①正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时( 即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由①决定:①= b 2-4ac >0时,抛物线与x 轴有2个交点;①= b 2-4ac =0时,拋物线与x 轴有1个交点;①=b 2-4ac <0时,抛物线与x 轴没有交点.15.B【分析】根据三视图的形状即可判断.【详解】解:A 、圆柱的主视图是长方形,左视图是长方形,俯视图是圆,故此选项不符合题意;B 、几何体的主视图是长方形,左视图是小长方形,俯视图是三角形,故此选项符合题意;C 、长方体的主视图是长方形,左视图是小长方形,俯视图是长方形,故此选项不符合题意;D 、圆锥的主视图是三角形,左视图是三角形,俯视图是圆且中间有点,故此选项不符合题意,故选:B .【点睛】本题考查了根据三视图判断几何体的形状,解题的关键是掌握常见几何体的三视图特征.16.A【分析】根据二次函数的解析式y=2x 2-8x+6求得函数图象与y 轴的交点及对称轴,并作出选择.【详解】解:①当x=0时,y=6,及二次函数的图象经过点(0,6);①二次函数的图象的对称轴是:x=--822=2,即x=2; 综合①①,符合条件的图象是A ;故选A .【点睛】本题考查了二次函数的图象.解题时,主要从函数的解析式入手,求得函数图象与y 轴的交点及对称轴,然后结合图象作出选择.17.B【分析】根据图象有最高点可知a <0,把(-2,4)代入函数表达式可得4a -2b +c =4,根据最高点坐标可得到对称轴的表达式.【详解】解:①图象有最高点,①a <0,把(-2,4)代入21=++y ax bx c 得:4a -2b +c =4, ①最高点坐标(-2,4),①对称轴表达式:x =-2b a=-2,整理得:b =4a , 把b =4a 代入4a -2b +c =4得:b -c =-4<0,①a <0,且最高点坐标(-2,4),①21=++y ax bx c 与x 轴有两个交点,①∆=24b ac ->0,①一次函数22()4y b c x b ac =-+-在一二四象限.故选①B .【点睛】一次函数y =kx +b (k ≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.18.D【分析】首先将黄色区域平分成三部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黄色区域的情况,再利用概率公式即可求得答案.【详解】解:将黄色区域平分成三部分,如图:画树状图得:①共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,①两次指针都落在黄色区域的概率为916; 故选D .【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.C【分析】根据表格数据确定出二次函数的顶点坐标,开口方向,与x 轴的交点坐标,然后再逐一进行判断即可得解.【详解】解:由表格得:二次函数顶点坐标为(1,﹣4),开口向上,与x 轴交点坐标为(﹣1,0)与(3,0),则(1)二次函数y=ax 2+bx+c 最小值为﹣4,正确;(2)若y <0,则x 的取值范围是﹣1<x <3,错误;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,正确, 故选C .【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.20.D【分析】设A 点坐标为(0,a ),利用两个函数解析式求出点B 、C 的坐标,然后求出AB 的长度,再根据CD ∥y 轴,利用y 1的解析式求出D 点的坐标,然后利用y 2求出点E 的坐标,从而得到DE 的长度,然后求出比值即可得解.【详解】解:设A 点坐标为(0,a ),(a >0),则x 2=a ,解得x①点B a ),23x =a ,则x①点C a ),①CD ∥y 轴,①点D 的横坐标与点C①y 1=2=3a ,①点D ,3a ),①DE ∥AC ,①点E 的纵坐标为3a , ①23x =3a ,①x①点E 的坐标为(3a ),①DE ,①则3DE AB == 故选:D .【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据平行于x 轴的点的纵坐标相同,平行于y 轴的点的横坐标相同,用点A 的纵坐标表示出各点的坐标是解题的关键.21.12【分析】直接利用概率公式计算即可.【详解】根据题意可知:这些卡片中标有数字是偶数的卡片有3张. 故抽到标有的数字是偶数的概率是3162=. 故答案为:12.【点睛】本题考查简单的概率计算,掌握概率的计算公式是解答本题的关键. 22.a <1【分析】根据题意列出不等式并解答即可.【详解】解:①抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,①a −1<0,解得a <1,故答案为:a <1.【点睛】本题考查了二次函数图象与系数的关系,解题时,需要熟悉抛物线的对称性和增减性.23.20【分析】根据概率的意义解答即可.【详解】解:①事件A 发生的概率为15,①大量重复做这种试验事件A 平均每100次发生的次数是100×15=20.故答案为:20.【点睛】本题考查了概率意义,熟记概率意义是在大量重复试验下事件发生的频率会趋近于某个数(即概率)附近是解题关键. 24.27【分析】先求出A ,B ,C 的坐标,再以AB 为底边,求出三角形ABC 的高,即可求出面积.【详解】解:当y =0时,2450x x --=, 解得11x =-,25x =,①A ,B 的坐标为(1-,0),(5,0), ①AB =6,①2245(2)9y x x x =--=--, ①C (2,9-), ①C 到AB 的距离为9, ①169272ABCS=⨯⨯=. 故答案为:27.【点睛】本题主要考查二次函数的性质,关键是要能根据解析式求出图象与坐标轴的交点. 25.13【分析】用树状图表示所有可能出现的结果,再求出两个景点相同的概率. 【详解】解:用树状图表示如下:共有9种可能的结果,其中甲、乙两人选择的2个景点恰好相同的有3种结果, ①甲、乙两人选择的2个景点恰好相同的概率是3193P ==, 故答案为:13.【点睛】本题考查了用树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是解决本题的关键.26.14【分析】根据10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2;求抽取的素数是偶数的可能性,就相当于求1是4的几分之几,用除法计算,据此解答. 【详解】解解:10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2; ①1144÷=, 故答案为:14.【点睛】本题考查了简单事件发生的可能性的求解,即用可能性=所求情况数÷总情况数或求一个数是另一个数的几分之几用除法计算,注意:在所有的素数中只有一个偶素数即2.27.直三棱柱.【详解】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱. 故答案为:直三棱柱.【点睛】本题考查由三视图判断几何体,难度不大. 28.32【分析】根据反比例函数k 的几何意义即可求解. 【详解】解:①P 是反比例函数y = 3x图象上一点P A ⊥x 轴于点A , ①PAOS=32, 故答案为:32.【点睛】本题考查了反比例函数k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.29.(2,2),(0,2)(答案不唯一)【分析】由函数y=2(x﹣1)2可得函数的对称轴,任取函数上一点,求出其关于对称轴对称的点可得答案.【详解】解:由抛物线y=2(x﹣1)2,可得其对称轴为x=1,可取一点(0,2),则其关于x=1的对称点位(2,2),故答案:(2,2),(0,2)(答案不唯一).【点睛】本题主要考查二次函数的性质及二次函数关于对称轴对称的点的特征.30.4 9【分析】由白色区域是240度,黑色区域是120度,指针落在它们的可能性不相同;所以将白色区域分成相等的两部分,那么指针落在三个部分的可能性相同,则可由列表法或树状图列出所有可能的结果,利用概率公式即可求解.【详解】解:将白色扇形分成相等的两部分,分别记为白1和白2,所以转盘自由转动1次,指针落在白1,白2,黑三部分的可能性相同,如下表,所有等可能的结果有9种,其中一次落在白色区域,一次落在黑色区域的有4种,所以P(指针一次落在白色区域,另一次落在黑色区域)= 4 9 .故答案为4 9 .【点睛】本题考查了几何概率的求法,将白色扇形分成相等的两部分,再利用列表法(或树状图法)求解是解决本题的基本思路.31.5 4【分析】根据已知求出B与C点坐标,再表示出相应的平移后A与C坐标,将之代入反比例函数表达式即可求解;【详解】解:①52AB AC ==,4BC =,点()A 3,5. ①71,2B ⎛⎫⎪⎝⎭,75,2C ⎛⎫ ⎪⎝⎭,将ABC ∆向下平移m 个单位长度, ①()3,5A m -,75,2C m ⎛⎫- ⎪⎝⎭,①,A C 两点同时落在反比例函数图象上, ①73(5)52m m ⎛⎫-=- ⎪⎝⎭,①54m =;故答案为54;【点睛】本题考查反比例函数的图象及性质;熟练掌握等腰三角形的性质,通过等腰三角形求出点的坐标是解题的关键. 32.65π【详解】试题分析:首先确定圆锥的母线长和圆锥的底面半径,利用侧面积计算公式直接求得圆锥的侧面积即可.试题解析:①①C=90°,AB=13,AC=12, ①BC=5,以AC 所在直线为轴旋转一周,所得圆锥的底面周长=10π,侧面积=12×10π×13=65π. 考点:1.圆锥的计算;2.点、线、面、体. 33.11【分析】根据二次函数解析式求出函数的顶点坐标,代入即可解题. 【详解】解:①函数2y x 6x k =-+的对称轴是x=3, ①当x=3时,函数有最小值2, 即9-18+k=2, 解得:k=11.【点睛】本题考查了二次函数的图像和性质,属于简单题,求出二次函数的顶点坐标是解题关键. 34.①【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看【详解】解:Rt △ABC 绕斜边AB 旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图①. 故答案为①.【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键. 35.12.【分析】利用反比例函数k 的几何意义求解即可.【详解】①延长BA 交y 轴于点E ,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上, ①ADOE S 矩形=4,OE S 矩形BC =16, ①矩形ABCD 的面积为:OE S 矩形BC -ADOE S 矩形=16-4=12;故答案为:12.【点睛】本题考查了反比例函数的k 的几何意义,熟练将k 的几何意义与图形的面积有机结合,灵活解题是解题的关键. 36.﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,所以函数图象分支在二、四象限。
中考数学复习专题圆30道填空、选择精选
中考复习专题:圆(30题精选)一.选择题(共29小题)1.如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF 的长()A.等于4B.等于4C.等于6 D.随P点位置的变化而变化2.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2B.πcm2C.cm2D.cm23.如图,正六边形ABCDEF的边长为1,连接AC、BE、DF,求图中灰色四边形的周长为何?()A.3B.4C.2+D.2+4.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.35.如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是()A.b= a B.b= a C.b=D.b= a6.如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径长为2,把⊙P 向左平移,当⊙P与⊙O相切时,a的值为()A.3B.1C.1,3 D.±1,±37.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1B.C.D.28.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF 是直角三角形时,t(s)的值为()A.B.1C.或1 D.或1或9.如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为()A.15°B.30°C.60°D.90°10.如图,把一个斜边长为2且含有30°角的直角三角板ABC绕直角顶点C顺时针旋转90°到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是()A.πB.C.D.11.如图,等腰梯形ABCD中,AD∥BC,以点C为圆心,CD为半径的弧与BC交于点E,四边形ABED是平行四边形,AB=3,则扇形CDE(阴影部分)的面积是()A.B.C.πD.3π12.如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作.若△AEF的边长为2,则阴影部分的面积约是()(参考数据:,,π取3.14)A.0.64 B.1.64 C.1.68 D.0.3613.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为()A.4B.C.D.514.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,,,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2011等于()A.B.C.D.15.如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此正五边形沿着x轴向右滚动,则滚动过程中,下列何者会经过点(75,0)()A.A B.B C.C D.D16.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)17.如图所示,甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.若==,则甲、乙、丙周长的关系为()A.甲=乙=丙B.甲<乙<丙C.甲<丙<乙D.丙<乙<甲18.(2010•台湾)坐标平面上有两圆O1、O2,其圆心坐标均为(3,﹣7).若圆O1与x轴相切,圆O2与y轴相切,则圆O1与圆O2的周长比()A.3:7 B.7:3 C.9:49 D.49:919.如图1,扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中A点在O′B上,如图2所示,则O点旋转至O′点所经过的轨迹长度为()A.πB.2πC.3πD.4π20.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则21.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器弧()对应的圆心角(∠AOB)为120°,AO的长为4cm,OC的长为2cm,则图中阴影部分的面积为()A.(+)cm2B.(+)cm2C.(+2)cm2D.(+2)cm222.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为r,扇形的半径为R,那么()A.R=2r B.R=r C.R=3r D.R=4r23.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB 于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8D.1625.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.B.25 C.D.5626.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(﹣1.5,2)D.(1.5,﹣2)27.如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2.A.24﹣πB.πC.24﹣πD.24﹣π28.在校运动会上,三位同学用绳子将四根同样大小的接力棒分别按横截面如图(1),(2),(3)所示的方式进行捆绑,三个图中的四个圆心的连线(虚线)分别构成菱形、正方形、菱形,如果把三种方式所用绳子的长度分别用x,y,z来表示,则()A.x<y<z B.X=y<z C.x>y>z D.x=y=z29.如图,△ABC是直角边长为a的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是()A.B.C.D.二.填空题(共1小题)30.如图,直线y=x+与x轴、y轴分别相交于A、B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左平平移,当⊙P向左平移_________ 个单位长度时,⊙P与该直线相切.参考答案与试题解析一.选择题(共29小题)1.如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF 的长()A.等于4B.等于4C.等于6 D.随P点位置的变化而变化考点:垂径定理;勾股定理;相似三角形的判定与性质.专题:计算题.分析:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OA:OD,即(r+x):1=9:(r﹣x),求出r2﹣x2=9,根据垂径定理和勾股定理即可解答:解:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A、B两点,∴OA=4+5=9,0B=5﹣4=1,∵AB是⊙M的直径,∴∠APB=90°(直径所对的圆周角是直角),∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,∵∠PBA=∠OBD,∴∠PAB=∠ODB,∵∠APB=∠BOD=90°,∴△OBD∽△OCA,∴=,即=,解得:(r+x)(r﹣x)=9,r2﹣x2=9,由垂径定理得:OE=OF,OE2=EN2﹣ON2=r2﹣x2=9,即OE=OF=3,∴EF=2OE=6,故选C.点评:本题考查了勾股定理,垂径定理,相似三角形的性质和判定的应用,解此题的关键是求出OE=OF和r2﹣x2=9,主要考查学生运用定理进行推理和计算的能力.2.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2B.πcm2C.cm2D.cm2考点:扇形面积的计算;等腰直角三角形.专题:探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.3.如图,正六边形ABCDEF的边长为1,连接AC、BE、DF,求图中灰色四边形的周长为何?()A.3B.4C.2+D.2+考点:正多边形和圆.分析:根据正六边形的性质得出BC=1=CD=GH,CG==HD,进而得出四边形CDHG的周长.解答:解:如图:∵ABCDEF为正六边形∴∠ABC=120°,∠CBG=60°又BC=1=CD=GH,∴CG==HD,四边形CDHG的周长=(1+)×2=2+.故选:D.点评:此题主要考查了正多边形和圆的有关计算,根据已知得出GH=1以及CG的长是解题关键.4.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.3考点:圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.专题:探究型.分析:先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.解答:解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选C.点评:本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.5.如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是()A.b= a B.b= a C.b=D.b= a考点:圆锥的计算.分析:首先利用圆锥形圣诞帽的底面周长等于侧面的弧长求得小圆的半径,然后利用两圆外切的性质求得a、b之间的关系即可.解答:解:∵半圆的直径为a,∴半圆的弧长为∵把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,∴设小圆的半径为r,则:2πr=解得:r=如图小圆的圆心为B,半圆的圆心为C,作BA⊥CA于A点,则:AC2+AB2=BC2即:()2+()2=()2整理得:b= a故选D.点评:本题考查了圆锥的计算,解题的关键是利用两圆相外切的性质得到两圆的圆心距,从而利用勾股定理得到a、b之间的关系.6.如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径长为2,把⊙P 向左平移,当⊙P与⊙O相切时,a的值为()A.3B.1C.1,3 D.±1,±3考点:圆与圆的位置关系;坐标与图形性质.分析:应分两个圆相内切和相外切两种情况进行讨论,求得P到O的距离,即可得到a的值.解答:解:当两个圆外切时,圆心距d=1+2=3,即P到O的距离是3,则a=±3.当两圆相内切时,圆心距d=2﹣1=1,即P到O的距离是1,则a=±1.故a=±1或±3.故选D.点评:本题考查了圆与圆的位置关系与数量关系,注意两圆相切时应分内切与外切两种情况进行讨论.7.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1B.C.D.2考点:扇形面积的计算;等边三角形的判定与性质;三角形中位线定理.专题:探究型.分析:首先证明△ABC是等边三角形.则△EDC是等边三角形,边长是2.而和弦BE围成的部分的面积=和弦DE围成的部分的面积.据此即可求解.解答:解:连接AE,∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠A=60°,∵点E为BC的中点,∠AEB=90°,∴AB=AC,∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选C.点评:本题考查了等边三角形的面积的计算,证明△EDC是等边三角形,边长是4.理解和弦BE围成的部分的面积=和弦DE围成的部分的面积是关键.8.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF 是直角三角形时,t(s)的值为()A.B.1C.或1 D.或1或考点:圆周角定理;含30度角的直角三角形;三角形中位线定理.专题:分类讨论.分析:若△BEF是直角三角形,则有两种情况:①∠BFE=90°,②∠BEF=90°;在上述两种情况所得到的直角三角形中,已知了BC边和∠B的度数,即可求得BE的长;AB的长易求得,由AE=AB﹣BE即可求出AE的长,也就能得出E点运动的距离,根据时间=路程÷速度即可求得t的值.解答:解:∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,BC=2,∠ABC=60°;∴AB=2BC=4cm;①当∠BFE=90°时;Rt△BEF中,∠ABC=60°,则BE=2BF=2cm;故此时AE=AB﹣BE=2cm;∴E点运动的距离为:2cm,故t=1s;所以当∠BFE=90°时,t=1s;②当∠BEF=90°时;同①可求得BE=0.5cm,此时AE=AB﹣BE=3.5cm;∴E点运动的距离为:3.5cm,故t=1.75s;③当E从B回到O的过程中,在运动的距离是:2(4﹣3.5)=1cm,则时间是:1.75+=s.综上所述,当t的值为1s或1.75s和s时,△BEF是直角三角形.故选D.点评:此题主要考查了圆周角定理以及直角三角形的判定和性质,同时还考查了分类讨论的数学思想.9.如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为()A.15°B.30°C.60°D.90°考点:切线的性质;三角形的外角性质;圆周角定理.分析:连接BD,由题意可知当P和D重合时,∠APB的度数最大,利用圆周角定理和直角三角形的性质即可求出∠ABP的度数.解答:解:连接BD,∵直线CD与以线段AB为直径的圆相切于点D,∴∠ADB=90°,当∠APB的度数最大时,则P和D重合,∴∠APB=90°,∵AB=2,AD=1,∴sin∠DBP==,∴∠ABP=30°,∴当∠APB的度数最大时,∠ABP的度数为30°.故选B.点评:本题考查了切线的性质,圆周角定理以及解直角三角形的有关知识,解题的关键是由题意可知当P和D重合时,∠APB的度数最大为90°.10.如图,把一个斜边长为2且含有30°角的直角三角板ABC绕直角顶点C顺时针旋转90°到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是()A.πB.C.D.考点:旋转的性质;扇形面积的计算.分析:根据直角三角形的性质求出BC、AC的长度,设点B扫过的路线与AB的交点为D,连接CD,可以证明△BCD是等边三角形,然后求出点D是AB的中点,所以△ACD的面积等于△ABC的面积的一半,然后根据△ABC扫过的面积=S扇形ACA1+S扇形BCD+S△ACD,然后根据扇形的面积公式与三角形的面积公式列式计算即可得解.解答:解:在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=AB=1,∠B=90°﹣∠BAC=60°,∴AC==,∴S△ABC=×BC×AC=,设点B扫过的路线与AB的交点为D,连接CD,∵BC=DC,∴△BCD是等边三角形,∴BD=CD=1,∴点D是AB的中点,∴S△ACD=S△ABC=×=,∴△ABC扫过的面积=S扇形ACA1+S扇形BCD+S△ACD,=×π×()2+×π×12+,=π+π+,=π+.故选D.点评:此题考查了旋转的性质、直角三角形的性质以及等边三角形的性质,注意掌握旋转前后图形的对应关系,利用数形结合思想把扫过的面积分成两个扇形的面积与一个三角形面积是解题的关键,也是本题的难点.11.如图,等腰梯形ABCD中,AD∥BC,以点C为圆心,CD为半径的弧与BC交于点E,四边形ABED是平行四边形,AB=3,则扇形CDE(阴影部分)的面积是()A.B.C.πD.3π考点:扇形面积的计算;等边三角形的判定与性质;平行四边形的性质;等腰梯形的性质.分析:根据题意证得△DEC为等边三角形,则∠C=60°;然后根据扇形面积公式S=可以求得扇形CDE(阴影部分)的面积.解答:解:∵四边形ABCD是等腰梯形,且AD∥BC,∴AB=CD;又∵四边形ABED是平行四边形,∴AB=DE(平行四边形的对边相等),∴DE=DC=AB=3;∵CE=CD,∴CE=CD=DE=3,∴∠C=60°,∴扇形CDE(阴影部分)的面积为:=;故选A.点评:本题考查了平行四边形的性质、等腰梯形的性质、等边三角形的判定与性质以及扇形面积的计算.根据已知条件证得△DEC为等边三角形是解题的关键.12.如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作.若△AEF的边长为2,则阴影部分的面积约是()(参考数据:,,π取3.14)A.0.64 B.1.64 C.1.68 D.0.36考点:扇形面积的计算;全等三角形的判定与性质;等边三角形的性质;等腰直角三角形;正方形的性质.专题:探究型.分析:先根据直角边和斜边相等,证出△ABE≌△ADF,得到△ECF为等腰直角三角形,求出S△ECF、S扇形AEF、S△AEF的面积,S△ECF﹣S弓形EGF即可得到阴影部分面积.解答:解:∵AE=AF,AB=AD,∴△ABE≌△ADF(Hl),∴BE=DF,∴EC=CF,又∵∠C=90°,∴△ECF是等腰直角三角形,∴EC=EFcos45°=2×=,∴S△ECF=××=1,又∵S扇形AEF=π22=π,S△AEF=×2×2sin60°=×2×2×=,又∵S弓形EGF=S扇形AEF﹣S△AEF=π﹣,∴S阴影=S△ECF﹣S弓形EGF=1﹣(π﹣)≈0.64.故选A.点评:本题考查了扇形面积的计算,全等三角形的判定与性质、等边三角形的性质、等腰直角三角形、正方形的性质,将阴影部分面积转化为S△ECF﹣S弓形EGF是解题的关键.13.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为()A.4B.C.D.5考点:圆锥的计算;相切两圆的性质.分析:首先求得弧AE的长,然后利用弧AE的长正好等于圆的底面周长,求得⊙O的半径,则BE的长加上半径即为AD的长.解答:解:∵AB=4,∠B=90°,∴==2π,设⊙O与AD、CD分别相切于F、G,连接FO并延长交BC于H,则FH垂直于AD,OG垂直于CD,可得矩形ABHF、矩形CDFH、矩形CGOH和正方形DFOG,∴FH⊥BC,∴OH=3,BH=4=BE,∴点E与H重合,又CH=OG=1,∴AD=BC=BE+CH=5故选D.点评:本题考查了圆锥的计算及相切两圆的性质,解题的关键是熟记弧长的计算公式.14.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,,,…的圆心依次按点A,B,C,D,E,F 循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2011等于()A.B.C.D.考点:弧长的计算.专题:规律型.分析:利用弧长公式,分别计算出L1,L2,L3,…的长,寻找其中的规律,确定L2011的长.解答:解:L1==L2==L3==L4==按照这种规律可以得到:L n=∴L2011=.故选B.点评:本题考查的是弧长的计算,先用公式计算,找出规律,求出L2011的长.15.如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此正五边形沿着x轴向右滚动,则滚动过程中,下列何者会经过点(75,0)()A.A B.B C.C D.D考点:正多边形和圆;坐标与图形性质.专题:规律型.分析:根据点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,由此可知经过(5,0)的点经过(75,0),找到经过(5,0)的点即可.解答:解:∵C、D两点坐标分别为(1,0)、(2,0).∴按题中滚动方法点E经过点(3,0),点A经过点(4,0),点B经过点(5,0),∵点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,∴可知经过(5,0)的点经过(75,0),∴点B经过点(75,0).故选B.点评:本题考查了正多边形和圆及坐标与图形性质,解题的关键是了解正五边形滚动5次正好一个轮回,并由此判断经过点(75,0)的点就是经过(5,0)的点.16.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)考点:切线的性质;坐标与图形性质.分析:先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.解答:解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵OA=4,OC=2,∴∠OAC=30°,∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.点评:本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.17.如图所示,甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.若==,则甲、乙、丙周长的关系为()A.甲=乙=丙B.甲<乙<丙C.甲<丙<乙D.丙<乙<甲考点:三角形的外接圆与外心.分析:根据在三角形中,大角对大边,知甲图中,AB最大;乙图中,DE是中间;丙图中,GH 最小.再进一步结合已知条件即可判断三个图形的周长的大小.解答:解:根据大角对大边和已知条件,得甲图中的最大边=乙图中的中间边=丙图中的最小边.所以它们的周长大小是甲<乙<丙.故选B.点评:此题考查了同一个三角形中的边角关系.18.坐标平面上有两圆O1、O2,其圆心坐标均为(3,﹣7).若圆O1与x轴相切,圆O2与y 轴相切,则圆O1与圆O2的周长比()A.3:7 B.7:3 C.9:49 D.49:9考点:直线与圆的位置关系.分析:根据直线和圆相切,圆心到直线的距离等于圆的半径,可以分别求得两个圆的半径,再根据圆周长公式,可知两个圆的周长之比即为两个圆的半径之比.解答:解:∵圆心坐标均为(3,﹣7).若圆O1与x轴相切,圆O2与y轴相切,∴⊙O1与⊙O2的半径分别是7,3.∴圆O1与圆O2的周长比是7:3.故选B.点评:此题主要是考查了直线和圆相切应满足的数量关系.注意:两个圆的周长比等于两个圆的半径之比.19.如图1,扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中A点在O′B上,如图2所示,则O点旋转至O′点所经过的轨迹长度为()A.πB.2πC.3πD.4π考点:弧长的计算.分析:根据弧长公式,此题主要是得到∠OBO′的度数.根据等腰三角形的性质即可求解.解答:解:根据题意,知OA=OB.又∠AOB=36°,∴∠OBA=72°.∴点旋转至O′点所经过的轨迹长度==4π.故选D.点评:此题综合运用了等腰三角形的性质和弧长公式.20.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则考点:切线的判定与性质. 分析:首先过点N 作NC⊥AM 于点C ,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,⊙O 的半径为1,易求得MN==,l 1和l 2的距离为2;若∠MON=90°,连接NO 并延长交MA 于点C ,易证得CO=NO ,继而可得即O 到MN 的距离等于半径,可证得MN 与⊙O 相切;由题意可求得若MN 与⊙O 相切,则AM=或.解答:解:如图1,过点N 作NC⊥AM 于点C , ∵直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,⊙O 的半径为1,∴CN=AB=2,∵∠1=60°, ∴MN==,故A 与B 正确;如图3,若∠MON=90°,连接NO 并延长交MA 于点C ,则△AOC≌△BON,故CO=NO ,△MON≌△MOC,故MN 上的高为1,即O 到MN 的距离等于半径.故C 正确;如图2,∵MN 是切线,⊙O 与l 1和l 2分别相切于点A 和点B , ∴∠AMO=∠1=30°, ∴AM=;∵∠AM′O=60°, ∴AM′=,∴若MN 与⊙O 相切,则AM=或; 故D 错误.故选D .点评:此题考查了切线的判定与性质、全等三角形的判定与性质以及三角函数等知识.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.21.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器弧()对应的圆心角(∠AOB)为120°,AO 的长为4cm ,OC 的长为2cm ,则图中阴影部分的面积为( )A . (+)cm 2B . (+)cm 2C . (+2)cm 2D . (+2)cm 2 考点:扇形面积的计算.专题:计算题.分析: 根据题意,可得阴影部分的面积=扇形AOB 的面积+△BOC 的面积,代入数据计算可得答案.解答:解:易得△OBC中,∠BOC=60°,那么BC=2;故阴影部分的面积=+2×2÷2=(+2)cm2,故选C.点评:解决本题的关键是把阴影部分合理分割为规则图形的面积.22.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为r,扇形的半径为R,那么()A.R=2r B.R=r C.R=3r D.R=4r考点:圆锥的计算;弧长的计算.分析:让扇形的弧长等于圆的周长即可.解答:解:根据扇形的弧长等于圆的周长,∴扇形弧长等于小圆的周长,即:=2πr,解得R=4r,故选D.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.23.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.考点:扇形面积的计算;正方形的性质.分析:连接AM、BM.根据图形的轴对称性和等底等高的三角形的面积相等,易知阴影部分的面积即为扇形OAB的面积,再根据正方形的四个顶点是圆的四等分点,即可求解.解答:解:连接AM、BM.∵MN∥AD∥BC,OM=ON,∴四边形AOBN的面积=四边形AOBM的面积.再根据图形的轴对称性,得阴影部分的面积=扇形OAB的面积=圆面积.故选B.点评:此题注意能够把不规则图形的面积进行转换.涉及的知识点:两条平行线间的距离处处相等;等底等高的三角形的面积相等;正方形的每一条边所对的圆心角是90°.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB 于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8D.16考点:圆周角定理;相似三角形的判定与性质.分析:建立AC与AG、AF之间的关系是关键,连接BC,则∠B=∠F,∠ACB=90°,通过证明∠ACD=∠B得∠F=∠ACG,从而得△ACG∽△AFC,根据对应边成比例得关系式求解.解答:解:连接BC,则∠B=∠F,∵CD⊥AB,∴∠ACD+∠CAD=90°,∵AB是直径,∴∠ACB=90°,∠CAB+∠B=90°,∴∠ACG=∠F.又∵∠CAF=∠FAC,∴△ACG∽△AFC,∴AC:AF=AG:AC,即AG•AF=AC2=(2)2=8.故选C.点评:此题考查了相似三角形的判定和性质,如何建立已知和未知之间的关系是解题关键,难度偏上.25.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.B.25 C.D.56考点:直线与圆的位置关系;三角形的内切圆与内心;圆与圆的位置关系;相似三角形的判定与性质.专题:综合题.分析:Rt△ABC的直角边AC=24,斜边AB=25,则另一直角边为7,圆心所经过的路径是一个与三角形相似的三角形,设三边分别为7a,24a,25a,则从图中我们可以看出三个梯形面积加上小三角形面积等于大三角形面积.三个梯形的高都是圆的半径1,所以可列方程(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,解之求得a的值,从而求得所构成的三角形的三边,即可求出周长=.解答:解:设三边分别为7a,24a,25a,则:(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,解得:a=,∴构成的三角形的三边分别是,16,,∴周长=+16=.故选C.点评:本题的关键是根据三个梯形面积加上小三角形面积等于大三角形面积,设出未知数,列出方程求所构成的三角形的三边长.26.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(﹣1.5,2)D.(1.5,﹣2)考点:坐标与图形性质;勾股定理;垂径定理.分析:本题可先设半径的大小,根据点A的坐标列出方程.连接AN根据等腰三角形的性质即可得出AN的长度,再根据两点之间的距离公式即可解出N点的坐标.。
初三数学选择填空带答案
一、选择题(本题共12 小题;第1~8 题每小题 2 分,第9~12 题每小题 3 分,共28 分.每小题只有一个选项是正确的)1.某市今年 1 月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A.—7℃B.7℃C.—1℃D.1℃2.64 的立方根等于A.4 B.—4 C.8 D.—83.已知∠α=35°19′,则∠α的余角等于A.144°41′B.144°81′C.54°41′D.54°81′4.根据国家信息产业部2006 年5 月21 日的最新统计,截至2006 年4 月底,全国电话用户超过7.7 亿户.将7.7 亿用科学记数法表示为11 B.7.73 1010 C.7.73 109 D.7.73 108A.7.73 105.如图,AB∥CD ,直线EF 分别交AB,CD 于E,F 两点,∠BEF 的平分线交CD 于点G,若∠EFG=72°,则∠EGF 等于EA BA.36°B.54°C.72 °D.108° C DF G数学试卷第1 页(共8 页)(第5 题)6.某市对2400 名年满15 岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70 这一小组的频率为0.25,则该组的人数为A.600 人B.150 人C.60 人D.15 人7.如图,已知PA 是⊙O 的切线, A 为切点,PC 与⊙O 相交于B.C 两点,PB=2 ㎝,BC =8 ㎝,则PA 的长等于A. 4 ㎝B.16 ㎝ A·O C.20 ㎝D. 2 5㎝P CB8.二元二次方程组xxyy3,的解是10第7题A.x1y125, x2y22,5B.x1y15,2x2y22,5C.x1y15,2x2y252,D.x1y15,2x2y22,59.如图,ABCD 的周长是28 ㎝,ABC 的周长是22 ㎝,则AC 的长为AA.6 ㎝B.12 ㎝ DC.4 ㎝D.8 ㎝B C(第9 题)10.如图为了测量某建筑物AB 的高度,在平地上 C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12 m 到达D 处,在 D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于A.6( 3 +1)m B. 6 ( 3—1) mC.12 ( 3+1) m D.12( 3 -1)m (第10 题)11.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为A.1∶ 2 B.2∶ 1 C.1∶ 4 D.4∶ 12+9x+34 ,当自变量x 取两个不同的值x1、x2 时,函数值相等,12.已知二次函数y=2 x则当自变量x 取x1+x2 时的函数值与A.x=1 时的函数值相等B.x=0 时的函数值相等C.x=14时的函数值相等D.x=-94时的函数值相等答案1 2 3 4 5 6 7 8 9 10 11 12B ACD B A D C D A C B1.哈市 4 月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是().A .-2℃B.8℃C.一8℃D.2℃2.下列运算中,正确的是().2+x2=x4 B.x2÷x=x2 C.x3-x2=x D.x2 x2=x3A .x3.在下列图形中,既是轴对称图形又是中心对称图形的是().4.右图是某一几何体的三视图,则这个几何体是().A .圆柱体B.圆锥体C.正方体D.球体5.9 的平方根是().A .3 B.±3 C.一3 D.816.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有().A .4 种B.3 种C.2 种D.1 种7.如图,圆锥形烟囱帽的底面直径为80cm,母线长为50cm,则这样的烟囱帽的侧面积是().2 B.3600πcm2A .4000πcm2 D.1000πcm2C.2000πcmk 2的图象位于第一、第三象限,则k 的取值范围是().8.已知反比例函数y=xA .k>2 B.k≥ 2 C.k≤ 2 D.k<29.小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分30 米的速度行走了450 米,为了不迟到他加快了速度,以每分45 米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是().10.如图,将边长为8cm 的正方形纸片A BCD 折叠,使点 D 落在BC 边中点E 处,点 A 落在点 F 处,折痕为MN,则线段CN 的长是().A.3cm B.4cmC.5cm D.6cm答案:1.B 2.D 3.C 4.A 5.B 6.B 7.C 8.A 9.D 10.A 1.2的绝对值是()A. 2 B.2 C.12D.122.化简2a 2a 1 的结果是()A.4a 1 B.4a 1 C.1 D. 13.如图,直线m∥n,∠1=55 ,∠2 = 45 ,则∠3的度数为()21mA.80 B.90C.100 D.1103n4.方程组2x y 3,的解是()x y 3(第 3 题)A.xy1,2.B.xy2,1.C.xy1,1.D.xy2,3.5.在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移6.某中学篮球队12 名队员的年龄情况如下:年龄(单位:岁)14 15 16 17 18人数 1 4 3 2 2则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15(第5 题)C.15,15.5 D.16,157.如图,已知A B AD,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()DA.CB CD B.∠BAC ∠DACC.∠BCA ∠DCA D.∠B ∠D 908.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a, A的半径为 2.下列说法中不正确的是()...A CA.当a 5时,点 B 在A内BB.当1 a 5 时,点 B 在A内C.当a 1时,点B 在A外D.当时,点在外 a 5 B A(第7 题)9.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2 个或3 个B.3 个或4 个C.4 个或5 个D.5 个或6 个主视图俯视图10.为了让江西的山更绿、水更清,2008 年省委、省政府提出了确保到2010 年实现全省森林覆盖率达到63%的目(第9 题)标,已知2008 年我省森林覆盖率为60.05%,设从2008 年起我省森林覆盖率的年平均增长率为x,则可列方程()A.60.05 1 2x 63% B.60.05 1 2x 63C.213. 1 x 63% D.260.5 1 x 63答案题号 1 2 3 4 5 6 7 8 9 10答案 B D C B D A C A C D1.| 5 6|=()A. 5 6 B. 5 6 C.- 5 6 D. 6 5 2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是()A.等腰梯形B.矩形C.菱形D.平行四边形3.下面四个数中,最大的是()A. 5 3 B.sin88°C.tan46°D.5214.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A .4 B.5 C.6 D.105.二次函数y=(2x-1) 2 +2 的顶点的坐标是()A .(1,2)B.(1,-2)C.(12,2)D.(-12,-2)6.足球比赛中,胜一场可以积 3 分,平一场可以积 1 分,负一场得0 分,某足球队最后的积分是17 分,他获胜的场次最多是()A.3 场B.4 场C.5 场D.6 场7.如图,四边形ABCD 的对角线AC 和BD 相交于点E,如果△CDE的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为()A.7 B.8 C.9 D.108.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC·tanB=()A.2 B.3 C.4 D.5答案:1.D;2.D;3.C;4.C;5.C;6.C;7.B;8.C.14.当x=1 时,代数式 2 x+5 的值为(▲)A.3 B. 5 C. 7 D. -215.直角坐标系中,点P(1,4) 在( ▲)A. 第一象限B. 第二象限C. 第三象限D. 第四象限16.我省各级人民政府非常关注“三农问题”.截止到2005 年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005 年底我省农村居民人均收入约6600 元,用科学记数法表示应记为(▲)4 A.0.66 3 103B. 6.6 3 102C.66 3 104D .6.6 3 1017.下图所示的几何体的主视图是( ▲)A. B. C. D.18.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ▲)A. B. C. D.19.如果两圆半径分别为3和4, 圆心距为7, 那么两圆位置关系是( ▲)A. 相离B. 外切C. 内切D. 相交20.不等式组x2x5 34的解是( ▲)A. -2 ≤x≤ 2B. x≤ 2C. x ≥-2D. x <221.将叶片图案旋转180°后,得到的图形是( ▲)叶片图案 A B C D22.下图能说明∠1>∠2 的是( ▲)A B C D223.二次函数y ax bx c(a 0)的图象如图所示,则下列结论:①a>0;②c>0;③b2-4 a c>0,其中正确的个数是( ▲)A. 0 个B. 1 个C. 2 个D. 3 个一. 选择题(本题共10 小题,每小题 4 分,共40 分)题号 1 2 3 4 5 6 7 8 9 10答案 C A B B D B A D C C 评分标准选对一题给 4 分,不选,多选,错选均不给分填空题24.在函数1y 的表达式中,自变量x 的取值范围是▲.x 625.分解因式: 2 x 2 +4 x +2=▲.26.一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数是▲.27.如图,已知AB∥CD,直线EF分别交AB、CD于点E,F,EG平分∠BEF交CD于点G,如果∠1=50°,那么∠ 2 的度数是▲度.第14 题第15 题第16 题28.如图,在菱形ABCD中,已知AB=10, AC=16, 那么菱形ABCD的面积为▲.29.如图,点M是直线y=2 x+3 上的动点,过点M作MN垂直于x轴于点N,y 轴上是否存在点P,使△MNP为等腰直角三角形. 小明发现:当动点M运动到(-1,1)时,y 轴上存在点P(0,1), 此时有MN=MP,能使△NMP为等腰直角三角形. 那么,在y 轴和直线上是否还存在符合条件的点P和点M呢?请你写出其它符合条件的点P的答案:11.X≠6 12.2 2x 1 ;13.8;14.65°15.96 ;16.(0,0),(0,34),(0,-3)9.写出一条经过第一、二、四象限,且过点( 1,3)的直线解析式.10.一元二次方程x 2 =5x的解为.11.凯恩数据是按照某一规律排列的一组数据,它的前五个数是:13,35,127,17,926,按照这样的规律,这个数列的第8 项应该是.12.一个四边形中,它的最大的内角不能小于.13.某学习小组中共有12 名同学,其中男生有7 人.现在要从这12 名同学中抽调两名同学去参加数学知识竞赛,抽调的两名同学都是男生的概率是.14.如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则D EBC=.B15.如图,已知A、B、C、D、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A+∠B+∠C=__________度.OAC 16.如图,矩形ABCD 的长A B=6cm,宽A D=3cm.O 是AB 的中点,OP⊥AB,两半圆的直径分别为A O EDDyPC与OB.抛物线y=ax2经过C、D 两点,则图中阴影部分2的面积是cm .A OB x3 答案:9.y=-x+ 2 等;10.x1 =0,x2 =5;11.13 ;12.90°;13.722;14.1215.90;16.9411.写出一个大于 1 且小于 4 的无理数.12.选做题(从下.面.两.题.中.只.选.做.一.题.,.如.果.做.了.两.题.的.,.只.按.第.(..1.).题.评.分.).(Ⅰ)方程0.25x 1的解是.(Ⅱ)用计算器计算:13 3.142≈.(结果保留三个有效数字)13.用直径为80cm 的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是cm. A B C1(第15 题)14.不等式组2x 3 7,的解集是.3 x 215 .如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB BC 16cm,则∠1 度.416.函数 1 2y x x≥0 ,y x 0 的图象如图所示,x则结论:y①两函数图象的交点A的坐标为2,2 ;y x1B②当x 2时,yy;2 1③当x 1时,BC 3;ACy4x④当x 逐渐增大时,增大而减小.y随着x的增大而增大,y2 随着x的1Ox 1 x其中正确结论的序号是.(第16 题)答案:11.如,2,3,7 等12.(Ⅰ)x 4;(Ⅱ)0.46413.20 14.2 x 5 15.120 16.①③④(说明:1。
数学中考选择填空精选训练题
数学中考选择填空精选训练题一.选择题(共31小题,满分93分,每小题3分)1.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.2.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值3.(3分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+44.(3分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长5.(3分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8D.66.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.7.(3分)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 8.(3分)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N 恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm29.(3分)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.10.(3分)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=()A.1:B.1:2C.1:D.1:11.(3分)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH 12.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.13.(3分)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k 的值为()A.2B.C.D.214.(3分)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为()A.B.C.D.15.(3分)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD 为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.216.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连结DE,点F,G分别是BC和DE的中点,连结AG,FG,当AG=FG时,线段DE长为()A.B.C.D.417.(3分)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A.≤B.≥C.≥D.≤18.(3分)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A.B.C.D.19.(3分)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P 从点A运动到点D,则线段CC1扫过的区域的面积是()A.πB.π+C.D.2π20.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.421.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4B.或﹣C.﹣或4D.﹣或4 22.(3分)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.23.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN =2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.324.(3分)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M425.(3分)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC 的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)26.(3分)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.427.(3分)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积28.(3分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF 与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.29.(3分)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 30.(3分)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF 折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.31.(3分)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.B.C.4D.二.填空题(共29小题,满分87分,每小题3分)32.(3分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC 于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=.33.(3分)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O 的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为.34.(3分)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.35.(3分)点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.36.(3分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.37.(3分)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连接BD.若BD的长为2,则m的值为.38.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是.39.(3分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连接CD.若△ACD的面积是2,则k的值是.40.(3分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.41.(3分)将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x 轴正半轴上,且AB=4,点E在AD上,DE=AD,将这副三角板整体向右平移个单位,C,E两点同时落在反比例函数y=的图象上.42.(3分)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.43.(3分)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为.44.(3分)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为,sin∠AFE的值为.45.(3分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2 cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.46.(3分)如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.47.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标(,2).反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是.48.(3分)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为.49.(3分)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是;点P到达点B时,线段A′P扫过的面积为.50.(3分)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是.51.(3分)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x >0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.52.(3分)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC 上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为;当点M的位置变化时,DF长的最大值为.53.(3分)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.54.(3分)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=,则图象经过点D的反比例函数的解析式是.55.(3分)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=度;的值等于.56.(3分)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC 相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.57.(3分)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x 轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.58.(3分)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N在对角线AC上.若AE=3BE,则MN的长为.59.(3分)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C 和DE的中点F,则k的值是.60.(3分)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.。
历年初三数学中考填空选择基础训练
中考基础训练时间:30分钟 你实际使用 分钟班级 姓名 学号1、5的相反数是( )A 、-5B 、5C 、51 D 、51- 2、下列四个数中,大于-3的数是( )A 、-5B 、-4C 、-3D 、-2 3、已知∠A =400,则∠A 的补角等于( )A 、500B 、900C 、1400D 、1800 4、下列运算中,错误的是( )A 、32a a a =⋅ B 、ab b a 632=+C 、224a a a =÷ D 、()222b a ab =-5、函数3-=x y 中自变量x 的取值范围是( )A 、x >3B 、x ≥3C 、x >-3D 、x ≥-3 6、如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( ) A 、4cm B 、6cmC 、8cmD 、10cm 7、抛物线()322+-=x y 的顶点坐标是( )A 、(-2,3)B 、(2,3)C 、(-2,-3)D 、(2,-3) 8、顺次连结任意四边形四边中点所得的四边形一定是( )A 、平行四边形B 、矩形C 、菱形D 、正方形 9、点A (4-m ,m 21-)在第三象限,则m 的取值范围是( )A 、21>m B 、4<mC 、421<<m D 、4>m10、如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( )A 、AB ⊥CD B 、∠AOB =4∠ACDC 、⋂⋂=BD ADD 、PO =PD第6题图 OCBA 第10题图DPOCBA11﹡、为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水。
初中数学中考填空、选择典型题
1.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B两点,若反比例函数y =kx (x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤82.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是__________.(结果保留根号)3.如图,平面直角坐标系中,⊙O 1过原点O ,且⊙O 1与⊙O 2相外切,圆心O 1与O 2在x 轴正半轴上,⊙O 1的半径O 1P 1、⊙O 2的半径O 2P 2都与x 轴垂直,且点P 1()11,x y 、P 2()22,x y 在反比例函数1y x=(x >0)的图象上,则12y y +=__________.4.如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为A .23 B .25 C .49 D .35.如图,在矩形ABCD 中,AB =2,BC =3,点E 、F 、G 、H 分别在矩形ABCD的各边上,EF ∥HG ,EH ∥FG ,则四边形EFGH 的周长是【 】A .10B .13C .210D .2136.如图,点M 是反比例函数y = 1x 在第一象限内图象上的点,作MB ⊥x 轴于点B .过点M 的第一条直线交y 轴于点A 1,交反比例函数图象于点C 1,且A 1C 1=12A 1M ,△A 1C 1B 的面积记为S 1;过点M 的第二条直线交y 轴于点A 2,交反比例函数图象于点C 2,且A 2C 2= 14A 2M ,△A 2C 2B 的面积记为S 2;过点M 的第三条直线交y 轴于点A 3,交反比例函数图象于点C 3,且A 3C 3= 18A 3M ,△A 3C 3B 的面积记为S 3;依次类推…;则S 1+S 2+S 3+…+S 8= .7.如图,点A 在双曲线2(0)y x x =>上,点B 在双曲线4(0)y x x=>上,且AB //y 轴,点P 是y 轴上的任意一点,则△P AB 的面积为 ▲ .8.如图,点A(3,n)在双曲线y=x3上,过点A 作 AC ⊥x 轴,垂足为C .线段OA 的垂直平分线交OC 于点B ,则△ABC 周长的值是________.9.如图,把一个斜边长为2且含有030角的直角三角板ABC 绕直角顶点C 顺时针旋转090到11A B C ∆,则在旋转过程中这个三角板扫过的图形的面积是( )A .πB .3C .34π D .1112π+10.如图4,∠MON = 30°,点123A A A 、、……在射线ON 上,点123B B B 、、……在射线OM 上,△112A B A 、△223AB A 、△334ABA ……均为等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考题型训练 填空、选择专题
一、填空题(每小题3分,共计30分)
1. 计算:︱-5︱-3=__________
2. 化简:233y x xy ⋅-= 。
3. 不等式组1
22211
32x x x x -⎧->⎪⎪⎨-+⎪<⎪⎩的整数解是______________________ 4. 一年定期的存款,年息为1.98%,到期取款时需扣除利息的20%作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息__________元
5. 已知抛物线的解析式为()3142
+-=x y ,则这条抛物线的顶点坐标是 ___ 6. 在半径为9cm 的圆中,60°的圆心角所对的弧长为__________cm .
7. 如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,
且DE ∥BC ,如果BC =8cm ,AD :AB =1:4,那么△ADE 的周
长等于________cm . 8. 下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a +b )n (其中n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a +b )4
展开式中所缺系数.(a +b )=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3 则(a +b )4=a 4+__________a 3b +6a 2b 2+4ab 3+b 4 9.Rt △ABC 中,∠C=90°,AB=17,sinA=17
8,则BC= 。
10.在Rt △ABC 中,∠C=90°,AC=3,BC=4。
若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是 。
二、选择题(每小题3分,共计30分)
11. 若a b -<0,则下列各式中一定正确的是( )
A. a b >
B. ab >0
C.0a b >
D. ->-a b
A D
B
C E
12. 计算()π-30的结果是( )
A. 0
B. 1
C. 3-π
D. π-3
13. 某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是 ( )
(A )420480480=+-x x (B )204480480=+-x x (C )448020480=--x x (D )204804480=--x x 14. 下列说法正确的是( )
A .没有公共点的两圆必外离
B .圆心距小于两圆半径之和的两圆必相交
C .两个同心圆的圆心距为零
D .两圆连心线的长必大于两圆半径之差.
15.已知两圆内切于点A ,P 是两圆公切线上的一点,过点P 分别作两圆的切线PB 、PC ,分别切小圆和大圆于B 、C 两点,若∠APC =50°,∠PCB =80°,则∠PAB 的度数为( )
A .60°
B .65°
C .70°
D .75°
16. 若(3,4)是反比例函数x
m m y 122-+=图象上一点,则函数图象必经过( )
(A )(2,6)(B )(2,-6)(C )(4,-3)(D )(3,-4)
17. 下列例题正确的是( )
A .对角线相等的四边形是矩形
B .相邻的两个角都互补的四边是平行四边形
C .平分弦的直径垂直于弦,并且平分弦所对的两条弧
D .三点确定一个圆
18. 图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到
B 点.甲虫沿、、、路线爬行,乙虫沿路线爬行,则下列结论正确的是 ( )
(A )甲先到B 点
(B )乙先到B 点 (C )甲、乙同时到B 点
(D )无法确定 19.⊙O 1和⊙O 2的半径分别为8和5,两圆没有公共点,则圆心距O 1O 2的取值范围是( )
A .O 1O 2>13
B .O 1O 2<3
C .3<O 1O 2<13
D .O 1O 2>13或O 1O 2<3
20.已知线段AB ,如果作与AB 在点A 连接,那么所在圆的圆心在( )
A .A
B 的垂直平分线上 B .过点A 的任意一条直线上。