船舶操纵基础理论DOC

合集下载

船舶操纵的基本原理

船舶操纵的基本原理

3)反移量(偏距)LK 反移量(偏距) 反移量是指转舵后,船舶重心从原航向向操舵相反 反移量是指转舵后, 一侧横移的距离。又称偏距。在满舵旋回时, 一侧横移的距离。又称偏距。在满舵旋回时,当船 舶回转达到一个罗经点时,反移量达到最大值, 舶回转达到一个罗经点时,反移量达到最大值,约 为船长的1%左右 左右, 为船长的1%左右,而船尾反移量的最大值可达船 长的1/10~1/5。 长的1/10~1/5。 4)旋回圈初径DT 旋回圈初径DT 旋回圈初径是指开始操舵到航向转过180° 旋回圈初径是指开始操舵到航向转过180°时重心 所移动的横向距离。在内河, 所移动的横向距离。在内河,对船舶选择旋回掉头 的位置是很重要的参考。 的位置是很重要的参考。 5)旋回圈直径D 旋回圈直径D 旋回圈直径是指船舶进入定常旋回运动时的旋回圈 直径(D=2r)。 直径(D=2r)。 船舶旋回圈各要素是船舶操纵的重要依据, 船舶旋回圈各要素是船舶操纵的重要依据,特别是 航向改变量为30° 40°时的纵距、横距、 航向改变量为30°~40°时的纵距、横距、反移量
船舶制动能力是指船舶在某一船速下,主机停车或 船舶制动能力是指船舶在某一船速下, 倒车以后,船舶对主机工况的反应能力。 倒车以后,船舶对主机工况的反应能力。它可用主 机停车或倒车后船舶对岸相对静止所需的时间和船 舶滑行距离的长短来衡量。 舶滑行距离的长短来衡量。 第二节 旋回圈要素与船舶操纵性的关系 船舶在定速直航状态下,操某一舵角(一般为满舵) 船舶在定速直航状态下,操某一舵角(一般为满舵), 船舶将作纵向和横向相结合的复合运动, 船舶将作纵向和横向相结合的复合运动,称为旋回 运动。船舶作旋回运动时重心运动的轨迹, 运动。船舶作旋回运动时重心运动的轨迹,称为旋 回圈。旋回圈几何特征是: 回圈。旋回圈几何特征是: 最初重心除继续前移外, 最初重心除继续前移外,同 时向操舵相反一侧横移, 时向操舵相反一侧横移,随 后变成瞬时曲率半径r1逐渐 插入图1 后变成瞬时曲率半径r1逐渐 插入图11(船舶操纵75页)。 1(船舶操纵 页 船舶操纵75 减小的螺旋线; 减小的螺旋线;当航向改变 θ≈900~1200之后 之后, 量θ≈900~1200之后,进入 定常旋回运动,此时, 定常旋回运动,此时,曲率

船舶操纵

船舶操纵

2.2 操纵运动方程的线性化
水动力学数学模型
船舶静水中运动时的受力,采用三阶泰勒展开 水动力导数超过50个,可以参见 Fossen T. I. Guidance and Control of Ocean Vehicles, John Wiley & Sons, New York, USA, 1994
阿勃柯维奇


野本兼作(1957)

1.1 船舶操纵性总论
船舶操纵性研究的发展过程

迪德

提出了用于评价航向稳定性的螺旋试验方法 6自由度运动方程,及泰勒基数展开,为非线性研究 提供了数学工具 整个系统看作一个动态系统,研究了船舶对操舵的 频域响应(舵做输入,船运动作输出)
阿勃柯维奇


野本兼作(1957)
1.1 船舶操纵性总论
船舶操纵性研究的发展过程
独木舟时期:刳木为舟,剡木为楫,具有推进 和操纵功能; 随船舶容积的增加:一排长桨---〉短而宽的船 尾桨; 摇橹和舵是中国在操船技术上的重大发明,具 有重要意义; 19世纪后,风帆被蒸汽机和柴油机动力所代替, 但是舵却一直沿用至今。 经历了从简单到复杂,试验到理论的过程
水动力导数的物理意义

水动力和力矩的角加速度导数
正的回转角加速度在船首产横负的 在船尾产生正的 和负的 因此, 较小,取决于船型; 是一个很大的负值


和负的;
相当于船舶的附加惯性力 矩系数。
2.2 船舶操纵运动方程
水动力导数的物理意义

舵导数(控制导数)
右舵角为正,正的舵角产生负的舵力, 舵力矩使船向右转,是正的,故

2.2 操纵运动方程的线性化

船舶操纵性能(理论1)

船舶操纵性能(理论1)

船舶操纵性能: 1。

旋回圈要素(反移量,旋回初径,进距, 横距, 定常旋回直径, 滞距,漂角;2。

舵效(RUDDER EFFECT);3。

船舶控速性;4。

流的影响;5。

风的影响;6。

靠离泊注意事项;7。

抛锚操纵;8。

潮流;9。

侧推器的使用;一.旋回圈要素1.反移量(KICK)船舶重心偏离原航向线向操舵相反一侧横移的距离称为反移量;船尾反移量最大值约为船长的1/10~1/5,比重心处反移量要大得多;船速快,舵角大,反移量则大.吃水增加,反移量有所减小2.旋回初径(TACTICAL DIAMETER)3.进距(ADVANCE)4.横距(TRANSFER)5.定常旋回直径(FINAL DIAMETER)6.滞距(REACH)7.漂角(DRIFT ANGLE)船尾部漂角最大;漂角越大,旋回性能越好,旋回直径越小,降速越多,横倾角越大,转心也前移.浅水中漂角较深水中小.8.转心(PIVOTING POINT)转心的位置,在开始操舵时约在重心稍前处,随船舶旋回不断加快,转心位置向前移动;漂角大,旋回性能好的船舶,转心越靠前;由于船舶前进中旋回时转心在重心之前,因此在旋回时船首向内偏移量比船尾向外偏移量来得小;后退时,转心位于重心之后,和前进中回转时转心位置相对称.9.旋回中船速10.旋回时间11.旋回中横倾先内倾后外倾旋回圈要素的使用1.反移量-----在船舶驶离码头或并靠它船时,船首刚刚摆出泊位,如果很快操大舵角进车,则会产生较大反移量而导致尾部触碰码头或他船;2.旋回初径和进距可以用来估算用舵旋回掉头所需水域的大小。

二.舵效(RUDDER EFFECT)影响舵效的因素1.吃水-------船舶吃水增加,舵效变差;满载船转动惯量大,故启动不易停转难,因此,满载大型船舶操纵时,一般宜早用舵,早回舵,舵角较大。

2.舵速-------经验表明,人力操舵能保持舵效的最低航速为3KN,自动舵为8KN。

3.舵角和舵面积比--------加大操舵角是提高舵效的有效措施,舵面积比增大,舵效变好;4.纵倾和横倾---------首倾时舵效较差,适当尾倾时舵效较好;船舶有横倾时,向有横倾侧转向时舵效差,反之,舵效较好。

船舶操纵基础理论DOC

船舶操纵基础理论DOC

第一章船舶操纵基础理论通过本章的学习,要求学员概念理解正确,定义描述准确,对船舶操纵性能够正确评估,并具有测定船舶操纵性能的知识。

根据船舶操纵理论,操纵性能包括:1)机动性(旋回性能和变速运动性能)2)稳定性(航向稳定性)第一节船舶操纵运动方程为了定量地描述船舶的操纵运动,我们引入船舶操纵运动方程,用数学方法来讨论船舶的运动问题。

一、船舶操纵运动坐标系1.固定坐标系Ox0y0z0其原点为O,坐标分别为x0,y0,z0,由于我们仅讨论水面上的船舶运动,因此,该坐标系固定于地球表面。

作用于船舶重心的合外力在x0,y0轴上的投影分别为X0和Y0对z0轴的合外力矩为N2. 运动坐标系Gxyz其原点为点G (船舶重心),坐标分别为x ,y ,z ,该坐标系固定于船上。

这主要是为了研究船舶操纵性的方便而建立的坐标系。

x ,y ,两个坐标方向的运动速度分别为u 和v ,所受的外力分别为X 和Y ,对z 轴的转动角速度为r ,z 轴的外力矩为N 。

二、 运动方程的建立根据牛顿关于质心运动的动量定理和动量矩定理,船舶在水面的平面运动可由下列方程描述:y 0⎪⎩⎪⎨⎧===ϕZ og o og o I N y m Y x m X该式一般很难直接解出。

为了方便,将其转化为运动坐标系表示,这样可以使问题大为简化。

经过转换,得:⎪⎩⎪⎨⎧=+=-=r I N ur vm Y vr u m X Z )()( 该方程看似复杂,但各函数和变量都与固定坐标系没有关系,因此,可以使问题大为简化。

三、 水动力和水动力矩的求解对于上述方程中的水动力和水动力矩可表示为:⎪⎩⎪⎨⎧===),,,,,,(),,,,,,(),,,,,,(δδδr v u r v u f N r v ur v u f Y r v u r v u f X N Y X经过台劳级数展开,可得X ,Y ,N 对各自变量的偏导数,称为水动力导数和水动力矩导数,它们可以通过船模试验求得。

《船舶操纵》课件

《船舶操纵》课件
较短时间内,较小的水域上得到的转头角,即改向 角的大小。
若转头角大,则认为舵效好,否则,舵效就差。 2)影响舵效的主要因素以及提高舵效的措施 (1)舵角:
因为舵角的大小直接影响转船力矩和转头角的大 小,所以加大舵角是提高舵效的有效措施。 (2)舵速:
舵速是由船速、伴流和螺旋桨排出流流速三部分 组成。船舶在低速航行中,当需要大角度转向时, 则可加大螺旋桨转速,提高滑失比,增大排出流流 速以提高舵效。
指船舶倒车时的最大输出功率。
上述输出功率的相互比例,将因主机的种类和 新旧程度不同而不同,一般情况下如下表所示。
种类
输出功率比
最大持续输出功率
100%
常用(海上)输出功率 80%~90%
过载(应急)输出功率 105%~110%
倒车输出功率
40%~60%
进港航行或雾航时往往需要备车,此时的
输出功率也称备车输出功率,通常约为最大持
1)偏移或反移量Lk:
是船舶重心在旋回初始阶段向操舵相反一舷 横移的距离。满载时其最大值约为船长的1%左 右,但船尾的反移量较大,其最大值约为船长的 1/lO~l/5,并且该值约出现在转头角达一个 罗经点左右时。
2)进距Ad:
是开始操舵到航向转过任何一角度时,重心 所移动的纵向距离。旋回资料中提供的纵距,通 常特指航向转过90°时的进距。在此基础上,如 再转过相当于漂角度数的位置处,将出现船舶在 原航向上的最大纵移距离,称为最大进距,其值 约为旋回初径的O.85~1.O倍。
2023最新整理收集 do
something
船舶操纵
第一章 船舶操纵性能
第一节 船速与冲程
一、船速与阻力、推力的关系 1.船舶阻力
R =R。+△R R。=Rf+Rr=Rf+Re+Rw △R =RF+RA+Ax+RR

重庆交通大学船舶操纵性复习.doc

重庆交通大学船舶操纵性复习.doc

第四篇船舶操纵第一章绪论1.操纵性:指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。

2.船舶操纵性包括以下四个方面的内容1)航向稳定性:指船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后,保持原有航向运动的性能。

2)回转性:指船舶应舵作圆弧运动的性能。

3)转首性及跟从性:指船舶应舵转首及迅速进入新的稳定运动状态的性能。

前者称为转首性,后者称为跟从性。

4)停船性能:指船舶对惯性停船和倒车停船的响应性能。

3.船舶操纵装置有舵(由于结构简单、工作可靠、造价低廉,应用最广泛)、转动导管、平旋推进器、主动转向装置等。

4.操纵六要素:舵(关键性设备)、车、锚、缆、风和流。

5.船舶操纵性与航行的安全性、经济性以及军舰的战斗力和生命力有着密切联系。

6.船舶六个自由度的运动包括直线运动和转动两种形式。

第二章船舶操纵1.船舶匀速沿中纵剖面方向直线航行时,横向力和偏航力矩为0。

2.诸水动力导数的物理意义:(1)水动力和力矩的位置倒数Yv和Nv合力是一个较大的负值,Yv也是一个较大的负值。

而水动力矩由于首尾作用相抵消,其绝对值不会很大,因机翼的水动力中心在形成之前,首部作用占优,故Nv 一般是一个不大的负值(2)水动力和力矩的旋转倒数Yr和Nr由于船首和船尾水动力方向相反,因此水动力导数丫「的绝对值不是很大,其符号取决于船型,可正可负。

由于船体回转产生的水动力矩在船首尾具有相同的方向,都是阻止船舶回转的,因此水动力矩导数Nr是一个很大的负值,它对船舶的操纵运动起重要影响。

(3)水动力和力矩的线加速度导数Y v和N v匕是水动力Y相对于加速度U在平衡状态下的变化率,匕是一个相当大的负值。

水动力导数Np是一个不大的数值,其符号取决于船型。

(4)水动力和力矩的角加速度导数匕和N,匕是一个较小的值,其符号取决于船型。

水动力矩导数N,总是一个很大的负值(5)舵导数(或控制导数)峪和N" 匕<0,N&>03.诸水力导数取决于船型,对于特定的船是常数。

第1章 船舶操纵基础理论解读

第1章 船舶操纵基础理论解读

第一章船舶操纵基础理论通过本章的学习,要求学员概念理解正确,定义描述准确,对船舶操纵性能够正确评估,并具有测定船舶操纵性能的知识。

根据船舶操纵理论,操纵性能包括:1)机动性(旋回性能和变速运动性能)2)稳定性(航向稳定性)第一节船舶操纵运动方程为了定量地描述船舶的操纵运动,我们引入船舶操纵运动方程,用数学方法来讨论船舶的运动问题。

一、船舶操纵运动坐标系1.固定坐标系Ox0y0z0其原点为O,坐标分别为x0,y0,z0,由于我们仅讨论水面上的船舶运动,因此,该坐标系固定于地球表面。

作用于船舶重心的合外力在x0,y0轴上的投影分别为X0和Y0对z0轴的合外力矩为N2. 运动坐标系Gxyz其原点为点G (船舶重心),坐标分别为x ,y ,z ,该坐标系固定于船上。

这主要是为了研究船舶操纵性的方便而建立的坐标系。

x ,y ,两个坐标方向的运动速度分别为u 和v ,所受的外力分别为X 和Y ,对z 轴的转动角速度为r ,z 轴的外力矩为N 。

二、 运动方程的建立根据牛顿关于质心运动的动量定理和动量矩定理,船舶在水面的平面运动可由下列方程描述:y 0⎪⎩⎪⎨⎧===ϕZ og o og o I N y m Y x m X该式一般很难直接解出。

为了方便,将其转化为运动坐标系表示,这样可以使问题大为简化。

经过转换,得:⎪⎩⎪⎨⎧=+=-=r I N ur vm Y vr u m X Z )()( 该方程看似复杂,但各函数和变量都与固定坐标系没有关系,因此,可以使问题大为简化。

三、 水动力和水动力矩的求解对于上述方程中的水动力和水动力矩可表示为:⎪⎩⎪⎨⎧===),,,,,,(),,,,,,(),,,,,,(δδδr v u r v u f N r v ur v u f Y r v u r v u f X N Y X经过台劳级数展开,可得X ,Y ,N 对各自变量的偏导数,称为水动力导数和水动力矩导数,它们可以通过船模试验求得。

2 船舶操纵性基础(6学时)

2 船舶操纵性基础(6学时)
要达到方向稳定,需要操舵; 要达到位置稳定,需要操舵和定位。

2、航向稳定性的概念

船舶不具有直线运动稳定性的后果:

在小舵情况下,可能出现反操现象; 保向比较困难; 在海上航行时,可能自动舵打不上; 操舵者较难以掌握操舵技术; 操舵者劳动强度增加,并且要求注意力要高度
集中;

可能出现失误。
二、航向稳定性的判别
1、直接判别参数-实船试验结果

螺旋试验结果: 把定常旋回角速度作为舵角的函数,可以得 到:源自r rcaδ
d 具有航向稳定性的船舶
b
δ
航向不稳定的船舶
1、直接判别参数-实船试验结果

逆螺旋试验结果

r
航向稳定:

与螺旋试验结果相似;
δ— r 曲线出现多值对 应的S形曲线。
本船的主尺度
操纵装置性能 船在不同载况时主机不同转速下的航速 船舶特殊操纵装置(侧推器),等等。

二、船舶必备操纵性资料

2、驾驶台操纵性图(Wheelhouse Poster)

驾驶台操纵性图是一种详细描述船舶旋回性能
和停船性能的图表资料。

张贴于:驾驶台显著位置。
内容包括:

4、新航向距离DNC: 57.3 C V t1 DNC L(T tan ) K 0 2 2

所以:
57.3 60 181852 3 150 (1.55 tan ) 643.4 m 1.2510 2 3600 2
DNC
§2-2 航向稳定性与保向性
2.操10º 舵角改向60º 时的新航向距离DNC。
例题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章船舶操纵基础理论通过本章的学习,要求学员概念理解正确,定义描述准确,对船舶操纵性能够正确评估,并具有测定船舶操纵性能的知识。

根据船舶操纵理论,操纵性能包括:1)机动性(旋回性能和变速运动性能)2)稳定性(航向稳定性)第一节船舶操纵运动方程为了定量地描述船舶的操纵运动,我们引入船舶操纵运动方程,用数学方法来讨论船舶的运动问题。

一、船舶操纵运动坐标系1.固定坐标系Ox0y0z0其原点为O,坐标分别为x0,y0,z0,由于我们仅讨论水面上的船舶运动,因此,该坐标系固定于地球表面。

作用于船舶重心的合外力在x0,y0轴上的投影分别为X0和Y0对z0轴的合外力矩为N2. 运动坐标系Gxyz其原点为点G (船舶重心),坐标分别为x ,y ,z ,该坐标系固定于船上。

这主要是为了研究船舶操纵性的方便而建立的坐标系。

x ,y ,两个坐标方向的运动速度分别为u 和v ,所受的外力分别为X 和Y ,对z 轴的转动角速度为r ,z 轴的外力矩为N 。

二、 运动方程的建立根据牛顿关于质心运动的动量定理和动量矩定理,船舶在水面的平面运动可由下列方程描述:y 0⎪⎩⎪⎨⎧===ϕZ og o og o I N y m Y x m X该式一般很难直接解出。

为了方便,将其转化为运动坐标系表示,这样可以使问题大为简化。

经过转换,得:⎪⎩⎪⎨⎧=+=-=r I N ur vm Y vr u m X Z )()( 该方程看似复杂,但各函数和变量都与固定坐标系没有关系,因此,可以使问题大为简化。

三、 水动力和水动力矩的求解对于上述方程中的水动力和水动力矩可表示为:⎪⎩⎪⎨⎧===),,,,,,(),,,,,,(),,,,,,(δδδr v u r v u f N r v ur v u f Y r v u r v u f X N Y X经过台劳级数展开,可得X ,Y ,N 对各自变量的偏导数,称为水动力导数和水动力矩导数,它们可以通过船模试验求得。

四、 一阶船舶操纵运动方程任何一种模型都是只是对真实物理现象的近似描述,不能准确代表真实物理过程。

为了简化研究,往往需要引入一定的假设,才能使方程易解。

将上述方程忽略二阶以上的水动力导数和水动力矩导数,得到的方程称为线性方程。

它适用于小扰动的情况。

对于船舶的旋回性,我们关心的是航向角和转向角速度随时间的变化,较少考虑x 方向的情况。

因此,仅取Y 和N 两方程式联立,并进行无因次化处理,得到船舶操纵运动的线性方程:)()(32121δδ T K r r T T r T T +=+++T 1、T 2、T 3为船舶追随性指数 K 为船舶旋回性指数设T= T 1+T 2-T 3,经过求解,得:δK r rT =+即得一阶船舶操纵运动方程。

第二节船舶的旋回性能一、船舶的旋回性的定义、旋回运动的过程1.船舶的旋回性的定义船舶定速度直航中操某一舵角并保持之,船舶进入旋回运动的性能称为船舶的旋回性能。

2.旋回运动的过程—参考《船舶操纵性与耐波性》p241)转舵阶段—横移内倾阶段δ从0增加到δC随着舵角的增加,产生YR和NR,由此产生横向加速度和旋转角加速度,由于船舶的质量和转动惯量很大,横移速度v和转动角速度r还不明显。

β较小,降速不明显,重心外移L/100,船尾外移(1/5~1/10)L,内倾。

内倾的原因是舵力作用中心较水动力作用中心低。

旋转角速度r 旋转角加速度横移速度v 横移加速度r 舵角δT图1-1 船舶旋回运动过程中运动要素的变化2)过渡阶段—加速旋回阶段δ维持在δC,横向加速度、旋转角加速度、横移速度v和转动角速度r都存在,并不断变化,只有舵角为常量。

β增加,Vs降低较快,出现外倾。

外倾的原因是离心力产生的外倾力矩大于内倾力矩。

3)定常旋回阶段横向加速度、旋转角加速度均为0。

δ,v,r均为常量。

航向角变化约120○之后,船舶开始进入定常旋回阶段。

β为定值,Vs降速不变,稳定外倾。

二、旋回圈1.旋回圈的概念船舶定速直航中操某一舵角并保持之,船舶重心所描绘的轨迹称为旋回圈。

旋回圈是表示船舶旋回性能的重要指标。

旋回圈越小,旋回性能越好。

2.旋回圈的要素1)旋回圈的几何要素⑴进距Ad—advance从开始转舵到航向变化为任意值时的船舶重心纵向移动的距离,通常用航向角变化为90○时,为最大进距称为进距Ad。

一般Ad=0.6D T ~ 1.2D T⑵横距Tr—transfer从开始转舵到航向变化为90○时的船舶重心横向移动的距离。

一般Tr≈0.5D T⑶旋回初径D T — tactical diameter从开始转舵到航向变化为180○时的船舶重心横向移动的距离。

一般D T =3L ~ 6L⑷ 旋回直径D — final diameter 船舶进入定常旋回时的旋回圈直径。

一般D=0.9D T ~ 1.2D T ⑸ 反移量L K — kick在旋回过渡阶段,由于船舶转动惯量很大还来不及产生较大的旋转角速度,则在Y R 的作用下,产生横向移动加速度,进而产生横向移动速度v ,使船舶重心产生向转舵相反方向的横移量,其称为反移量L K 。

一般船舶满载时其L K ≈L ·1%,而船尾可能要偏出(1/5~1/10)L 。

2)旋回圈的运动要素 ⑴ 漂角β— drift angle⎪⎩⎪⎨⎧-==ββsin cos V v V u 船首尾线与船舶重心运动轨迹切线的夹角。

它在转舵阶段和过渡阶段是不断变化的,当船舶进入定常旋回时,漂角为常量。

一般β≈3~15○⑵转心P —pivoting point船舶回转曲率中心到船舶首尾线所作垂线的垂足P 。

由刚体的平面运动可知:船舶在水平面的运动可以分解为转心的平动和绕转心的转动。

因此在该点处v=β=0。

一般船舶转心在船舶首柱之后约1/3~1/5L 处。

β越大越靠近船首。

⑶旋回过程中的船速u船舶在旋回过程中,会产生纵向速度降低的现象。

这是因为:船舶斜航阻力要远大于直航阻力; 船舶斜航时推进器效率降低; 舵阻力增加。

旋回圈越小,旋回过程中速度降低越大。

一般旋回速降为原船速的1/2~1/4。

⑷旋回时间O指旋回过程中船舶航向改变360所需要的时间。

其与船舶排水量有关。

一般万吨级船舶满载时,其快速旋回时间约为6分钟,VLCC 要增加一倍。

⑸旋回横倾角旋回过程中的横倾与作用在正横方向的力有关。

这些力包括:)1(2tan 2-=GMBMgD V t c θ —《操船论》∙ 舵的横向力Y δ; ∙ 水阻力的横向力Y W ;和 ∙ 离心力Y F 。

上述三个横向力构成的横倾力矩为 M θ= Y F z F + Y W z W - Y δz R在旋回初始阶段,因重心轨迹的曲率半径很大,因此,离心力Y F 可以忽略不计,而Y W 和Y δ大小基本一致,但由于z W 大于z R ,因此,旋回初始阶段船舶向转舵方向横倾。

内倾的原因是舵力作用中心较水动力作用中心低。

Y船舶开始旋回之后,随着重心轨迹的曲率半径的减小,由于Y F的增大,合力矩也向外增大,因此,船舶开始向转舵相反方向横倾。

外倾的原因是离心力产生的外倾力矩大于内倾力矩。

船速越高,旋回直径越小,GM越小则稳定外倾角越大。

三、影响旋回圈大小的因素影响旋回圈大小的因素包括:方形系数,水下侧面积形状,舵角,舵面积,船速,吃水等因素。

1.方形系数C B—block coefficient从试验可知,方形系数C B越小的船舶,即比较瘦削的船舶的旋回性能比方形系数C B大的船舶的旋回性能差,即旋回圈越大。

C B越大旋回直径越小,旋回性能越好。

2.水下侧面积形状就整体而言,船首部分分布面积较大如有球鼻首者,或船尾比较瘦削的船舶,旋回中的阻尼力矩小,旋回性较好,旋回圈较小,但航向稳定性较差;而船尾部分分布面积较大者如船尾有钝材,或船首比较削进(cut up)的船舶,旋回中的阻尼力矩比较大,旋回性较差,旋回圈较大,但航向稳定性较好。

首侧面积大D T小,如球鼻首;尾侧面积大D T大,如尾钝材;3.舵角舵角越大,旋回圈越小。

4.舵面积舵面积比是指舵面积与船体浸水侧面积(L PP×d)的比值。

舵力与舵面积成正比,一般来说,舵面积增大会提高船舶的旋回性能。

但舵面积增大也会增加旋回阻尼力矩,因此,舵面积要适当。

各类船舶的最佳舵面积比:拖轮为1/20~1/25,渔船为1/30~1/40;高速货船1/35~1/40;大型油轮1/65~1/75;一般货船为1/45~1/60。

5.船速船速越大,旋回时间越短,但船速对旋回圈影响不大。

当船速低至某一程度,船舶旋回初径将有逐渐增大的趋势;6.吃水(排水量)排水量的增大可使旋回进距增大,但对旋回圈的影响不是很大。

7.吃水差尾倾越大,旋回圈越大。

四、旋回圈要素在实际操船中的应用1.旋回圈要素在操纵中的应用(1)港内掉头(A d,D T);(2)进入锚地旋回;(3)人员落水救助本船航行中发现有人落水时,应立即向落水者一舷操舵,使船尾迅速摆离落水者,以免使之卷进船尾螺旋桨流之内。

2.旋回圈要素在避碰中的应用近距离避让时的最晚施舵点,紧急避让时的进距。

第三节航向稳定性一、稳定性的一般概念运动物体的稳定性定义:是指处于运动状态的物体(或系统)受到干扰作用而使某些运动参数偏离原来状态值,干扰过后能否恢复原来值的性能。

若能恢复原来状态值,则物体运动状态对参数是稳定的,否则就是不稳定的。

船舶运动稳定性分为两种:无控稳定性:不用控制(δ=0)而自动稳定的性能。

控制稳定性:用控制器来控制的运动稳定性能。

在此,我们讨论的是船舶的无控稳定性。

二、船舶运动稳定性正舵直航中的船舶受到外界干扰而偏离原航向,当干扰消除后,分三种情况来讨论:1.直线稳定当t→∞时,r→0,△ψ≠0,由于干扰,航向改变,干扰消除后,船舶最终恢复新的直线运动。

这种情况称为船舶具有直线稳定性。

2.方向稳定当t→∞时,r→0,△ψ→0,△y0G≠0,由于干扰,航向改变,干扰消除后,船舶最终恢复与原航向平行的直线运动。

这种情况称为船舶具有方向稳定性。

3.位置稳定当t→∞时,r→0,△ψ→0,△y0G→0,由于干扰,航向改变,干扰消除后,船舶最终恢复原航向延长线上的直线运动。

这种情况称为船舶具有位置稳定性。

上述三种情况之间的关系:具有位置稳定性也一定具有方向稳定性;具有方向稳定性也一定具有直线稳定性。

反之,不具有直线稳定性也不具有方向稳定性和位置稳定性。

三、 航向稳定性根据上面的讨论,对于水面上的船舶,一般不具有方向稳定性和位置稳定性,因此,一般所说的航向稳定性就是指直线稳定性。

1. 航向稳定性的定义处于定常运动状态的船舶,受到干扰作用而偏离原航向,干扰消除后,船舶所具有的稳定于新航向的性能称为航向稳定性。

2. 航向稳定性的判别方法在一阶船舶操纵运动方程中,当舵角δ=0时,即为无控制时的方程及其解为:Tt e r r r rT /00-==+其中r 0为干扰消除时的旋转角速度。

相关文档
最新文档