高等代数(北大版第三版)习题答案II复习课程

合集下载

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数(北大版第三版)习题答案II 2

高等代数(北大版第三版)习题答案II 2

第六章 线性空间1.设,N M ⊂证明:,MN M MN N ==。

证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M ∈α即证M NM ∈。

又因,M N M ⊂ 故M N M =。

再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。

但,N M N ⊂所以MN N =。

2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。

证 ),(L N M x ∈∀则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。

反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x NL ∈,得),(L N M x ∈故),()()(L N M L M N M ⊂于是)()()(L M N M L N M =。

若x M NL M N L ∈∈∈(),则x ,x 。

在前一情形X x M N ∈, X ML ∈且,x MN ∈因而()(M L )。

,,N L x M N X M L M N M M N MN ∈∈∈∈∈⊂在后一情形,x ,x 因而且,即X (M N )(M L )所以()(M L )(N L )故 (L )=()(M L )即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。

高等代数_北大第三版_习题答案.pdf

高等代数_北大第三版_习题答案.pdf
P44.3 .2)
∴ ( x3 − x 2 − x) = ( x − 1 + 2i)3 + (2 − 8i )( x − 1 + 2i) 2 −(12 + 8i )( x − 1 + 2i ) − (9 − 8i ) 即余式 −9 + 8i
商 x − 2ix − (5 + 2i )
2
P44. 4.1).
m n
f m , g1 g 2
g n ) = 1 (注反复归纳用 12 题) 。
f(x)=x3+2x2+2x+1, g(x)=x4+x3+2x2+x+1 解:g(x)=f(x)(x-1)+2(x2+x+1), f(x)=(x2+x+1)(x+1) 即(f(x),g(x)) = x2+x+1.
令(x +x+1)=0 得
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
∴ d ( x) h( x) = ( f ( x ), g ( x )) h( x ) = u ( x ) f ( x ) h( x ) + v ( x ) g ( x ) h( x ).
而首项系数=1,又是公因式得(由 P45、8) ,它是最大公因式,且

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】
所以 q(x)=2x4-6x3+13x2-39x+109,r(x)=-327. (2)q(x)=x2-2ix-(5+2i),r(x)=-9+8i.
4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书

(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算

北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)

北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)

第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。

2. 线性方程组的求解方法:高斯消元法、克莱姆法则。

3. 线性方程组的解的性质:唯一性、存在性。

4. 线性方程组在实际应用中的例子。

二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。

2. 矩阵的运算:加法、减法、数乘、矩阵乘法。

3. 矩阵的转置、共轭、伴随矩阵。

4. 矩阵的行列式、行列式的性质和计算方法。

三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。

2. 线性变换的定义,线性变换的矩阵表示。

3. 线性变换的性质:线性、单调性、可逆性。

4. 线性变换的应用:线性映射、线性变换在几何上的意义。

四、特征值与特征向量1. 特征值、特征向量的定义。

2. 矩阵的特征多项式、特征值和特征向量的计算方法。

3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。

4. 对称矩阵的特征值和特征向量。

五、二次型1. 二次型的定义,二次型的标准形。

2. 二次型的矩阵表示,矩阵的合同。

3. 二次型的性质:正定、负定、不定。

4. 二次型的判定方法,二次型的最小值和最大值。

六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。

2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。

3. 线性映射的表示方法,包括矩阵表示和坐标表示。

4. 线性映射的应用,如线性变换、线性映射在几何上的意义。

七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。

2. 特征值和特征向量的性质,如重数和线性无关性。

3. 对称矩阵的特征值和特征向量的性质和计算。

4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。

八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。

2. 二次型的矩阵表示,包括矩阵的合同和相似。

3. 二次型的性质,如正定、负定和不定。

高等代数习题答案.doc

高等代数习题答案.doc

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个 n 级实对称矩阵,且 A0 ,证明:必存在实 n 维向量 X 0 ,使X AX 0 。

证因为 A0,于是 A0 ,所以 rank An ,且 A 不是正定矩阵。

故必存在非退化线性替换 XC 1Y 使XAX YC 1ACYY BYy 12 y 22y p 2y p 21y p 2 2y n 2 ,且在规范形中必含带负号的平方项。

于是只要在Z C 1Y 中,令 y y2 yp10, y p 1 y p2y n 1, 则可得一线性方程组c 11x 1c 12x2c 1n xnc p 1x1c p 2 x2c pnx n,c p 1,1x1c p 1, 2 x2c p1,nxn1c n1x 1c n 2 x2c nn xn1由于 C 0 ,故可得唯一组非零解X s x 1s , x 2s , , x ns 使X s AX s 0 00 1 11n p 0 ,即证存在 X 0,使 X AX0 。

13 .如果 A, B 都是 n 阶正定矩阵,证明:A B 也是正定矩阵。

证 因为 A, B 为正定矩阵,所以 X AX , X BX 为正定二次型,且X AX 0 ,X BX 0 ,因此X A B X X AX X BX 0 ,于是 XA B X 必为正定二次型,从而A B 为正定矩阵。

14 .证明:二次型 f x 1 , x 2 , , x n 是半正定的充分必要条件是它的正惯性指数与秩相等。

证 必要性。

采用反证法。

若正惯性指数p 秩 r ,则 pr 。

即f x 1 , x 2 , , x ny 2 y 2y 2y 2y 2 ,12pp 1r若令y1 y2 y p 0 , y p 1 y r 1 ,则可得非零解x1 , x2 , , x n 使 f x1, x2 , , x n 0 。

2019-高等代数第三版答案-优秀word范文 (28页)

2019-高等代数第三版答案-优秀word范文 (28页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高等代数第三版答案篇一:高等代数(北大版)第3章习题参考答案第三章线性方程组1.用消元法解下列线性方程组: ?x1?x?1?1)?x1?x?1??x1?3x2?5x3?4x4?1?3x2?2x3?2x4??2x2?x3?x4?x5?4x2?x3?x4?x5?2x2?x3?x4?x5 ?x1?2x2?3x4?2x5?1x5??1??x1?x2?3x3?x4?3x5?2?3 2)?2x?3x?4x?5x?2x?72345?1?3?9x?9x?6x?16x?2x?252345?1??1x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44??x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?1??7x?3x?x??3?7x?2x?x?3x??0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1? 3x1?2x2?x3?x4?1????3x1?2x2?2x3?3x4?2 5)? 6)?2x1?3x2?x3?x4?1?2x?2x?2x?x?1?5x1?x2?x3?2x4??1234?1?2x?x?x?3x?4234?1??5x1?5x2?2x3?2解 1)对方程组得增广矩阵作行初等变换,有?1?1??1??1??1?1?0???0??0??033?2?4201X0?1521112?3?20?1?4?2?11?1?1201X01?1?1101000 1??1???10??3???0??3??0??1???01??1???20??0???0??0??0?0???030?5?7?10000?15?3?4?4?400?200?42358?1201X01?1?11010001???2?2? ?2??2??1???2?0? ?0?0??因为rank(A)?rank(B)?4?5,所以方程组有无穷多解,其同解方程组为?x1?x4?1??2x1?x5??2, ??2x?03???x?x?0?24解得?x1?x?2??x3?x?4??x5?1?k?k?0?k??2?2k其中k为任意常数。

高等代数(北大版第三版)习题答案

高等代数(北大版第三版)习题答案

高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第一部分,其他请搜索,谢谢!第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并了解线性方程组的基本性质。

2. 掌握高斯消元法求解线性方程组,并能够运用该方法解决实际问题。

3. 了解克莱姆法则,并能够运用该法则判断线性方程组的解的情况。

4. 通过例题讲解,让学生熟练掌握线性方程组的求解方法。

二、矩阵及其运算1. 定义矩阵,并了解矩阵的基本性质。

2. 掌握矩阵的运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。

3. 了解逆矩阵的概念,并掌握逆矩阵的求法。

4. 通过例题讲解,让学生熟练掌握矩阵的运算方法。

三、线性空间与线性变换1. 定义线性空间,并了解线性空间的基本性质。

2. 掌握线性变换的概念,并了解线性变换的基本性质。

3. 了解特征值和特征向量的概念,并掌握特征值和特征向量的求法。

4. 通过例题讲解,让学生熟练掌握线性空间和线性变换的相关知识。

四、二次型1. 定义二次型,并了解二次型的基本性质。

2. 掌握二次型的标准形以及惯性定理。

3. 了解二次型的正定性以及其判定方法。

4. 通过例题讲解,让学生熟练掌握二次型的相关知识。

五、向量空间与线性映射1. 定义向量空间,并了解向量空间的基本性质。

2. 掌握线性映射的概念,并了解线性映射的基本性质。

3. 了解核空间以及秩的概念,并掌握核空间和秩的求法。

4. 通过例题讲解,让学生熟练掌握向量空间和线性映射的相关知识。

六、特征值和特征向量1. 回顾特征值和特征向量的定义,理解它们在矩阵对角化中的作用。

2. 学习如何求解一个矩阵的特征值和特征向量,包括利用特征多项式和行列式等方法。

3. 掌握特征值和特征向量在简化矩阵表达式和解决实际问题中的应用。

4. 提供例题,展示如何将一般矩阵问题转化为特征值和特征向量的问题,并教会学生如何解这些问题。

七、二次型1. 复习二次型的基本概念,包括二次型的定义、标准形和惯性定理。

2. 学习如何将一般二次型转化为标准形,以及如何从标准形判断二次型的正定性。

高等代数北大版习题参考答案

高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。

高等代数课件(北大三版)--第二章--多项式

高等代数课件(北大三版)--第二章--多项式
2.2.3 多项式旳带余除法定理
2.2.4 系数所在范围对整除性旳影响
二、教学目旳
1.掌握一元多项式整除旳概念及其性质。
2.熟练利用带余除法。
三、要点、难点
多项式旳整除概念,带余除法定理
2.2.1 多项式旳整除概念
设F是一种数域. F [x]是F上一元多项式环.
2.2.2 多项式整除性旳某些基本性质
证 设f (x) = g (x) 那么它们有完全相同旳项, 因而对R旳任何c都有f (c) = g (c)这就是说, f (x) 和g (x)所拟定旳函数相等.反过来设f (x) 和g (x)所拟定旳函数相等.令 u (x) = f (x) – g (x)那么对R旳任何c都有u (c) = f (c) – g (c) = 0这就是说, R中旳每一种数都是多项式u (x)旳根. 但R有无穷多种数, 所以u (x)有无穷多种根.根据定理2.6.3只有零多项式才有这个性质.所以有 u (x) = f (x) – g (x) = 0 , f (x) = g (x) .
f (c)与它相应. 于是就得到R到R旳一种映射. 这个映射是由多项式f (x)所拟定旳,叫做R上一种多项式函数.
综合除法
由此得出
表中旳加号一般略去不写.
例1
用x + 3除
作综合除法:
所以商式是
而余式是

假如f (x)是零次多项式,那么f (x)是R中一种不等于零旳数, 所以没有根. 所以定理对于n = 0成立.于是我们能够对n作数学归纳法来证明这一定理.设c∈R是f (x)旳一种根.那么 f (x) = (x – c) g (x)这里g (x) ∈R [x]是一种n – 1次多项式.假如d∈R是f (x)另一种根, d≠c那么 0 = f (d) = (d – c) g (d)因为d – c≠0 , 所以g (d) = 0. 因为g (x)旳次数是 n – 1 ,由归纳法假设, g (x)在R内至多有n – 1个不同旳根.所以f (x)在R中至多有n个不同旳根.

北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】

北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】

第5章二次型5.1复习笔记一、二次型及其矩阵表示1.二次型定义设P是一数域,一个系数在数域P中的x1,x2,…,x n的二次齐次多项式称为数域P上的一个n元二次型,或简称二次型.2.线性替换与二次型矩阵(1)线性替换定义设x1,…,x n;y1,…,y n是两组文字,系数在数域P中的一组关系式称为由x1,…,x n到y1,…,y n的一个线性代替,或简称线性替换.如果系数行列式,那么线性替换就称为非退化的.(2)二次型的矩阵令由于所以二次型可以写成其中的系数排成一个n×n 矩阵它就称为二次型的矩阵,因为a ij =a ji ,i,j=1,…,n,所以A=A'二次型的矩阵都是对称的.3.合同矩阵(1)定义数域P 上n×n 矩阵A ,B 称为合同的,如果有数域P 上可逆的n×n 矩阵C ,使B C AC¢=(2)性质①反身性:A=E'AE ;②对称性:由B=C'AC 即得A=(C -1)'BC -1;③传递性:由A 1=C 1'AC 1和A 2=C 2'A 1C 2即得经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的.二、标准形1.定义数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122n nd x d x d x +++ 的形式,该形式就称为的一个标准形.注意:二次型的标准型不是唯一的,而与所作的非退化线性替换有关.2.定理在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A 都可以找到一个可逆矩阵C,使C AC ¢成对角矩阵,并且该对角矩阵的值就是对应的标准形式的系数.三、唯一性1.基本概念(1)二次型的秩在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.(2)复二次型的规范性设f(x1,x2,…,x n)是一个复系数的二次型.经过一适当的非退化线性替换后,f(x1,x2,…,x n)变成标准形,不妨假定它的标准形是易知r就是f(x1,x2,…,x n)的矩阵的秩.因为复数总可以开平方,我们再作一非退化线性替换(1)就变成称为复二次型f(x1,x2,…,x n)的规范形.结论:任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.即任一复数的对称矩阵合同于一个形式为的对角矩阵.从而有,两个复数对称矩阵合同的充分必要条件是它们的秩相等.(3)实二次型的规范形设f(x1,x2,…,x n)是一实系数的二次型,经过某一个非退化线性替换,再适当排列文字的次序,可使f(x1,x2,…,x n)变成标准形其中d i>0,i=1,…,r;r是f(x1,x2,…,x n)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以再作一非退化线性替换(4)就变成(6)称为实二次型f(x1,x2,…,x n)的规范形.结论:任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.2.惯性定理设实二次型f(x1,x2,…,x n)经过非退化线性替换X=BY化成规范形而经过非退化线性替换X=CZ也化成规范形则p=q.另一种表述:实二次型的标准形中系数为正的平方项的个数是唯一确定的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.3.惯性指数在实二次型f(x1,x2,…,x n)的规范形中,(1)正惯性指数:正平方项的个数p;(2)负惯性指数:负平方项的个数r-p;(3)符号差:p-(r-p)=2p-r.该定义对于矩阵也是适合的.四、正定二次型1.定义实二次型,f(x1,x2,…,x n)称为正定的,如果对于任意一组不全为零的实数c1,c2,…,c n都有f(c1,c2,…,c n)>0.2.常用的判别条件(1)n元实二次型f(x1,x2,…,x n)是正定的充分必要条件是它的正惯性指数等于。

北京大学数学系《高等代数》(第3版)(线性方程组)笔记和课后习题(含考研真题)详解【圣才出品】

北京大学数学系《高等代数》(第3版)(线性方程组)笔记和课后习题(含考研真题)详解【圣才出品】

第3章线性方程组3.1复习笔记一、消元法1.初等变换变换1:用一非零的数乘某一方程,变换2:把一个方程的倍数加到另一个方程,变换3:互换两个方程的位置,称为线性方程组的初等变换.2.消元法解方程的过程(1)首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式“0=0”(如果出现的话)去掉;(2)如果剩下的方程当中最后的一个等式是零等于一非零的数,那么方程组无解,否则有解;(3)在有解的情况下,如果阶梯形方程组中方程的个数r等于未知量的个数,那么方程组有唯一的解;如果阶梯形方程组中方程的个数,小于未知量的个数,那么方程组就有无穷多个解.3.定理在齐次线性方程组中,如果s<n,那么它必有非零解.二、n 维向量空间1.n 维向量的定义所谓数域P 上一个n 维向量就是由数域P 中n 个数组成的有序数组a i 称为向量(1)的分量.用小写希腊字母α,β,γ,…来代表向量.2.向量相等的定义如果n 维向量1212(,,...,),(,,...,)n n a a a b b b αβ==的对应分量都相等,即就称这两个向量是相等的.记作α=β.3.向量和的定义向量1122(,,...,)n n a b a b a b γ=+++,称为向量1212(,,...,),(,,...,)n n a a a b b b αβ==的和,记为γαβ=+.4.零向量和负向量的定义分量全为零的向量(0,0,…,0)称为零向量,记为0;向量(-a 1,-a 2,…,-a n )称为向量α=(a 1,a 2,…,a n )的负向量,记为-α.5.向量加法的基本运算规律(1)α+β=β+α,(交换律)(2)α+(β+γ)=(α+β)+γ,(结合律)(3)α+0=α,(4)α+(-α)=0,(5)α-β=α+(-β).6.向量与数乘的定义设k为数域P中的数,向量称为向量与数k 的数量乘积,记为kα.7.向量乘法的运算性质:(1)k(α+β)=kα+kβ,(2)(k+l)α=kα+lα,(3)k(lα)=(kl)α,(4)1α=α.8.n维向量空间的定义以数域P中的数作为分量的n维向量的全体,同时考虑到定义在它们上面的加法和数量乘法,称为数域P上的n维向量空间.三、线性相关性1.定义向量α称为向量组β1,β2,…,βs 的一个线性组合,如果有数域P 中的数k 1,k 2,…,k s 使112s k k k 2s αβββ =+++.由定义知,零向量是任一向量组的线性组合(只要取系数全为0就行了).当向量α是向量组β1,β2,…,βs 的一个线性组合时,也说α可以经向量组β1,β2,…,βs 线性表出.2.等价的定义(1)定义如果向量组α1,α2,…,αt 中每一个向量αi (i=1,2,…,t)都可以经向量组β1,β2,…,βs 线性表出,那么向量组α1,α2,…,αt 就称为可以经向量组β1,β2,…,βs 线性表出.如果两个向量组互相可以线性表出,它们就称为等价.(2)向量等价的性质:①反身性:每一个向量组都与它自身等价.②对称性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,那么向量组β1,β2,…,βt 也与α1,α2,…,αs 等价.③传递性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,β1,β2,…,βt 与γ1,γ2,…,γp 等价,那么向量组α1,α2,…,αt 与γ1,γ2,…,γp 等价.3.线性相关性的定义如果向量组α1,α2,…,αs (s≥2)中有一个向量可以由其余的向量线性表出,那么向量组α1,α2,…,αs 称为线性相关的.定义的另一种表述为:向量组α1,α2,…,αs (s≥1)称为线性相关,如果有数域P 中不全为零的数k 1,k 2,…,k s ,使120s k k k 12s ααα +++=4.线性无关性的向量组(1)定义:一向量组α1,α2,…,αs (s≥1)不线性相关,即没有不全为零的数k 1,k 2,…,k s 使120s k k k 12s ααα +++=就称为线性无关;或者说,一向量组α1,α2,…,αs 称为线性无关.(2)两个小结论:①如果一向量组的一部分线性相关,那么这个向量组就线性相关.②如果一向量组线性无关.那么它的任何一个非空的部分组也线性无关.5.向量组的基本性质的几种表述(1)设α1,α2,…,αr 与β1,β2,…,βs 是两个向量组,如果①向量组α1,α2,…,αr 可以经β1,β2,…,βs 线性表出,②r>s,那么向量组α1,α2,…,αr 必线性相关.(2)如果向量组α1,α2,…,αr 可以经向量组β1,β2,…,βs 线性表出,且α1,α2,…,αr 线性无关,那么r s.(3)任意n+1个n 维向量必线性相关.(4)两个线性无关的等价的向量组,必含有相同个数的向量.6.极大线性无关组(1)定义一向量组的一个部分组称为一个极大线性无关组.如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话),所得的部分向量组都线性相关.(2)性质:①向量组的极大线性无关组不是唯一的;②每一个极大线性无关组都与向量组本身等价;③一向量组的任意两个极大线性无关组都是等价的;④一向量组的极大线性无关组都含有相同个数的向量.7.向量组的秩(1)定义向量组的极大线性无关组所含向量的个数称为这个向量组的秩.(2)性质①线性无关的向量组就是它自身的极大线性无关组,所以一向量组线性无关的充分必要条件为它的秩与它所含向量的个数相同.②每一向量组都与它的极大线性无关组等价.由等价的传递性可知.任意两个等价向量组的极大线性无关组也等价.所以,等价的向量组必有相同的秩.③含有非零向量的向量组一定有极大线性无关组,且任一个无关的部分向量组都能扩充成一个极大线性无关组,全部由零向量组成的向量组没有极大线性无关组.规定这样的向量组的秩为零.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

17. 是一个实矩阵,证明:

证 由于 的充分条件是 与 为同解方程组,故只要证明 与 同解即可。事实上

即证 与 同解,故

注 该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。
一、补充题参考解答
1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1)来自;2) ;3) ;
2)证明:如果对称矩阵 的顺序主子式全不为零,那么一定有一特殊上三角矩阵 使 成对角形;
3)利用以上结果证明:如果矩阵 的顺序主子式全大于零,则 是正定二次型。
证 1)采用归纳法。当 时,设
, ,


考虑 的两个顺序主子式: 的一阶顺序主子式为 ,而二阶顺序主子式为

与 的各阶顺序主子式相同,故此时结论成立。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
当 时

故 与 合同,结论成立。
假设 时结论成立,今考察 的情形。这时

如果最后一行(列)元素全为零,则由归纳假设,结论已证。若不然,经过行列的同时对换,不妨设 ,并将最后一行和最后一列都乘以 ,则 可化成

再将最后两行两列的其他非零元 化成零,则有

且在规范形中必含带负号的平方项。于是只要在 中,令
则可得一线性方程组

由于 ,故可得唯一组非零解 使

即证存在 ,使 。
13.如果 都是 阶正定矩阵,证明: 也是正定矩阵。
证 因为 为正定矩阵,所以 为正定二次型,且
, ,
因此

于是 必为正定二次型,从而 为正定矩阵。
14.证明:二次型 是半正定的充分必要条件是它的正惯性指数与秩相等。
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
证 必要性。采用反证法。若正惯性指数 秩 ,则 。即

若令
, ,
则可得非零解 使 。这与所给条件
矛盾,故 。
充分性。由 ,知

故有 ,即证二次型半正定。
15.证明: 是半正定的。




可见:
1)当 不全相等时

2)当 时

故原二次型 是半正定的。
16.设 是一实二次型,若有实 维向量 使
, 。
证明:必存在实 维向量 使 。

故当 为偶数时,都有

3)由配方法可得

于是可令

则非退化的线性替换为

且原二次型的标准形为

相应的替换矩阵为

又因为

所以

4)令



由于


原式

其中所作非退化的线性替换为

故非退化的替换矩阵为



所以

2.设实二次型

证明: 的秩等于矩阵
的秩。
证 设 ,因

下面只需证明 即可。由于 ,故存在非退化矩阵 使
3)由2)知,存在 使

又由1)知 的所有顺序主子式与 的所有顺序主子式有相同的值,故
, ,
所以 。

所以

因 是非退化线性替换,且

由于 都大于零,故 是正定的。
8。证明:1)如果
是正定二次型,那么
是负定二次型;
2)如果 是正定矩阵,那么

这里 是 的 阶顺序主子式;
3)如果 是正定矩阵,那么

4)如果 是 阶实可逆矩阵,那么

于是由1)知 ,从而 ,再对 进行类似的初等变换,使矩阵 的第二行和第二列中除 外其余都化成零;如此继续下去,经过若干次行列同时进行的第三种初等变换,便可以将 化成对角形

由于每进行一次行、列的第三种初等变换,相当于右乘一个上三角形阵 ,左乘一个下三角形阵 ,而上三角形阵之积仍为上三角形阵,故存在 ,使 ,命题得证。
归纳假设结论对 阶矩阵成立,今考察 阶矩阵,将 写成分块矩阵
, ,
其中 为特殊上三角矩阵。于是

由归纳假设, 的一切 阶的顺序主子式,即 的顺序主子式与 的顺序主子式有相同的值,而 的 阶顺序主子式就是 ,由

知 的 阶顺序主子式也与 的 阶顺序主子式相等,即证。
2)设 阶对称矩阵 ,因 ,同时对 的第一行和第一列进行相同的第三种初等变换,可以化成对称矩阵
4) ,其中 。
解 1)作非退化线性替换

即 ,则原二次型的标准形为

且替换矩阵

使

其中

2)若
, ,


于是当 为奇数时,作变换



且当 时,得非退化替换矩阵为

当 时,得非退化替换矩阵为

故当 为奇数时,都有

当 为偶数时,作非退化线性替换



于是当 时,得非退化替换矩阵为

于是当 时,得非退化替换矩阵为

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
高等代数(北大第三版)答案
第一章多项式
第二章行列式
第三章线性方程组
第四章矩阵
第五章二次型
第六章线性空间
第七章线性变换
第八章 —矩阵
第九章欧氏空间
第十章双线性函数与辛空间
注:
答案分三部分,该为第二部分,其他请搜索,谢谢!
12.设 为一个 级实对称矩阵,且 ,证明:必存在实 维向量 ,使

证 因为 ,于是 ,所以 ,且 不是正定矩阵。故必存在非退化线性替换 使

由归纳假设知

合同,从而 合同于矩阵

再对上面矩阵作行交换和列交换,便知结论对 级矩阵也成立,即证。
6.设 是 阶实对称矩阵,证明:存在一正实数 ,使对任一个实 维向量 都有

证 因为

令 ,则

利用 可得

其中 ,即证。
7.主对角线上全是1的上三角矩阵称为特殊上三角矩阵。
1)设 是一对称矩阵, 为特殊上三角矩阵,而 ,证明: 与 的对应顺序主子式有相同的值;
相关文档
最新文档