人教版数学六年级下册表面积和体积

合集下载

六年级下册数学试题-3.3圆柱的侧面积、表面积及体积(不含答案) 人教新课标(2014秋)

六年级下册数学试题-3.3圆柱的侧面积、表面积及体积(不含答案)  人教新课标(2014秋)

圆柱的表面积、侧面积及体积一.解答题(共20小题)1.制作一个底面直径20cm、长50cm的圆柱形通风管,至少要用多少平方厘米铁皮?2.一个圆柱的底面半径是5厘米,它的侧面展开图正好是一个正方形,这个圆柱的体积大约是多少立方厘米?3.学校走廊上有10根圆柱形柱子,每根柱子底面半径是4分米,高是2.5分米,要油漆这些柱子,每平方米用油漆0.3千克,共需要油漆多少千克?4.将一个底面半径为5cm,高为30cm的圆柱形木料,沿底面直径按照如图所示切开,切开后的两块木料的表面积之和比原来圆柱形木料的表面积多了多少平方厘米?5.把一个棱长a里面的正方体削成一个最大的圆柱体,求这个圆柱体与正方体体积和表面积的比.(计算涉及圆周率,直接用π表示)6.如图是一根钢管,求它所用钢材的体积.(单位cm)7.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积(取3.14.)8.长10厘米,直径2厘米的三根圆柱捆成一捆(如图),用一张纸将这捆圆柱侧面包起来(纸要绷紧),至少需要多大面积的纸?9.妈妈的茶杯中部有一圈装饰带,那是怕烫伤妈妈的手特意贴上去的.经过测量,这条装饰带正好宽5厘米,算一算,长至少要多少厘米?如果把0.5升的水倒入茶杯,能正好装满吗?10.一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?11.一个圆柱形油桶,底面内直径为40厘米,高50厘米,如果每立方分米柴油重0.85千克,这个油桶可装柴油多少千克?12.一个圆柱,如果高减少2厘米,表面积就减少25.12平方厘米,体积减少.这个圆柱原来的体积是多少立方厘米?13.一个正方体的木块,它的棱长总和是240厘米,在这个正方体木块里削一个最大的圆柱,这个圆柱的体积是多少立方厘米?(画出草图)14.一个圆柱的高不变,底面半径扩大2倍,它的体积扩大几倍?15.甲乙两个圆柱形容器,底面积比为5:3,甲容器内水深9厘米,乙容器内水深5厘米,现在这两个容器里注入同样多的水,直到水深相等为止.这时水深多少厘米?16.有一只内直径是8厘米的圆柱形玻璃杯,内装16厘米深的水,这些水恰好占这只玻璃杯容量的,再放入多少立方厘米的水,才能把这只玻璃杯装满?17.砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?18.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?19.如图所示,实验室里,水平桌面上有甲、乙、丙三个高均为5dm的圆柱形玻璃容器,底面半径之比为1:2:l,只有甲中有水,水位高ldm,小华和小明先分别向乙和丙同时注水,且每分钟注水量相同,开始注水1分钟时,乙的水位上升dm.(1)求注水1分钟,丙的水位上升的高度.(2)开始注入多少分钟的水量后,甲比乙的水位高0.5dm?(3)小明将丙容器注满水后立即帮小华向乙容器同时注水,将乙容器注满水后两人立即同时向甲容器注水,若整个注水过程中两人注水速度均不变,且转换注水时间忽略不计,则从一开始注水算起,多少分钟后,乙比甲的水位高0.5dm?20.一个圆柱形水池,底面内半径是4米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?圆柱的表面积、侧面积及体积参考答案与试题解析一.解答题(共20小题)1.【分析】本题就是求这个底面直径为20厘米,长50厘米的圆柱的侧面积,由此利用圆柱的侧面积=底面周长×高即可计算.【解答】解:3.14×20×50=3.14×1000=3140(平方厘米)答:至少需要3140平方厘米的铁皮.2.【分析】根据题意,圆柱的高等于圆柱的底面周长,圆柱的体积=底面积×高,根据公式列式解答即可得到答案.【解答】解:圆柱的高为:3.14×2×5=31.4(厘米)圆柱的体积为:3.14×52×31.4=78.5×31.4=2464.9(立方厘米)答:圆柱的体积是2464.9立方厘米.3.【分析】首先分清每根柱子刷油漆的部分,应是它的侧面积,由圆柱体侧面积的计算方法求出侧面积,再用单位面积所用油漆的质量乘10根柱子的侧面积即可.【解答】解:10根柱子的总侧面积为:3.14×4×2×2.5×10=628(平方分米);628平方分米=6.28平方米共需要油漆:0.3×6.28=1.884(千克);答:共需要油漆1.884千克.4.【分析】根据题意,按照图形的切法,切开后的图形比圆柱原来的表面积多了两个长方形切面的面积,这个长方形的长是底面直径是5×2=10厘米,宽是30厘米,根据长方形的面积=长×宽,求出两个长方形的面积即可.【解答】解:根据题意得5×2×30×2=10×30×2=600(平方厘米)答:切开后的两块木料的表面积之和比原来圆柱形木料的表面积多了600平方厘米.5.【分析】把一个棱长a厘米的正方体削成一个最大的圆柱体,底面直径就是正方体的棱长a,高就是正方体的棱长,再根据圆柱体和正方体的体积和表面积公式进行分析解答.【解答】解:体积:圆柱体的体积:π•()2•a=πa3;正方体的体积:a3;圆柱体与正方体的体积比:πa3:a3=π:4;表面积:圆柱体的表面积:2•π••a+π•()2×2=πa2,正方体的表面积:6a2.圆柱体与正方体的表面积比:πa2:6a2=π:4.6.【分析】先根据圆环的面积=π(R2﹣r2),求出钢管的底面积,再乘高,即可求出它的体积.【解答】解:10÷2=5(厘米)8÷2=4(厘米)3.14×(52﹣42)×80=3.14×(25﹣16)×80=3.14×9×80=2260.8(立方厘米)答:钢管的体积是2260.8立方厘米.7.【分析】根据题意知道125.6平方厘米是高为2厘米的圆柱的侧面积,由此根据圆柱的侧面积公式S=ch=2πrh,知道r=125.6÷2÷3.14÷2,由此求出圆柱的底面半径,再根据圆柱的体积公式:V=sh,即可求出原来圆柱的体积.【解答】解:底面积半径:125.6÷2÷3.14÷2,=62.8÷3.14÷2,=10(厘米),体积:3.14×102×10,=3.14×100×10,=3140(立方厘米);答:这个圆柱的体积是3140立方厘米.8.【分析】如图所示,下图为捆成的圆柱的截面图,则需要的纸张的长为1个圆的周长再加3个直径,宽为圆柱的长,从而可以求出这个长方形的面积,也就是需要的纸张的面积.【解答】解:(2×3+3.14×2)×10,=(6+6.28)×10,=12.28×10,=122.8(平方厘米);答:至少需要122.8平方厘米的纸.9.【分析】由题意知,这条装饰带的长就等于圆柱形茶杯的底面周长,已知底面直径是8厘米,利用圆的周长公式C=πd可求得这条装饰带的长;又知圆柱形茶杯的高是15厘米,利用圆柱的体积公式V=sh可求得容积,然后与0.5升比较即可解决最后的问题.【解答】解:彩带的长:3.14×8=25.12(厘米);茶杯的容积:3.14×(8÷2)2×15,=3.14×16×15,=50.24×15,=753.6(立方厘米);753.6立方厘米=0.7536升,0.7536升>0.5升;答:这条装饰带长25.12厘米;如果把0.5升的水倒入茶杯,不能装满.10.【分析】长方体的12条棱分为三组,互相平行的一组是4条,根据按比例分配的方法分别求出它的长、宽、高,再确定“将这个长方体削成一个体积最大的圆柱体”,这个圆柱体的底面直径应该是长方体的宽,圆柱体的高等于长方体的高,根据圆柱体的体积计算公式解答.【解答】解:4+3+2=9宽:(108÷4)×=27×=9(厘米)高:(108÷4)×=27×=6(厘米)3.14×(9÷2)2×6=3.14×4.52×6=3.14×20.25×6=381.51(立方厘米)答:这个圆柱体体积是381.51立方厘米.11.【分析】求这个油桶可装柴油多少千克,先求出这个油桶的容积,因油桶是圆柱形的,利用圆柱的体积公式:V=πr2h计算即可,所得的体积再乘0.85即可,据此可列式解答.【解答】解:3.14×(40÷2)2×50=3.14×400×50=62800(立方厘米)62800立方厘米=62.8立方分米62.8×0.85=53.38(千克).答:这个油桶可装柴油53.38千克:12.【分析】根据题干,高减少2厘米,表面积就减少25.12平方厘米,减少部分就是高2厘米的圆柱的侧面积,利用侧面积公式即可求得这个圆柱的底面周长,从而求得这个圆柱的底面半径,再根据圆柱的体积公式求得减少部分的体积,根据减少部分的体积是原来圆柱体积的,利用分数除法计算即可求得这个圆柱原来的体积.【解答】解:圆柱的底面半径为:25.12÷2÷3.14÷2=2(厘米)减少部分的体积为:3.14×22×2=25.12(立方厘米)原来圆柱的体积为:25.12÷=125.6(立方厘米)答:这个圆柱原来的体积为125.6立方厘米.13.【分析】先依据正方体的棱长总和的计算方法,用正方体的棱长总和除以12求出正方体的棱长,再据这个最大圆柱的底面直径和高都等于正方体的棱长,利用圆柱的体积公式V =π(d÷2)2h即可得解.【解答】解:如图:240÷12=20(厘米)3.14×(20÷2)2×20=3.14×2000=6280(立方厘米)答:削成的圆柱的体积是6280立方厘米.14.【分析】根据圆柱的体积公式:v=sh,圆柱体积的大小是由它的底面积和高两个条件决定的;如果高不变,底面半径扩大2倍,它的底面积就扩大4倍,体积也就扩大4倍.【解答】解:根据圆的半径扩大2倍,圆的面积就扩大2×2=4倍,由圆柱的体积公式:v=sh,如果高不变,圆柱的底面半径扩大2倍,它的体积就扩大4倍.答:它的体积扩大4倍.15.【分析】根据体积相等时,圆柱的底面积和高成反比,底面积比为5:3,那么注入同体积的水的深度比是3:5.根据题中条件可求出甲容器要注入几厘米深的水,即可求出现在的水深.【解答】解:注入甲乙相同体积的水的深度的比是3:5,甲容器要注入的水深:(9﹣5)÷(5﹣3)×3=6(厘米),这时的水深:6+9=15(厘米).答:这是水深15厘米.16.【分析】根据题意,水深16厘米,这些水恰好占这只玻璃杯容量的,可以推出这只玻璃杯的高为16÷=20(厘米),则还需放入的水的体积为4厘米高的圆柱的体积,利用圆柱体积公式可列式解答.3.14×42×4=200.96(立方厘米)【解答】解:由题意知,玻璃杯的高为16÷=20(厘米),20﹣16﹣4(厘米)3.14×42×4=50.24×4=200.96(立方厘米),答:再放入200.96立方厘米的水才能把这只玻璃杯装满.17.【分析】知道底面周长和深(也就是高),底面周长除以2π得底面半径,据公式可求底面积,底面周长乘高可得侧面积,底面积加侧面积则是抹上水泥的面积,进而根据单位面积用水泥的千克数求出需要水泥的千克数.【解答】解:抹水泥的面积:3.14×(25.12÷3.14÷2)2+25.12×2,=50.24+50.24,=100.48(平方米),需要水泥的千克数:10×100.48=1004.8(千克).答:共需水泥1004.8千克.18.【分析】根据圆柱的表面积=侧面积+底面积×2,圆柱的侧面积=底面周长×高,圆的面积公式:S=πr2,已知在池子的四壁和下底面抹上水泥,把数据代入公式解答.【解答】解:3.14×3×2+3.14×(3÷2)2=18.84+3.14×2.25=18.84+7.065=25.905(平方米)答:抹水泥的面积是25.905平方米.19.【分析】(1)注水量相同,那么乙中水的体积就是丙中水的体积,根据圆柱体积公式知,乙丙底面半径的比是2:1,体积的比为4:1,则体积相同的情况下,高的比为1:4.注水1分钟,乙的水位上升dm,则丙的水位上升:×4=(dm);(2)先用甲中水位的高度减去0.5分米,求出乙中水位的高度,因为一分钟乙的水位上升dm,所以用高度除以每分钟的上升高度,即所需时间;(3)先求出丙容器注满水需要的时间,再求出此时乙已经注水的高度.注水1分钟时,乙的水位上升dm,丙的水位上升(dm),注满需时:5=(分钟).此时乙水高:(dm),二人一起向乙中注水,使其高度为:1+0.5=1.5(dm),需时:(1.5﹣)÷()=(分钟).时间相加即可.=(分钟).【解答】解:(1)乙丙底面半径的比为:2:1,注水量相同,即体积相同.则,水柱高的比为:1:4.所以,丙的水位上升:×4=(dm).答:丙的水位上升dm.(2)1﹣0.5=0.5(dm)0.5=0.6(分钟)答:开始注入0.6分钟的水量后,甲比乙的水位高0.5dm.(3)注满丙需要:=5=(分钟)二人同注乙,使乙高度比甲高0.5,需:[(1+0.5)﹣]=[1.5﹣]==(分钟)从开始共需时间:=(分钟)答:从一开始注水算起,分钟后,乙比甲的水位高0.5dm.20.【分析】池内周围和底面抹上水泥,抹水泥的面积就是侧面积和一个底面积.据此解答.【解答】解:2×3.14×4×1.5+3.14×42=2×3.14×6+3.14×16=37.68+50.24=87.92(平方米)答:抹水泥的面积是87.92平方米.。

人教版六年级数学下册知识点归纳总结

人教版六年级数学下册知识点归纳总结

第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

人教版六年级数学下册第六单元整理和复习——立体图形的认识与测量(第2课时)

人教版六年级数学下册第六单元整理和复习——立体图形的认识与测量(第2课时)
2cm的小 正方体,可以得到多少个小正方体?它们的表面 积之和比原来大正方体的表面积增加了多少?
大正方体的体积:6×6×6=216(cm3) 小正方体的体积:2×2×2=8(cm3)
216÷8=27(个)
大正方体的表面积:6×6×6=216(cm2) 小正方体的表面积:2×2×6×27=648(cm2)
V圆锥=
1 3
πr2h
长方体、正方体与圆柱的体积计算公式有什么联系?
它们都是柱体,所以都可以 用“底面积×高”来计算。
立体图形 表面积计算公式 体积计算公式
S=2(ab+ah+bh) V=abh
S=6a2 S=2πrh+2πr2
V=a3 V=Sh V=πr2h
V=
1 3
πr2h
怎样测量出一块拳头大的鹅卵石的体积?
5.*一个正方形的内部有一个四分之一圆(涂色 部分)。已知正方形的面积是10cm2,涂色部 分的面积是多少?
3.14×10÷4=7.85(cm2) 答:涂色部分的面积是7.85cm2。
6.*用一根长24cm的铁丝围一个长方体(或正方体) 框架。在这个长方体的表面糊一层纸,怎样围框 架用纸最多?
围成一个棱长为2cm的正方体用的纸最多。
答:这个圆锥形铁块的高约是9.6cm。
4. 一个箱子下半部的形状是棱长为20cm的正方体, 上半部的形状是圆柱的一半。算出它的表面积 和体积。 表面积: 20×20×5+3.14×20×20÷2+3.14×(20÷2)2 =2942(cm2) 体积:20×20×20+3.14×102×20÷2=11140(cm3)
立体图形的认识与测量(2)
R·六年级下册
复习导入
巩固旧知

人教版六年级数学下册期末总复习立体图形的表面积、体积、容积计算技巧附答案

人教版六年级数学下册期末总复习立体图形的表面积、体积、容积计算技巧附答案

人教版六年级数学下册期末总复习8.立体图形的表面积、体积、容积计算技巧一、仔细审题,填一填。

(每小题4分,共20分)1.一个棱长是4分米的正方体容器装满水后,倒入一个底面积是12平方分米的圆锥形容器里正好装满,这个圆锥形容器的高是( )分米(不计容器的厚度)。

2.一块长方形铁皮,长62.8厘米,宽31.4厘米。

如果用它围成一根圆柱形的管子,这根管子的半径是( )厘米或( )厘米。

3.把一根圆柱形木料截成3段(如图),表面积增加了45.12 cm 2,这根木料的底面积是( )cm 2。

4.一个圆柱的底面直径与圆锥底面直径的12相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是( )立方分米。

5.用3个棱长都是2厘米的正方体拼成一个长方体,拼成的这个长方体的表面积是( )平方厘米,体积是( )立方厘米。

二、火眼金睛,判对错。

(对的在括号里画“√”,错的画“×”)(每小题 3分,共12分)1.长方体的6个面中最多只有4个面的面积相等。

( )2.圆锥的底面积一定,它的高和体积成反比例。

( )3.把一个圆柱切拼成一个长方体,切拼后的体积和表面积都不变。

( )4.右面物体是由棱长为1 cm 的小正方体搭成的,它的表面积是18cm2;至少还需要3个这样的小正方体,才能搭成一个大正方体。

()三、仔细推敲,选一选。

(将正确答案的序号填在括号里)(每小题3分,共9分)1.把一个棱长是2厘米的正方体削成一个最大的圆柱,它的侧面积是()平方厘米。

A.6.28 B.12.56 C.18.84 D.25.12 2.一个长方体的长、宽、高分别扩大到原来的2倍,表面积扩大到原来的()倍。

A.2 B.6 C.8 D.43.以直角三角形一条直角边所在直线为轴,旋转一周,可以得到一个()。

A.长方体B.圆柱C.圆锥D.正方体四、计算下面各图形的表面积。

(单位:cm)(每小题6分,共12分)1. 2.五、聪明的你,答一答。

【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥

【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥

人教版六年级下册数学期末复习专题讲义-3.圆柱和圆锥【知识点归纳】一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=2πr 侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh 体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积4、圆柱与圆锥等底等高 ,体积相差32 四、温馨提示: (1)已知圆锥的底面半径和高,可以直接利用公式:πr 2h ÷3来求圆锥的体积;(2)已知圆锥的底面直径和高,可以直接利用公式:π(d ÷2)2h ÷3求圆锥的V;(3)已知圆锥的底面周长和高,可以直接利用公式:π(C ÷2÷π)2h ÷3求出圆锥的体积。

新人教版六年级数学下册单元知识点归纳整理

新人教版六年级数学下册单元知识点归纳整理

新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上;负数都在0的(左侧);所有的负数都比自然数小。

负数用负号“-”标记;如-2;-5.33;-45;-0.6等。

2.正数:大于0的数叫正数(不包括0);数轴上0(右边)的数叫做正数若一个数大于零(>0);则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有(无数个);其中有(正整数;正分数和正小数)。

3. (0)既不是正数;也不是负数;它是正、负数的界限。

所有的负数都在0的(左边);负数都小于0;正数都大于0;负数都比正数(小)。

第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长);长方形的宽等于(圆柱的高)。

这个长方形的面积等于(圆柱的侧面积);因为长方形面积=长×宽;所以圆柱的侧面积=底面周长×高当底面周长和高相等时;沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。

4、圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S侧=Ch。

h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。

即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式;以免出现计算错误。

)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体;在这个过程中;形状发生了变化;体积没有发生变化。

2021年人教新版数学六年级下册重难点题型训练第三章《圆柱和圆锥》圆柱的表面积和体积(解析版)

2021年人教新版数学六年级下册重难点题型训练第三章《圆柱和圆锥》圆柱的表面积和体积(解析版)

2021年人教新版数学六年级下册重难点题型训练第三章《圆柱和圆锥》第二、三课时:圆柱的表面积和体积一.选择题1.(2020•安定区)压路机的滚筒滚动一周压过的路面就是压路机滚筒的()A .底面积B .侧面C .表面积D .体积 【答案】【解析】压路机的滚筒滚动一周压过的路面就是压路机滚筒侧面积.故选:B .2.(2020•长沙模拟)一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的12,圆柱的侧面积() A .扩大到原来的2倍 B .缩小到原来的12 C .不变D .扩大到原来的3倍 【答案】【解析】根据圆的周长公式:C d π=,因为圆周率一定,所以圆的周长和直径成正比例,因此,一个圆柱的底面直径扩大到原来的2倍,也就是圆柱的底面周长扩大2倍,高缩小到原来的12,所以圆柱的侧面积不变.故选:C .3.(北京市第二实验小学学业考)两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体的()相等.A .底面积B .侧面积C .表面积【答案】【解析】有分析得:两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体的侧面积相等.故选:B .4.(2020春•莲湖区期中)有一个圆柱,底面直径是10厘米,若高增加4厘米,则侧面积增加()平方厘米.A .31.4B .62.8C .125.6 【答案】⨯⨯【解析】3.14104=⨯3.1440=(平方厘米).125.6答:侧面积增加125.6平方厘米.故选:C.5.(北京市第二实验小学学业考)把一个正方体木块加工成最大的圆柱,削去的部分是正方体的() A.80%B.78%C.21.5%【答案】【解析】设正方体棱长为2分米,⨯⨯=(立方分米)22282⨯⨯-⨯÷⨯222 3.14(22)2=-8 6.28=(立方分米)1.72÷==1.7280.21521.5%答:削去的部分是正方体的21.5%.故选:C.6.(2020春•田家庵区期中)用一块长25厘米,宽18.84厘米的长方形铁皮,配上半径为()厘米的圆形铁片正好可以做成圆柱形容器.A.2 B.3 C.4【答案】÷=(厘米),【解析】25.12 3.148÷=(厘米),18.84 3.146所以用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上直径是6厘米的圆形铁片,正好可以做成圆柱形容器.故选:B.7.(2020春•宁津县期中)一个圆柱的体积是30立方厘米,高6cm,一个圆锥与它底面积相等,体积也相等,圆锥的高是()A.2cm B.6cm C.18cm【答案】【解析】÷=(平方厘米)3065⨯÷3035=÷905=(厘米)18答:圆锥的高是18厘米.故选:C.8.(北京市第二实验小学学业考)一个圆柱体展开是一个宽(圆柱的高)为3cm,面积为237.68cm的长方形,则它的底面半径为()A.1cm B.2cm C.3cm D.以上都不对【答案】÷=(厘米),【解析】37.68312.56÷÷=(厘米),12.56 3.1422答:它的底面半径是2厘米.故选:B.二.填空题9.(2020春•越秀区期末)在一块平地上挖一个底面半径是4m的圆柱形水池,池深1m,需要挖出50.243m 的土;要在池底和内壁贴上瓷片,贴瓷片的面积是2m.【答案】【解析】2⨯⨯3.1441=⨯⨯3.1416150.24=(立方米);2⨯⨯⨯+⨯3.14(42)1 3.144=⨯⨯+⨯3.1481 3.1416=+25.1250.2475.36=(平方米);答:需要挖土50.24立方米,贴瓷砖的面积是75.36平方米.故答案为:50.24、75.36.10.(北京市第二实验小学学业考)如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了226.08ml水;这个瓶子的容积是ml.【答案】【解析】2 3.14(62)8⨯÷⨯3.1498=⨯⨯28.268=⨯226.08=(立方厘米)23.14(62)(128)⨯÷⨯+3.14920=⨯⨯28.2620=⨯565.2=(立方厘米)226.08立方厘米226.08=毫升565.2立方厘米565.2=毫升答:小红喝了226.08毫升,这个瓶子的容积是565.2毫升.故答案为:226.08、565.2.11.(北京市第二实验小学学业考)有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体,大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的11倍.【答案】【解析】设这个圆柱体底面半径为r ,那么高为3r ,小圆柱体高为h ,则大圆柱体高为(3)r h -; 因为大圆柱体的表面积是小圆柱体的3倍, 所以4r h =,则大圆柱的高是114r ,又由于两圆柱体底面积相同, 所以大圆柱的高是小圆柱高的:111144r r ÷=,因为大小圆柱的底面积相同,所以高的比就是体积的比.所以大圆柱的体积是小圆柱体积的11倍.故答案为:11.12.(北京市第二实验小学学业考)做一个圆柱形的无盖的铁皮水桶,底面周长12.56分米,高5分米,至少需要75.36平方分米铁皮.【答案】【解析】212.565 3.14(12.56 3.142)⨯+⨯÷÷262.8 3.142=+⨯62.8 3.144=+⨯62.812.56=+75.36=(平方分米)答:至少需要75.36平方分米铁皮.故答案为:75.36.13.(2020•防城港模拟)小俊用硬纸做了一个简易笔筒(如图).做这样一个笔筒,至少需要301.44平方厘米的硬纸【答案】【解析】2 3.14810 3.14(82)⨯⨯+⨯÷25.1210 3.1416=⨯+⨯251.250.24=+301.44=(平方厘米),答:至少需要301.44平方厘米的硬纸板.故答案为:301.44.14.(2020•防城港模拟)一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的表面积就增加125.6平方厘米,原来这个圆柱的表面积是1256平方厘米.【答案】【解析】圆柱的底面周长:125.6262.8÷=(厘米)底面积2 3.14(62.8 3.142)⨯÷÷23.1410=⨯3.14100=⨯314=(平方厘米)表面积62.8103142⨯+⨯628628=+1256=(平方厘米)答:原来这个圆柱的表面积是1256平方厘米.故答案为:1256.15.(2020•株洲模拟)一根长2米,底面周长为12.56分米的圆木,沿着它的两条半径,截去14部分,剩余部分的表面积是287.24平方分米.【答案】【解析】2米20=分米 12.56 3.1422÷÷=(分米)21(12.5620 3.1422)(1)20224⨯+⨯⨯⨯-+⨯⨯3(251.225.12)804=+⨯+3276.32804=⨯+207.2480=+287.24=(平方分米)答:剩余部分的表面积是287.24平方分米.故答案为:287.24.三.判断题16.(2020春•苍溪县期中)分别以一个长方形的长、宽为轴,旋转一周得到的立体图形的体积相等.⨯(判断对错)【答案】【解析】以长方形的一条边为轴旋转一周,会得到一个圆柱,如果以长为轴,那么圆柱的高是长方形的长,底面半径是宽,而如果以宽为轴,那么圆柱的高是长方形的宽,底面半径是长;根据圆柱的体积2V r h π=可知,由于长方形的长和宽不相等,所以两种圆柱的体积不相等.故答案为:⨯.17.(2020•永州模拟)圆柱体的体积比与它等底等高的圆锥体的体积多三分之二.⨯. (判断对错)【答案】【解析】因为等底等高的圆柱的体积是圆锥的体积的3倍,把圆锥的体积看做1份,则圆柱的体积就是3份,(31)12200%-÷==所以圆柱的体积比与它等底等高的圆锥体的体积多200%,原题说法错误.故答案为:⨯.18.(2020•郾城区)侧面积相等的两个圆柱,表面积也一定相等.⨯(判断对错)【答案】【解析】两个圆柱的侧面积相等,表示这两个圆柱体底面周长与高的乘积相等,圆柱的底面周长不一定相等,如:两个圆柱的侧面积为20平方厘米因为:4520⨯=(平方厘米)10220⨯=(平方厘米)一个圆柱的底面周长是4,另一个圆柱的底面周长是10,圆柱的底面周长不相等,底面圆的半径就不相等,即两个圆柱的底面积不相等.所以两个圆柱表面积不相等.故答案为:⨯19.(2020•海珠区模拟)一个圆柱的底面积扩大a 倍,高也扩大a 倍,它的体积就扩大到2a 倍.√.(判断对错)【答案】【解析】我们高这个圆柱的底面积为S ,高为h ,则它的体积是Sh底面积扩大a 倍后是aS ,高扩大a 倍后是ah ,它的体积是2aS ah a Sh ⨯=22a Sh Sh a ÷=即个圆柱的底面积扩大a 倍,高也扩大a 倍,它的体积就扩大到2a 倍.故答案为:√.20.(2020春•枣阳市校级月考)圆柱的底面积越大,它的体积就越大.⨯.(判断对错)【解析】如果圆柱的高不变,圆柱的底面积越大,它的体积就越大.因此,在没有确定高是否不变的前提条件下,圆柱的底面积越大,它的体积就越大.这种说法是错误的. 故答案为:⨯.21.(2020春•吴忠期中)容积210L 的圆柱形油桶,它的体积一定是210立方分米.⨯.【答案】【解析】容积210L 的圆柱形油桶,它的体积一定是210立方分米是错误的.它的体积要大于它的容积. 故答案为:⨯.22.(2018•萧山区模拟)当圆柱的底面直径和高都是5厘米时,圆柱的侧面展开图是一个正方形.⨯(判断对错)【答案】【解析】因为把圆柱体的侧面沿高剪开,得到一个长方形,这个长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,如果得到的是正方形,这就说明圆柱的底面周长与高相等;所以题干说法错误.故答案为:⨯.23.(2018•工业园区)一个圆柱的侧面展开图是一个正方形,这个圆柱的高是底面直径的π倍√(判断对错)【答案】【解析】设圆柱的底面直径为d ,因为底面周长d π=;所以圆柱的高也是d π,即圆柱的高是底面直径的π倍,所以题干的说法是正确的.故答案为:√.四.计算题24.(2020•永州模拟)(表面积和体积)【解析】表面积:2⨯÷+⨯⨯÷+⨯3.14(62) 3.1468268=⨯+⨯+3.149 3.14244828.2675.3648=++=151.62体积:2⨯÷⨯÷3.14(62)82=⨯⨯3.1494=113.0425.(2020•益阳模拟)如图是一种钢制的配件(图中数据单位:)cm,请计算它的表面积和体积.(π取3.14)【答案】【解析】(1)表面积:2⨯⨯+⨯⨯+⨯÷⨯3.1444 3.1484 3.14(82)2=++⨯⨯50.24100.48 3.14162150.72100.48=+=(平方厘米)251.2(2)体积:22⨯÷⨯+⨯÷⨯3.14(42)4 3.14(82)4=⨯⨯+⨯⨯3.1444 3.14164=+50.24200.96251.2=(立方厘米)答:它的表面积是251.2平方厘米,体积是251.2立方厘米.26.(2020•衡阳模拟)计算如图图形的表面积是多少.【答案】【解析】23.1432 3.14326⨯⨯+⨯⨯⨯3.1492 3.1436=⨯⨯+⨯56.52113.04=+169.56=(平方厘米)答:圆柱体的表面积是169.56平方厘米.27.(2020春•兴化市月考)如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.【答案】【解析】设圆柱的底面直径为x 分米,3.1416.56x x +=4.1416.56x =4x =.23.14(42)(42)⨯÷⨯⨯3.1448=⨯⨯12.568=⨯100.48=(立方分米),答:这个圆柱的体积是100.48立方分米.五.应用题28.(2020春•通榆县期末)一个圆柱体高是5米,底面直径是8米,这个圆柱体的表面积和体积是多少?【答案】【解析】23.1485 3.14(82)2⨯⨯+⨯÷⨯125.6 3.14162=+⨯⨯125.6100.48=+226.08=(平方米); 23.14(82)5⨯÷⨯3.14165=⨯⨯50.245=⨯251.2=(立方米); 答:这个圆柱的表面积是226.08平方米,体积是251.2立方米.29.(2020春•越秀区期末)一块底面半径6cm ,高12cm 的圆锥形钢材,把它熔铸成一根横截面半径是1cm 的圆柱形钢条,这根钢条长多少厘米? 【解答】解;221 3.14612(3.141)3⨯⨯⨯÷⨯1 3.143612 3.143=⨯⨯⨯÷452.16 3.14=÷144=(厘米)答:这根钢条长144厘米.六.解答题30.(2020•湘潭模拟)赵师傅向下面所示的空容器(由上、下两个圆柱体组成)中匀速注油,正好注满.注油过程中,容器中油的高度与所用时间的关系如图所示. ①把下面的大圆柱体注满需113分钟. ②上面小圆柱体高厘米.③如果下面的大圆柱体底面积是48平方厘米,则大圆柱体积是多少立方厘米?上面小圆柱的底面积是多少平方厘米?(写出计算过程)【答案】【解析】①把下面的大圆柱体注满需113分钟.②502030-=(厘米)答:上面小圆柱体高30厘米.③4820960⨯=(立方厘米)119601(21)33÷⨯-12960133=÷⨯480=(立方厘米)4803016÷=(平方厘米)答:大圆柱体积是960立方厘米,上面小圆柱的底面积是16平方厘米.故答案为:113;30.31.(2020春•桂阳县校级期中)如图,圆柱形钢柱有多高?(单位:cm,结果保留整数)【答案】【解析】2 502010[3.14(202)]⨯⨯÷⨯÷10000[3.14100]=÷⨯10000314=÷32≈(厘米)答:圆柱形钢柱的高约是32厘米.。

人教版小学数学六年级下册总复习ppt课件立体图形的表面积体积

人教版小学数学六年级下册总复习ppt课件立体图形的表面积体积

本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
判断
1)一个圆柱形水桶的体积就是它的容积
……………………………………( ×)
2)正方体的棱长扩大2倍,体积就扩大8

你能推想一下下面的立体 图形的体积可以怎样计算吗?
填空: 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
(1)把一个圆柱削成一个最大的圆锥,圆柱 体积是圆锥体积的( 3倍 ),圆锥体积是圆 柱(体2)积一的个(圆锥13 和)一。个圆柱的体积相等,底面 积也相等。这个圆锥的高是圆柱的高的 ( 3 )倍。 (3)一个正方体的棱长5厘米,这个正方体 的棱长总和是( 60 )厘米。 (4)把一段长3米的长方体木料平均截成3 段,表面积增加8平方厘米,原来这段木料的 体积是( 600 )立方厘米。
2、你能解决下面生活中的问题吗?
1)一个圆柱形水池,直径是20米,深2米. ①这个水池占地面积是多少? 3.14×(20÷2)2 ②挖成这个水池,共需挖土多少立方米?
3.14×(20÷2)2 ×2 ③在池内四周和池底抹一层水泥,水 泥面的面积是多少平方米?
3.14×20×2+ 3.14×(20÷2)2
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。

人教版六年级数学——圆柱的表面积、体积知识点+练习

人教版六年级数学——圆柱的表面积、体积知识点+练习

圆柱的表面积应用类型一:利用圆柱表面积解决实际问题例1:一顶圆柱形厨师帽,高30 cm,帽顶直径20cm。

做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。

)1、一种没有盖的圆柱形铁皮水桶,底面周长是12.56 dm,高是6 dm。

做一对这样的水桶大约需要铁皮多少平方分米?例2:制作一截底面直径是6cm,长是40cm的烟囱,至少要用多少平方厘米铁皮?2、一个刷油漆的滚简长为1.4 dm,直径为5 cm。

如果它向一个方向滚动100 周,能刷墙多少平方分米?类型二:运用图示法解决圆柱的高增加(或减少)引起表面积的变化问题例3、一根圆柱形木料的底面半径是0.3m,长是2m。

将它截成4段,这些木料的表面积比原木料增加了多少平方米?例4、一个高为25cm的圆柱,截去高为5cm的小圆柱后,圆柱的表面积减少了31.4cm,原来圆柱的表面积是多少平方厘米?3、把一根长是2m,底面直径是3dm的圆柱形木材锯成3段,得到的3个小圆柱的表面积总和比原来增加了多少平方分米?4、一个高为10 cm的圆柱,如果它的高增加2cm,那么它的表面积就增加125.6㎡,原来这个圆柱的表面积是多少?类型三:组合图形的面积例5、如图是一种钢制的配件,计算它的表面积。

(单位:cm)5、要将路灯柱(如右图,圆柱的下底面不刷漆)漆上白色的油漆,要漆多少平方米?街心花园有30 个这样的灯柱,如果油漆灯柱每平方米人工费5 元,一共需要人工费多少元?圆柱的体积知识点一:理解圆柱的体积的意义一个圆柱所占空间的大小叫做这个圆柱的体积。

比较拼成的长方体与原来的圆柱的关系将圆柱切拼成近似的长方体,形状变了,但体积不变。

(2)推导圆柱体积的计算公式长方体的体积=底面积x 高 圆柱的体积 = 底面积x 高 如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,那么圆柱的体积计算公式用字母表示为:V=Sh 。

归纳总结:计算圆柱的体积的基本方法。

人教版六年级数学下册表面积和体积题库

人教版六年级数学下册表面积和体积题库

水箱的容积就是水箱的体积。
表面积相等的两个圆柱体,它们的体积也一定相等。( )
圆锥的底面积一定,体积与高成正比例。
填空
一段圆木的底面半径为 2 分米,高是 1 分米,这段圆木的侧面积为 12.56 平方分米。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积有什么关系?
等底等高的圆柱体积 是圆锥体积的3倍。
他说的对吗?
3.不规则物体体积的计算
将一块石头放进装有水的圆柱形 容器里,你们发现了什么?
水面高度升高了,因为石头占了 圆柱体容器中水的空间。
你从能中根联据想这了个到现其象他求不出规则 石物头体的体体积积的吗求?法吗?
4.容积的计算方法及注意事项
计算容积与计算体积的方法相同吗?
有什么要注意 的地方放吗?
相同。
要注意应从里面量 容器的切成棱长2cm
的小正方体,可以得到多少个小正方体?
它们的表面积之和比原来大正方形的表面
积增加了多少?
V大正方体=63=216(cm3) S大正方体=6×62=216(cm2)
2.表面积、体积的计算
S=2πr2+2πrh
V=πr2h
V=
1 3
πr2h
长方体、正方体与圆柱的体积计 算公式有什么联系?
因为它们都是直柱 体,所以都可以用底面 积×高来计算。
思考 这些体积计算公式中哪一个是其他
几个的基础?其他几个公式是怎样由这 个公式推导出来的?
请同学们互相讨论!
问题 等底等高的圆柱和圆锥的体
V小正方体=23=8(cm3) S小正方体=6×22=24(cm2)
216÷8=27(个)
24×27-216=432(cm2)
把一块棱长10cm的正方体铁块熔铸成 一个底面直径是20cm的圆锥形铁块。这个 圆锥形铁块的高约是多少?(得数保留整厘 米。)
这只工具箱的下半部是棱长为20cm的 正方体,上半部是圆柱的一半。算出它的 表面积和体积。
四、课堂小结
五、课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
六、教学反思
本节课教学教师应注意引导学生整理所 学知识,找出公式间的内在联系,充分利用 课件演示立体图形体积公式的推导过程,将 分散的知识串成线、连成片、结成网,构建 知识体系。
图形的认识与测量——立体图形(2)
R·六年级下册
一、引入新课
上这节课我们回将顾共了同长复方习体它、们 正的方表体面、积圆和柱体、积圆的锥计的算特方征法。
二、自主探究 1.表面积、体积的定义
什么是立体图形的表面积? 什么是立体图形的体积?
体积:物体所占空间的 大小。
表面积:一个立体图形 所有的面的面积总和。
相关文档
最新文档