贵州省遵义市2016年中考数学真题及答案
贵州省遵义市2016年中考数学试卷(解析版)
贵州省遵义市2016年中考数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.1【考点】有理数大小比较.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小)比较即可.【解答】解:∵﹣2<﹣1<0<1,∴最小的一个数是:﹣2,故选C.2.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:C.3.2015年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108B.3.17×1010C.3.17×1011D.3.17×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将317亿用科学记数法表示为:3.17×1010.故选:B.4.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b 上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【考点】平行线的性质.【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°.故选A.5.下列运算正确的是()A.a6÷a2=a3 B.(a2)3=a5 C.a2•a3=a6D.3a2﹣2a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,对各选项分析判断后利用排除法求解.【解答】解:A、a6÷a2=a4,故A错误;B、(a2)3=a6,故B错误;C、a2•a3=a5,故C错误;D、3a2﹣2a2=a2,故D正确.故选:D.6.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50 B.50,60 C.50,50 D.60,60【考点】中位数;算术平均数.【分析】平均数的计算公式和中位数的定义分别进行解答即可.【解答】解:这组数据的平均数是:(60+30+40+50+70)÷5=50;把这组数据从小到大排列为:30,40,50,60,70,最中间的数是50,则中位数是50;故选C.7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b【考点】反比例函数图象上点的坐标特征.【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选D.8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC【考点】菱形的判定;平行四边形的性质.【分析】根据菱形的定义和判定定理即可作出判断.【解答】解:A、根据菱形的定义可得,当AB=AD时▱ABCD是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=AC,∴▱ABCD是菱形.故选C.9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【考点】一元一次不等式的应用.【分析】设三个连续正整数分别为x﹣1,x,x+1,列出不等式即可解决问题.【解答】解:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.10.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12πB.6πC.5πD.4π【考点】弧长的计算.【分析】如图,连接OC,利用圆周角定理和邻补角的定义求得∠AOC的度数,然后利用弧长公式进行解答即可.【解答】解:如图,连接OC,∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∴∠AOC=120°.又直径AB的长为12,∴半径OA=6,∴的长是:=4π.故选:D.11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.3﹣4 B.4﹣5 C.4﹣2D.5﹣2【考点】翻折变换(折叠问题);正方形的性质.【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=DF=,则C′A=3﹣,AG=(3﹣),设EB=x,则GE=2x,得出方程,解方程即可.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=DF=,则C′A=3﹣,AG=(3﹣),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,则(3﹣)+3x=3,解得:x=2﹣,∴GE=4﹣2;故选:C.12.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC 的内切圆,则PQ的长是()A.B.C.D.2【考点】三角形的内切圆与内心;矩形的性质.【分析】根据矩形的性质可得出⊙P和⊙Q的半径相等,利用直角三角形内切圆半径公式即可求出⊙P半径r的长度.连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,求出线段QE、EP的长,再由勾股定理即可求出线段PQ的长,此题得解.【解答】解:∵四边形ABCD为矩形,∴△ACD≌△CAB,∴⊙P和⊙Q的半径相等.在Rt△BC中,AB=4,BC=3,∴AC==5,∴⊙P的半径r===1.连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则∠QEP=90°,如图所示.在Rt△QEP中,QE=BC﹣2r=3﹣2=1,EP=AB﹣2r=4﹣2=2,∴PQ===.故选B.二、填空题(本大题共6小题,每小题4分,共24分)13.计算的结果是﹣2.【考点】二次根式的加减法.【分析】根据二次根式的性质,可化成同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=﹣3=﹣2,故答案为:﹣2.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=35度.【考点】线段垂直平分线的性质.【分析】由已知条件和等腰三角形的性质可得∠A=∠C=35°,再由线段垂直平分线的性质可求出∠ABD=∠A,问题得解.【解答】解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=﹣2.【考点】根与系数的关系.【分析】利用韦达定理求得x1+x2=2,x1•x2=﹣1,然后将其代入通分后的所求代数式并求值.【解答】解:∵一元二次方程x2﹣2x﹣1=0的两根为x1、x2,x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案是:﹣2.16.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为a⊕c.【考点】推理与论证.【分析】首先根据已知图形中两个图形中共同含有的图形,就可以判断每个符号所代表的图形,即可得出结论.【解答】解:结合前两个图可以看出:b代表正方形;结合后两个图可以看出:d代表圆;因此a代表线段,c代表三角形,∴图形的连接方式为a⊕c故答案为:a⊕c.17.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=2.【考点】相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质.【分析】设BC=4x,根据面积公式计算,得出BC=4BD,过E作AC,BC的垂线,垂足分别为F,G;证明CFEG为正方形,然后在直角三角形ACD中,利用三角形相似,求出正方形的边长(用x表示),再利用已知的面积建立等式,解出x,最后求出AC=BC=4x即可.【解答】解:过E作AC,BC的垂线,垂足分别为F,G,设BC=4x,则AC=4x,∵CE是∠ACB的平分线,EF⊥AC,EG⊥BC,∴EF=EG,又S△ACE=,S△BDE=,∴BD=AC=x,∴CD=3x,∵四边形EFCG是正方形,∴EF=FC,∵EF∥CD,∴=,即=,解得,EF=x,则×4x×x=,解得,x=,则AC=4x=2,故答案为:2.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为5.【考点】动点问题的函数图象.【分析】由函数图象上的点(6,8)、(10,0)的实际意义可知AB+BC、AB+BC+CD的长及△PAD的最大面积,从而求得AD、CD的长,再根据点P运动到点B时得S△ABD=2,从而求得AB的长,最后根据等腰三角形的中位线定理可求得当P运动到BC中点时,△PAD 的面积.【解答】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=5,故答案为:5.三、解答题(本题共9小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°=1+﹣1+﹣2×=1+﹣1+﹣=.20.先化简(﹣),再从1,2,3中选取一个适当的数代入求值.【考点】分式的化简求值.【分析】首先利用分式的混合运算法则,将原式化简,然后代入求值即可.【解答】解:(﹣)==•=,∵a﹣2≠0,a+2≠0,∴a≠±2,∴当a=1时,原式=﹣3.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= 1.5m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【考点】解直角三角形的应用.【分析】(1)根据余弦定理先求出OE,再根据AF=OB+BD,求出DE,即可得出h的值;(2)过C点作CM⊥DF,交DF于点M,根据已知条件和余弦定理求出OE,再根据CM=OB+DE﹣OE,求出CM,再与成人的“安全高度”进行比较,即可得出答案.【解答】解:(1)在Rt△ANO中,∠ANO=90°,∴cos∠AON=,∴ON=OA•cos∠AON,∵OA=OB=3m,∠AON=45°,∴ON=3•cos45°≈2.12m,∴ND=3+0.6﹣2.12≈1.5m,∴h=ND=AF≈1.5m;故答案为:1.5.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3•cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.22.2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是120人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是54度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出B类人数,然后补全条形统计图;(3)用360度乘以D类人数所占的百分比即可;(4)用2400乘以样本中C类人数所占的百分比即可.【解答】解:(1)本次参与投票的总人数=24÷20%=120(人);故答案为:120;(2)B类人数=120﹣24﹣30﹣18﹣12=36(人),补全条形统计图为:(3)扇形统计图中,线路D部分的圆心角=360°×=54°,故答案为:54;(4)2400×=600,所以估计,选择“生态茶海”路线的人数约为600人.23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【考点】列表法与树状图法;轴对称图形;中心对称图形;概率公式.【分析】(1)若乙固定在E处,求出移动甲后黑色方块构成的拼图一共有多少种可能,其中是轴对称图形的有几种可能,由此即可解决问题.(2)①画出树状图即可解决问题.②不可能出现中心对称图形,所以概率为0.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率==.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C 处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD 分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE ﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.流量阶梯定价标准使用范围阶梯单价(元/MB)1﹣100MB a101﹣500MB 0.07501﹣20GB b语音阶梯定价标准使用范围阶梯资费(元/分钟)1﹣500分钟0.15501﹣1000分钟0.121001﹣2000分钟m【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.【考点】二元一次方程组的应用.【分析】(1)由600M和2G均超过500M,分段表示出600M和2G的费用,由此可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,先求出丙定制1G流量的费用,再根据“套餐费用=流量费+语音通话费”即可列出关于m、x的二元一次方程组,解方程组即可得出m的值.【解答】解:(1)依题意得:,解得:.∴a的值为0.15元/MB,b的值为0.05元/MB.(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,丙定制了1GB的月流量,需花费100×0.15+×0.07+×0.05=69.2(元),依题意得:,解得:m=0.08.答:m的值为0.08元/分钟.26.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C 不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.【考点】圆的综合题.【分析】(1)过A作AF⊥BC于F,过P作PH⊥AB于H,根据等腰三角形的性质得到CF=AC•cos30°=6×=3,推出∠CEP=90°,求得CE=AC+AE=6+y,列方程PB+CP=x+=6,于是得到y=﹣x+3,根据BD=2BH=x<6,即可得到结论;(2)根据已知条件得到PE=PC=2=PB,于是得到射线CA与⊙P相切;(3)D在线段BA上和延长线上两种情况,根据三角形的面积列方程即可得到结果.【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.【考点】二次函数综合题.【分析】(1)把点C坐标代入y=x2+bx+c得一方程,利用对称轴公式得另一方程,组成方程组求出解析式,并求出G点的坐标;(2)①作辅助线,构建直角△DEF斜边上的高FM,利用直角三角形的面积相等和勾股定理可表示F的坐标,根据点F在抛物线上,列方程求出m的值;②F点和G点坐标已知,可以求出直线FG的方程,那么FG和x轴的交点坐标(设为Q)可以知道,C点坐标已知,CG的方程也可以求出,那么H点坐标可以求出,可以证明△BPH 和△MGH全等.【解答】解:(1)根据题意得:解得:∴抛物线的解析式为:y=x2+x,点G(0,﹣);(2)①过F作FM⊥y轴,交DE于M,交y轴于N,由题意可知:AC=4,BC=3,则AB=5,FM=,∵Rt△ABC沿x轴向右平移m个单位,使B点移到点E,∴E(﹣4+m,0),OE=MN=4﹣m,FN=﹣(4﹣m)=m﹣,在Rt△FME中,由勾股定理得:EM==,∴F(m﹣,),∵F抛物线上,∴=(m﹣)2+(m﹣)﹣,5m2﹣8m﹣36=0,m1=﹣2(舍),;②易求得FG的解析式为:y=x﹣,CG解析式为:y=﹣x﹣,∴x﹣=0,x=1,则Q(1,0),﹣x﹣=0,x=﹣1.5,则H(﹣1.5,0),∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,∴BH=QH,∵BP∥FG,∴∠PBH=∠GQH,∠BPH=∠QGH,∴△BPH≌△QGH,∴PH=GH.。
贵州省遵义市中考数学试卷(含答案)
贵州省遵义市中考数学试卷(含答案)一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(•遵义)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8D.2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(3分)(•遵义)观察下列图形,是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(•遵义)“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1762亿用科学记数法表示为:1.762×1011.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°考点:平行线的性质.分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.解答:解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选A.点评:本题考查了平行线的性质,熟记性质并作辅助线是解题的关键.5.(3分)(•遵义)计算3x3•2x2的结果是()A.5x5B.6x5C.6x6D.6x9考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3x3•2x2=6x5,故选B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(3分)(•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.(3分)(•遵义)有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5考点:极差;加权平均数;中位数;众数.分析:根据中位数、平均数、极差、众数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.点评:本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.8.(3分)(•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.2考点:完全平方公式.分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.9.(3分)(•遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.B.C.D.考点:相似三角形的判定与性质;正方形的性质;圆周角定理.分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠PCF=90°,CD∥AB,∵F为CD的中点,CD=AB=BC=2,∴CP=1,∵PC∥AB,∴△FCP∽△FBA,∴==,∴BF=4,∴CF=4﹣2=2,由勾股定理得:BP==,∵四边形ABCD是正方形,∴∠BCP=∠PCF=90°,∴PF是直径,∴∠E=90°=∠BCP,∵∠PBC=∠EBF,∴△BCP∽△BEF,∴=,∴=,∴EF=,故选D.点评:本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.10.(3分)(•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)(•遵义)+=4.考点:二次根式的加减法.分析:先化简,然后合并同类二次根式.解答:解:原式=3+=4.故答案为;4.点评:本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.12.(4分)(•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:因为外角是20度,360÷20=18,则这个多边形是18边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.(4分)(•遵义)计算:+的结果是﹣1.考点:分式的加减法.专题:计算题.分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==﹣1.故答案为:﹣1.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(•遵义)关于x的一元二次方程x2﹣3x+b=0有两个不相等的实数根,则b的取值范围是b<.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣3)2﹣4b>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4b>0,解得b<.故答案为b<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(4分)(•遵义)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)考点:圆锥的计算.分析:先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.解答:解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为60π.点评:本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR.16.(4分)(•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵÷4=503…2,∴滚动第次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.17.(4分)(•遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD 长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH= 1.05里.考点:相似三角形的应用.分析:首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.解答:解:EG⊥AB,FE⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得:FH=1.05里.故答案为:1.05.点评:本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形,难度不大.18.(4分)(•遵义)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E 是AB的中点,S△BEF=2,则k的值为8.考点:反比例函数系数k的几何意义.分析:设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.解答:解:设E(a,),则B纵坐标也为,E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,BF=﹣=,所以F也为中点,S△BEF=2=,k=8.故答案是:8.点评:本题考查了反比例函数的性质,正确表示出BF的长度是关键.三、解答题(本题共9小题,共88分)19.(6分)(•遵义)计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣4﹣﹣1=2﹣5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(•遵义)解不等式组:,并把不等式组的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:由①得,x≥﹣1,由②得,x<4,故此不等式组的解集为:﹣1≤x<4.在数轴上表示为:.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.22.(10分)(•遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.考点:游戏公平性;列表法与树状图法.分析:(1)列表将所有等可能的结果一一列举出来即可;(2)根据列表里有概率公式求得小明获胜的概率即可判断是否公平.解答:解:(1)列表得:红1 红2 红3 黑1 黑2红1 红1红2 红1红3 红1黑1 红1黑2红2 红2红1 红2红3 红2黑1 红2黑2红3 红3红1 红3红2 红3黑1 红3黑2黑1 黑1红1 黑1红2 黑1红3 黑1黑2黑2 黑2红1 黑2红2 黑2红3 黑2黑1(2)共20种等可能的情况,其中颜色相同的有8种,则小明获胜的概率为=,小军获胜的概率为1﹣=,∵<,∴不公平,对小军有利.点评:本题考查了列表法与列树状图的知识,解题的关键是正确的列出表格或树状图.23.(10分)(•遵义)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是1500;(2)调查中属于“基本了解”的市民有450人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用熟悉(A)的人数除以所占的百分比,计算即可得解;(2)先求出略有知晓(C)的人数,然后列式计算即可得解;(3)根据(2)的计算补全图形统计图即可;(4)用“略有知晓”C所占的百分比乘以360°计算即可,再根据知之甚少(D)的人数列式计算即可求出所占的百分比.解答:解:(1)120÷8%=1500;(2)略有知晓(C)的人数为:1500×40%=600人,“基本了解”(B)的人数为:1500﹣120﹣600﹣330=1500﹣1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类:360°×40%=144°,“知之甚少”类:×100%=22%.故答案为:(1)1500;(2)450.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.分析:(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后平行线分线段成比例定理即可求得.解答:(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,即=,∴AD=2,点评:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.25.(10分)(•遵义)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?考点:一次函数的应用.分析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解答:解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得:a=.答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:135=,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.26.(12分)(•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD 的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.考点:圆的综合题.专题:综合题.分析:(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt △ADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=DC=,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.解答:(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.点评:本题考查了圆的综合题:熟练掌握圆周角定理、等边三角形的性质和平行四边形的判定与性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和相似比进行几何计算.27.(14分)(•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ 的形状,并求出D点坐标.考点:二次函数综合题.分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.解答:解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t,﹣),∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).点评:本题考查了二次函数性质、利用勾股定理解直角三角形及菱形等知识,总体来说题意复杂但解答内容都很基础,是一道值得练习的题目.。
2016年贵州省遵义市中考数学试卷-答案
贵州省遵义市2016年初中毕业生学业(升学)统一考试 参考答案与试题解析一、选择题1.【答案】C【解析】∵2101-<-<<,∴最小的一个数是:-2,故选C. 【考点】有理数大小比较2.【答案】C【解析】从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:C.【考点】简单组合体的三视图3.【答案】B【解析】将317亿用科学记数法表示为:3.17×1010.【考点】科学记数法—表示较大的数4.【答案】A【解析】过点C 作CD a ∥,则1ACD ∠=∠.∵a b ∥,∴CD b ∥,∴2DCB ∠=∠,∵ACD DCB 90∠+∠=︒,∴1290∠+∠=︒,故选A 。
【考点】平行线的性质5.【答案】D【解析】A .624a a a ÷=,故A 错误;B .236(a )a =,故B 错误;C .235a ?a a =,故C 错误;D .2223a 2a a =﹣,故D 正确。
故选:D 。
【考点】同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方6.【答案】C【解析】这组数据的平均数是:(6030405070)550++++÷=;把这组数据从小到大排列为:30,40,50,60,70,最中间的数是50,则中位数是50;故选C 。
【考点】中位数,算术平均数7.【答案】D故选:D。
∠=︒,如图所示。
连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则QEP90结合后两个图可以看出:d代表圆;因此a代表线段,c代表三角形,∴图形的连接方式为a⊕c.答案为:2.2222a 2a 4a 4a 2(a 2)a 2a )a 4a 2a 4a 2(a 2)(a 2)a -++-+-+===----+--如图,过C 点作CM DF ⊥,交DF 于点M ,在Rt CEO △中,CEO 90∠=︒,OE OC cos COF ∠3cos55 1.72m ︒≈B 类人数1202430181236==﹣﹣﹣﹣(人),补全条形统计图为:(4)用2400乘以样本中C 类人数所占的百分比即可。
贵州遵义2016中考试题数学卷(解析版)
一、选择题(共12小题)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.1【答案】C.【解析】试题分析:∵﹣2<﹣1<0<1,∴最小的一个数是:﹣2,故选C.考点:有理数大小比较.2.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】C.3.2015年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108 B.3.17×1010 C.3.17×1011 D.3.17×1012【答案】B.【解析】试题分析:将317亿用科学记数法表示为:3.17×1010.故选B.考点:科学记数法—表示较大的数.4.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b 上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【答案】A.【解析】试题分析:过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°.故选A.考点:平行线的性质.5.下列运算正确的是( )A .623a a a ÷=B .235()a a =C .236a a a ⋅=D .22232a a a -=【答案】D . 【解析】考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.6.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是( ) A .60,50 B .50,60 C .50,50 D .60,60 【答案】C . 【解析】试题分析:这组数据的平均数是:(60+30+40+50+70)÷5=50;把这组数据从小到大排列为:30,40,50,60,70,最中间的数是50,则中位数是50; 故选C .考点:中位数;算术平均数.7.已知反比例函数ky x =(k >0)的图象经过点A (1,a )、B (3,b ),则a 与b 的关系正确的是( )A .a=bB .a=﹣bC .a <bD .a >b 【答案】D . 【解析】试题分析:∵k >0,∴当x >0时,反比例函数y 随x 的增大而减小,∵1<3,∴a >b ,故选D .考点:反比例函数图象上点的坐标特征.8.如图,在▱ABCD 中,对角线AC 与BD 交于点O ,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是( )A .AB=ADB .AC ⊥BD C .AC=BD D .∠BAC=∠DAC【答案】C.【解析】考点:菱形的判定;平行四边形的性质.9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【答案】B.【解析】试题分析:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.考点:一元一次不等式的应用.10.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,AC的长是()A.12πB.6πC.5πD.4π【答案】D.【解析】考点:弧长的计算.11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.4B.5C.4-D.5-【答案】C.【解析】试题分析:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,则C′A=3,,设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x+3x=3,解得:x=2,∴GE=4-;故选C.考点:翻折变换(折叠问题);正方形的性质.12.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是()A.52BC.D.【答案】B.【解析】考点:三角形的内切圆与内心;矩形的性质.二、填空题(共6小题)13的结果是.【答案】-. 【解析】试题分析:原式-,故答案为:-. 考点:二次根式的加减法.14.如图,在△ABC 中,AB=BC ,∠ABC=110°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD= 度.【答案】35. 【解析】试题分析:∵在△ABC 中,AB=BC ,∠ABC=110°,∴∠A=∠C=35°,∵AB 的垂直平分线DE 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=35°,故答案为:35. 考点:线段垂直平分线的性质.15.已知1x ,2x 是一元二次方程2210x x --=的两根,则1211x x += .【答案】﹣2.考点:根与系数的关系.16.字母a 、b 、c 、d 各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,下表是三种组合与连接的对应表,由此可推断图形的连接方式为 .【答案】a ⊕c .【解析】试题分析:过E 作AC ,BC 的垂线,垂足分别为F ,G ,设BC=4x ,则AC=4x ,∵CE 是∠ACB的平分线,EF ⊥AC ,EG ⊥BC ,∴EF=EG ,又S△ACE=67,S△BDE=314,∴BD=14AC=x ,∴CD=3x ,∵四边形EFCG 是正方形,∴EF=FC ,∵EF ∥CD ,∴EF AF CD AC =,即434EF x EFx x -=,解得,EF=127x ,则11264277x x ⨯⨯=,解得,x=12,则AC=4x=2,故答案为:2.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为.【答案】5.【解析】考点:动点问题的函数图象;动点型.三、解答题(共9小题)19.计算:01(2016)1222sin45π--++-.【答案】1 2.【解析】试题分析:本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=12 12122++-=12.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.20.先化简22442()224a a aa a a+--⋅---,再从1,2,3中选取一个适当的数代入求值.【答案】22aa+-,当a=1时,原式=﹣3.【解析】考点:分式的化简求值.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB 的长为3m ,静止时,踏板到地面距离BD 的长为0.6m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm ,成人的“安全高度”为2m (计算结果精确到0.1m )(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h= m (2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】(1)1.5;(2)成人是安全的. 【解析】(2)如图,过C 点作CM ⊥DF ,交DF 于点M ,在Rt △CEO 中,∠CEO=90°,∴cos ∠COE=OEOC ,∴OE=OC •cos ∠COF ,∵OB=OC=3m ,∠CON=55°,∴OE=3cos55°≈1.72m ,∴ED=3+0.6﹣1.72≈1.9m ,∴CM=ED ≈1.9m ,∵成人的“安全高度”为2m ,∴成人是安全的.考点:解直角三角形的应用.22.2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?【答案】(1)120;(2)答案见解析;(3)54;(4)600.【解析】试题解析:(1)本次参与投票的总人数=24÷20%=120(人);故答案为:120;(2)B类人数=120﹣24﹣30﹣18﹣12=36(人),补全条形统计图为:(3)扇形统计图中,线路D部分的圆心角=360°×18120=54°,故答案为:54;(4)2400×30120=600,所以估计,选择“生态茶海”路线的人数约为600人.考点:条形统计图;用样本估计总体;扇形统计图.23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【答案】(1)23;(2)①13;②29.【解析】(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率=39=13.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是29.故答案为:29.考点:列表法与树状图法;轴对称图形;中心对称图形;概率公式.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】试题解析:(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,∵∠C=∠A,CF=AE,∠F=∠E,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴,∴=AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.考点:矩形的性质;全等三角形的判定与性质. 25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b 的值.(注:1GB=1024MB )(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.【答案】(1)a 的值为0.15元/MB ,b 的值为0.05元/MB ;(2)m 的值为0.08元/分钟.【解析】试题解析:(1)依题意得:100(500100)0.07(600500)48100(500100)0.07(10242500)120a b a b +-⨯+-=⎧⎨+-⨯+⨯-=⎩,解得:0.150.05a b =⎧⎨=⎩,∴a 的值为0.15元/MB ,b 的值为0.05元/MB .(2)设甲的套餐中定制x (x >1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,丙定制了1GB 的月流量,需花费100×0.15+(500﹣100)×0.07+(1024﹣500)×0.05=69.2(元),依题意得:485000.15(1000500)0.12(1000)19969.25000.15(1000500)0.12(3001000)244x m x m +⨯+-⨯+-=⎧⎨+⨯+-⨯++-=⎩,解得:m=0.08. 答:m 的值为0.08元/分钟.考点:二元一次方程组的应用.26.如图,△ABC 中,∠BAC=120°,AB=AC=6.P 是底边BC 上的一个动点(P 与B 、C 不重合),以P 为圆心,PB 为半径的⊙P 与射线BA 交于点D ,射线PD 交射线CA 于点E .(1)若点E 在线段CA 的延长线上,设BP=x ,AE=y ,求y 关于x 的函数关系式,并写出x 的取值范围.(2)当BP=CA 与⊙P 是否相切.(3)连接PA ,若S△APE=18S△ABC,求BP 的长.【答案】(1)32y x =-+(0<x<;(2)相切;(3)【解析】(2)根据已知条件得到PE=12PC=,于是得到射线CA 与⊙P 相切;(3)D 在线段BA 上和延长线上两种情况,根据三角形的面积列方程即可得到结果.试题解析:(1)过A 作AF ⊥BC 于F ,过P 作PH ⊥AB 于H ,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD ,∴∠PDB=∠B=30°,CF=AC •cos30°=6×=DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y ,∴PC=sin 60CE=,∵BC=∴PB+CP= x=,∴3y =+,∵x <6,∴x<,∴x 的取值范围是0<x< (2)相切.理由如下:∵BP=CP=PE=12PC=,∴射线CA 与⊙P 相切;综上可得,BP的长为-或.考点:圆的综合题;动点型;分类讨论;压轴题.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线212y x bx c=++经过点C,且对称轴为x=45-,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.【答案】(1)2149255y x x=+-,点G(0,95-);(2)①m=185;②证明见解析.【解析】试题分析:(1)把点C坐标代入212y x bx c=++得一方程,利用对称轴公式得另一方程,组成方程组求出解析式,并求出G点的坐标;试题解析:(1)根据题意得:21(4)43241522b cb⎧⨯--+=⎪⎪⎨-=-⎪⨯⎪⎩,解得:4595bc⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为:2149255y x x =+-,点G (0,95-);(2)①过F 作FM ⊥y 轴,交DE 于M ,交y 轴于N ,由题意可知:AC=4,BC=3,则AB=5,FM=125,∵Rt △ABC 沿x 轴向右平移m 个单位,使B 点移到点E ,∴E (﹣4+m ,0),OE=MN=4﹣m ,FN=125﹣(4﹣m )=m ﹣85,在Rt △FME 中,由勾股定理得:95,∴F (m ﹣85,95),∵F 抛物线上,∴95=218489()()25555m m -+--,258360m m --=,1m =﹣2(舍),2m =185;②易求得FG 的解析式为:9955y x =-,CG 解析式为:6955y x =--,∴99055x -=,x=1,则Q (1,0),69055x --=,x=﹣1.5,则H (﹣1.5,0),∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,∴BH=QH ,∵BP ∥FG ,∴∠PBH=∠GQH ,∠BPH=∠QGH ,∴△BPH ≌△QGH ,∴PH=GH .考点:二次函数综合题;平移的性质;旋转的性质;压轴题.。
贵州省遵义市中考数学试卷
贵州省遵义市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共36分)1. (3分)计算的结果是()A . ﹣1B .C . 0D . 12. (3分) (2016七上·个旧期中) 下列式子中,能与2a合并的是()A .B . -3a+bC . -10aD .3. (3分)下列说法中,正确的是()A . 倒数等于它本身的数是1B . 如果两条线段不相交,那么它们一定互相平行C . 等角的余角相等D . 任何有理数的平方都是正数4. (3分)(2018·桂林) 如图所示的几何体的主视图是()A .B .C .D .5. (3分) (2018八上·苍南月考) 已知点A的坐标为(3,-2),则点A向右平移 3个单位后的坐标为()A . (0,-2)B . (6,-2)C . (3,1)D . (3,-5)6. (3分) (2016九上·东城期末) 如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A . 70°B . 90°C . 110°D . 120°7. (3分) (2017七上·深圳期中) 下列单项式中,与是同类项的是()A .B .C .D .8. (3分)用配方法解方程,配方正确的是()A .B .C .D .9. (3分)关于x的不等式组的解集为x<3,那么m的取值范围为()A . m=3B . m>3C . m<3D . m≥310. (3分) (2017八下·宝坻期中) 已知a、b、c是三角形的三边长,如果满足(a﹣5)2+|b﹣12|+c2﹣26c+169=0,则三角形的形状是()A . 底与边不相等的等腰三角形B . 等边三角形C . 钝角三角形D . 直角三角形11. (3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F.若S△ABC=7,DE=2,AB=4,则AC=()A . 3B . 4C . 5D . 612. (3分)如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为()A . (-,)B . (-,)C . (-,)D . (-,)二、填空题 (共8题;共40分)13. (5分)计算:﹣12016+ =________.14. (5分)方程﹣3=0的解是________ .15. (5分)(2018·灌云模拟) 在元旦晚会的投飞镖游戏环节中,5名同学的投掷成绩单位:环分别是:7、9、9、6、8,则这组数据的众数是________.16. (5分)在平面直角坐标系中,已知点A(﹣4,2),B(﹣2,﹣2),以原点O为位似中心,把△ABO放大为原来的2倍,则点A的对应点A′的坐标是________17. (5分)各边相等的圆内接多边形________ 正多边形;各角相等的圆内接多边形________ 正多边形.(填“是”或“不是”)18. (5分) (2018八下·深圳月考) 函数y=kx+b和函数y=ax+m的图象如图所示,求下列不等式(组)的解集(1) kx+b<ax+m的解集是________;(2)的解集是________;(3)的解集是________;(4)的解集是________.19. (5分) (2017九上·泰州开学考) 如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为________.20. (5分) (2017七上·江海月考) 拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,如此反复,那么,这样捏合________次后刚好可拉出128根细面条。
遵义中考数学试卷真题
遵义中考数学试卷真题
一、选择题(本题共20小题,每小题4分,共80分)
1. ...
2. ...
...
20. ...
二、填空题(本题共15小题,每小题4分,共60分)
1. ...
2. ...
...
15. ...
三、解答题(本题共4小题,每小题20分,共80分)
1. 题目:...
解答:
...
2. 题目:...
解答:
...
3. 题目:...
解答:
...
4. 题目:...
解答:
...
四、应用题(本题共3小题,每小题20分,共60分)
1. 题目:...
解答:
...
2. 题目:...
解答:
...
3. 题目:...
解答:
...
总结:
本篇文章为遵义中考数学试卷真题。
试卷包含选择题、填空题、解
答题和应用题四个部分,共计150分。
选择题共20小题,每小题4分;填空题共15小题,每小题4分;解答题共4小题,每小题20分;应用题共3小题,每小题20分。
整篇文章按照试卷的题型和分值划分为四
个部分,分别介绍了各个部分的题目和解答方法。
文章排版整洁美观,语句通顺,全文表达流畅,没有影响阅读体验的问题。
2013-2018年贵州省遵义市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2018年贵州省遵义市中考数学试题汇编(含参考答案与解析)1、2013年贵州省遵义市中考数学试题及参考答案与解析 (2)2、2014年贵州省遵义市中考数学试题及参考答案与解析 (25)3、2015年贵州省遵义市中考数学试题及参考答案与解析 (48)4、2016年贵州省遵义市中考数学试题及参考答案与解析 (70)5、2017年贵州省遵义市中考数学试题及参考答案与解析 (96)6、2018年贵州省遵义市中考数学试题及参考答案与解析 (118)2013年贵州省遵义市中考数学试题及参考答案与解析一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果+30m 表示向东走30m ,那么向西走40m 表示为( )A .+40mB .﹣40mC .+30mD .﹣30m2.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .3.遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为( )A .3.354×106B .3.354×107C .3.354×108D .33.54×1064.如图,直线l 1∥l 2,若∠1=140°,∠2=70°,则∠3的度数是( )A .70°B .80°C .65°D .60°5.计算3212ab ⎛⎫- ⎪⎝⎭的结果是( ) A .3632a b - B .3512a b - C .3518a b - D .3618a b - 6.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )A .16B .14C .13D .112 7.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数12y x =-图象上的两点,下列判断中,正确的是( ) A .y 1>y 2 B .y 1<y 2 C .当x 1<x 2时,y 1<y 2 D .当x 1<x 2时,y 1>y 28.如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a +b<0 B.﹣a<﹣b C.1﹣2a>1﹣2b D.|a|﹣|b|>09.如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.32cmπB.223cmπ⎛⎫+⎪⎝⎭C.43cmπD.3cm10.二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个二、填空题(本题共8小题,每小题4分,共32分)11.计算:20130﹣2﹣1=.12.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.13.分解因式:x3﹣x=.14.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.15.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).18.如图,已知直线12y x=与双曲线kyx=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线kyx=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为.三、解答题(本题共9小题,共88分.解答时应写出必要的文字说明、证明过程或盐酸步骤.)19.(6分)解方程组24230x yx y-=⎧⎨+-=⎩①②.20.(8分)已知实数a满足a2+2a﹣15=0,求()()2212121121a aaa a a a+++-÷+--+的值.21.(8分)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).22.(10分)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是度.(3)在条形统计图中,“非常了解”所对应的学生人数是人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?23.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.24.(10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E 处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求MNDN的值.25.(10分)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?26.(12分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.27.(14分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,2 3),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案与解析一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果+30m表示向东走30m,那么向西走40m表示为()A.+40m B.﹣40m C.+30m D.﹣30m【知识考点】正数和负数.【思路分析】此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答过程】解:如果+30米表示向东走30米,那么向西走40m表示﹣40m.故选B.【总结归纳】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【知识考点】由三视图判断几何体【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答过程】解:俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【总结归纳】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.3.遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将3354万用科学记数法表示为:3.354×107.故选:B.。
中考数学试题及答案遵义
中考数学试题及答案遵义在中考数学试题中,遵义市的试卷同样充斥着各种各样的难题和考点。
为了帮助考生们更好地应对中考数学,以下将给出一些遵义市中考数学试题及答案。
一、选择题1. 下列数列的通项公式是()A. an = n^2 + 5B. an = 2n + 3C. an = n^2 + 4n + 3D. an = n(n + 6)答案:C2. 若a、b、c是实数,且满足方程组{ 2a + 3b = 5{ a + 4b - 3c = 2{ 3a + 2b + kc = 6当k的值为多少时,方程组有唯一解?A. 1B. 2C. 3D. 4答案:B二、填空题1. 某篮球队的前6场比赛中,获胜的场次数分别为8, 5, 6, 4, 5, 7。
则该队至少还要获胜\u0012\u0012\u0012\u0012次,才能保证前6场比赛的获胜场次数的平均值不少于6场。
答案:82. 将若干根长度相同的小木棍排成一行,每个木棍占2个单位长度,排成的整体长度为12个单位。
如果每个木棍占3个单位长度,则需要增加\u0012\u0012个木棍才能满足整体长度不变。
答案:4三、解答题1. 若一个等差数列的前n项和为S_n = n^2 + n,则这个等差数列的公差为多少?解答:等差数列的前n项和公式为S_n = (n/2) * (2a + (n-1)d),其中a为首项,d为公差。
将S_n代入原方程,得到 n^2 + n = (n/2) * (2a + (n-1)d)。
化简后可得 2a + (n-1)d = 2n + 1。
由于该等差数列的项数n为自然数,所以2n + 1也为奇数。
只有当d为奇数时,才能满足等式的成立。
因此,该等差数列的公差d为奇数。
2. 某城市的温度变化规律如下:每天的最低温度与最高温度之差为10℃,且每隔两天最低温度增加2℃,最高温度增加5℃。
已知第一天的最低温度为15℃,最高温度为30℃,求第n天的最低温度和最高温度。
贵州省遵义市中考数学试卷及答案(Word解析版)
贵州省遵义市中考数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(3分)(•遵义)如果+30m表示向东走30m,那么向西走40m表示为()A.+40m B.﹣40m C.+30m D.﹣30m考点:正数和负数.分析:此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.解答:解:如果+30米表示向东走30米,那么向西走40m表示﹣40m.故选B.点评:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.解答:解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.3.(3分)(•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•遵义)如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.解答:解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.5.(3分)(•遵义)计算(﹣ab2)3的结果是()A.﹣a3b6B.﹣a3b5C.﹣a3b5D.﹣a3b6考点:幂的乘方与积的乘方.分析:利用积的乘方与幂的乘方的运算法则求解即可求得答案.解答:解:(﹣ab2)3=(﹣)3•a3(b2)3=﹣a3b6.故选D.点评:此题考查了积的乘方与幂的乘方.注意掌握指数的变化是解此题的关键.6.(3分)(•遵义)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.考点:概率公式;利用轴对称设计图案.分析:由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.解答:解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况,∴使图中黑色部分的图形构成一个轴对称图形的概率是:=.故选A.点评:此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比.7.(3分)(•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2考点:一次函数图象上点的坐标特征.分析:根据正比例函数图象的性质:当k<0时,y随x的增大而减小即可求解.解答:解:∵y=﹣x,k=﹣<0,∴y随x的增大而减小.故选D.点评:本题考查正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.8.(3分)(•遵义)如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a+b<0 B.﹣a<﹣b C.1﹣2a>1﹣2b D.|a|﹣|b|>0考点:实数与数轴.分析:根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答:解:a、b两点在数轴上的位置可知:﹣2<a<﹣1,b>2,∴a+b>0,﹣a>b,故A、B错误;∵a<b,∴﹣2a>﹣2b,∴1﹣2a>1﹣2b,故C正确;∵|a|<2,|b|>2,∴|a|﹣|b|<0,故D错误.故选C.点评:本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.9.(3分)(•遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.cm B.(2+π)cm C.cm D.3cm考点:弧长的计算;等边三角形的性质;旋转的性质.分析:通过观察图形,可得从开始到结束经过两次翻动,求出点B两次划过的弧长,即可得出所经过路径的长度.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∴∠AC(A)=120°,点B两次翻动划过的弧长相等,则点B经过的路径长=2×=π.故选C.点评:本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.10.(3分)(•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个考点:二次函数图象与系数的关系.专题:计算题.分析:根据图象得到x=﹣2时对应的函数值小于0,得到N=4a﹣2b+c的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.解解:∵图象开口向下,∴a<0,答:∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0,当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.点评:此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c 的符号是解题关键.二、填空题(本题共8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.)11.(4分)(•遵义)计算:0﹣2﹣1=.考点:负整数指数幂;零指数幂.分析:根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:0﹣2﹣1,=1﹣,=.故答案为:.点评:本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.12.(4分)(•遵义)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=﹣3,1﹣b=﹣1,再解方程可得a、b的值,进而算出a b的值.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴a+b=﹣3,1﹣b=﹣1,解得:b=2,a=﹣5,a b=25,故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.(4分)(•遵义)分解因式:x3﹣x=x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.14.(4分)(•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=52°度.考点:圆周角定理;垂径定理.分析:由OC是⊙O的半径,AB是弦,且OC⊥AB,根据垂径定理的即可求得:=,又由圆周角定理,即可求得答案.解答:解:∵OC是⊙O的半径,AB是弦,且OC⊥AB,∴=,∴∠BOC=2∠APC=2×26°=52°.故答案为:52°.点评:此题考查了垂径定理与圆周角定理.此题比较简单,注意掌握数形结合思想的应用.15.(4分)(•遵义)已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是3.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到﹣2•x1=﹣6,然后解一次方程即可.解答:解:设方程另一个根为x1,根据题意得﹣2•x1=﹣6,所以x1=3.故答案为3.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.16.(4分)(•遵义)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4cm,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.17.(4分)(•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).考点:扇形面积的计算.分析:若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.解答:解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即:=×AC×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.点评:此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键,难度一般.18.(4分)(•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC 的面积为6,则点C的坐标为(2,4).考点:反比例函数与一次函数的交点问题.分析:把点B的坐标代入反比例函数解析式求出k值,再根据反比例函数图象的中心对称性求出点A的坐标,然后过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),然后根据S△AOC=S△COF+S梯形ACFE﹣S△AOE列出方程求解即可得到a的值,从而得解.解答:解:∵点B(﹣4,﹣2)在双曲线y=上,∴=﹣2,∴k=8,根据中心对称性,点A、B关于原点对称,所以,A(4,2),如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),则S△AOC=S△COF+S梯形ACFE﹣S△AOE,=×8+×(2+)(4﹣a)﹣×8,=4+﹣4,=,∵△AOC的面积为6,∴=6,整理得,a2+6a﹣16=0,解得a1=2,a2=﹣8(舍去),∴==4,∴点C的坐标为(2,4).故答案为:(2,4).点评:本题考查了反比例函数与一次函数的交点问题,反比例函数系数的几何意义,作辅助线并表示出△ABC的面积是解题的关键.三、解答题(本题共9小题,共88分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.解答时应写出必要的文字说明、证明过程或盐酸步骤.)19.(6分)(•遵义)解方程组.考点:解二元一次方程组.专题:计算题.分析:由第一个方程得到x=2y+4,然后利用代入消元法其解即可.解答:解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(8分)(•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.21.(8分)(•遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),则在Rt△AEN中,∠AEN=45°,可得EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,可得tan∠BCN==0.75,则可得方程:,解此方程即可求得答案.解答:解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN==0.75,∴,解得:x=1≈1.3.经检验:x=1是原分式方程的解.答:宣传牌AB的高度约为1.3m.点评:此题考查了俯角的定义.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键.22.(10分)(•遵义)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有400人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是135度.(3)在条形统计图中,“非常了解”所对应的学生人数是62人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求解;(2)利用360°乘以对应的比例即可求解;(3)利用总人数减去其它的情况的人数即可求解;(4)求得调查的学生总数,则对“校园安全”知识达到“非常了解”和“基本了解”所占的比例即可求得,利用求得的比例乘以1200即可得到.解答:解:(1)参与调查的学生及家长总人数是:(16+4)÷5%=400(人);(2)基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360×=135°;(3)“非常了解”所对应的学生人数是:400﹣83﹣77﹣73﹣54﹣31﹣16﹣4=62;(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)(•遵义)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.考点:列表法与树状图法;概率公式.分析:(1)首先设口袋中黄球的个数为x个,根据题意得:=,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.解答:解:(1)设口袋中黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:=;(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分,∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.(10分)(•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A 处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.考点:矩形的性质;勾股定理;翻折变换(折叠问题).分析:(1)由折叠的性质可得:∠ANM=∠CNM,由四边形ABCD是矩形,可得∠ANM=∠CMN,则可证得∠CMN=∠CNM,继而可得CM=CN;(2)首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案.解答:(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.25.(10分)(•遵义)4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x 是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,所以,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:组甲种货车5辆,乙种货车11辆;方案二:组甲种货车6辆,乙种货车10辆;方案三:组甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得,y=1500x+1200(16﹣x),=300x+19200,∵300>0,∴当x=5时,y有最小值,y最小=300×5+19200=20700元;方法二:当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.26.(12分)(•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t (单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.考点:相似形综合题.分析:根据勾股定理求得AB=5cm.(1)分类讨论:△AMP∽△ABC和△APM∽△ABC两种情况.利用相似三角形的对应边成比例来求t的值;(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比例求得以t表示的PH的值;然后根据“S=S△ABC﹣S△BPH”列出S与t的关系式S=(t﹣)2+(0<t<2.5),则由二次函数最值的求法即可得到S的最小值.解答:解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC﹣S△BPH,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.点评:本题综合考查了相似三角形的判定与性质、平行线分线段成比例,二次函数最值的求法以及三角形面积公式.解答(1)题时,一定要分类讨论,以防漏解.另外,利用相似三角形的对应边成比例解题时,务必找准对应边.27.(14分)(•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.考点:二次函数综合题.专题:综合题.分析:(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标;(2)线段BC的长即为AP+CP的最小值;(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.解答:解:(1)由题意,设抛物线的解析式为y=a(x﹣4)2﹣(a≠0)∵抛物线经过(0,2)∴a(0﹣4)2﹣=2解得:a=∴y=(x﹣4)2﹣即:y=x2﹣x+2当y=0时,x2﹣x+2=0解得:x=2或x=6∴A(2,0),B(6,0);(2)存在,如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)∴OB=6,OC=2∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2;(3)如图3,连接ME∵CE是⊙M的切线∴ME⊥CE,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE∵在△COD与△MED中∴△COD≌△MED(AAS),∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=∴D(,0)设直线CE的解析式为y=kx+b∵直线CE过C(0,2),D(,0)两点,则解得:∴直线CE的解析式为y=﹣+2;点评:本题考查了二次函数的综合知识,特别是用顶点式求二次函数的解析式,更是中考中的常考内容,本题难度偏大.。
2016年贵州省遵义市中考数学试卷(含详细答案)
数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前贵州省遵义市2016年初中毕业生学业(升学)统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在1-,2-,0,1这4个数中最小的一个是( ) A .1-B .0C .2-D .12.如图是由5个完全相同的正方体组成的立体图形,它的主视图是()ABCD3.2015年遵义市全年房地产投资约为317亿元,这个数据用科学记数法表示为 ( )A .831710⨯ B .103.1710⨯ C .113.1710⨯D .123.1710⨯4.如图,在平行线a ,b 之间放置一块直角三角板,三角板的顶点A ,B 分别在直线a ,b 上,则1+2∠∠的值为( )A .90B .85C .80D .605.下列运算正确的是( )A .623a a a ÷=B .235(a )a =C .236a a a =D .22232a a a -=6.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是( )A .60,50B .50,60C .50,50D .60,60 7.已知反比例函数(0)ky k x =>的图象经过点(1,)A a ,(3,)B b ,则a 与b 的关系正确的是( )A .a b =B .a b =-C .a b <D .a b >8.如图,在□ABCD 中,对角线AC 与BD 交与点O .若增加一个条件,使□ABCD 成为菱形,下列给出的条件不正确的是( ) A .AB AD = B .AC BD ⊥ C .AC BD =D .BAC DAC ∠=∠9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39B .36C .35D .3410.如图,半圆的圆心为O ,直径AB 的长为12.C 为半圆上一点,30CAB =∠,AC 的长 ( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)A .12πB .6πC .5πD .4π11.如图,正方形ABCD 的边长为3,E ,F 分别是AB ,CD 上的点,且=60CFE ∠.将四边形BCFE 沿EF 翻折,得到B C FE '',C '恰好落在AD 边上,B C ''交AB 于点G ,则GE 的长是( )A.4 B.5 C.4-D.5-12.如图,矩形ABCD 中,4AB =,3BC =,连接AC ,P 和Q 分别是ABC △和ADC △的内切圆,则PQ 的长是( )A .5BCD .第Ⅱ卷(非选择题 共114分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 13.的结果是 .14.如图,在ABC △中,AB AC =,110ABC ∠=,AB 的垂直平分线DE 交AC 于点D ,连接BD ,则ABD ∠= 度.15.已知1x ,2x 是一元二次方程2210x x --=的两根,则1211x x += .16.字母a ,b ,c ,d 各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,下表是三种组合与连接的对应表.由此17.如图,AC BC ⊥,AC BC =,D 是BC 上一点,连接AD ,与ACB ∠的平分线交与点E ,连接BE .若67ACE S =△,314BDE S =△,则AC = .18.如图1,四边形ABCD 中,AB CD ∥,90ADC ∠=,P 从A 点出发,以每秒1个单位长度的速度,按A B CD →→→的顺序在边上匀速运动.设P 点的运动时间为t 秒,PAD △的面积为S ,S 关于t 的函数图形如图2所示,当P 运动到BC 中点时,PAD △的面积为 .图1图2三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:01(π2016)|122sin 45--+-+-.20.(本小题满分8分)先化简22442()224a a a a a a +-----,再从1,2,3中选取一个适当的数代入求值.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)21.(本小题满分8分)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3m ,静止时,踏板到地面距离BD 的长为0.6m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为m h ,成人的“安全高度”为2m .(计算结果精确到0.1m ) (1)当摆绳OA 与OB 成45夹角时,恰为儿童的安全高度,则h = m ; (2)某成人在玩秋千是,摆绳OC 与OB 的最大夹角为55.问此人是否安全?(参考数1.41≈,sin550.82≈,cos550.57≈,tan55 1.43≈)22.(本小题满分10分)2016年5月9日—11日,贵州省第十一届旅游产业发展大会在遵义市茅台镇举行.大会推出五条遵义精品旅游线路:A .红色经典,B .醉美丹霞,C .生态茶海,D .民族风情,E .避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.请解决下列问题.(1)本次参与投票的总人数是 人; (2)请补全条形统计图;(3)扇形统计图中,路线D 部分的圆心角是 度;(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?23.(本小题满分10分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动.甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是 .24.(本小题满分10分)如图,矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE DF =,连接EF ,与BC ,AD 分别相交于P ,Q 两点.(1)求证:CP AQ =;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------数学试卷 第7页(共34页) 数学试卷 第8页(共34页)(2)若1BP =,PQ =45AEF ∠=,求矩形ABCD 的面积.25.(本小题满分12分)上网流量、语音通话是手机通信消费的两大主体.日前,某通信公司推出消费优惠新招——“定制套餐”.消费者可根据实际情况自由定制每月上网流量与语音通话时【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.155000.12⨯+⨯(600500)87-=元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB 的月流量,花费120.4元.求a ,b 的值;(注:1GB=1024MB )(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量.二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.26.(本小题满分12分)如图,ABC △中,120BAC ∠=,6AB AC ==,P 是底边BC 上的一个动点(P 与B ,C 不重合).以P 为圆心,PB 为半径的P 与射线BA 交于点D ,射线PD 交射线CA于点E .(1)若点E 在线段CA 的延长线上,设BP x =,AE y =.求y 关于x 的函数关系式,并写出x 的取值范围;(2)当BP =时,试说明射线CA 与P 是否相切;(3)连接PA ,若18APE ABC S S =△△,求BP 的长.27.(本小题满分14分)如图,在平面直角坐标系中,Rt ABC △的三个顶点分别是(8,3)A -,(4,0)B -,(4,3)C -,ABC α∠=.抛物线212y x bx c =++经过点C ,且对称为45x =-,并与y 轴交与点G .(1)求抛物线的解析式及点G 的坐标;(2)将Rt ABC △沿x 轴向右平移m 个单位,使B 点移到点E ,然后将三角形绕点E 顺时针旋转α得到DEF △.若点F 恰好落在抛物线上. ①求m 的值;②连接CG 交x 轴于点H ,连接FG ,过B 作BP FG ∥,交CG 于点P .求证:PH GH =.5 / 17贵州省遵义市2016年初中毕业生学业(升学)统一考试参考答案与试题解析一、选择题 1.【答案】C【解析】∵2101-<-<<,∴最小的一个数是:-2,故选C. 【考点】有理数大小比较 2.【答案】C【解析】从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:C. 【考点】简单组合体的三视图 3.【答案】B【解析】将317亿用科学记数法表示为:3.17×1010.【考点】科学记数法—表示较大的数 4.【答案】A【解析】过点C 作CD a ∥,则1ACD ∠=∠.∵a b ∥,∴CD b ∥,∴2DCB ∠=∠,∵ACD DCB 90∠+∠=︒,∴1290∠+∠=︒,故选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.12.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.3.2015年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108B.3.17×1010C.3.17×1011D.3.17×1012 4.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°5.下列运算正确的是()A.a6÷a2=a3B.(a2)3=a5C.a2•a3=a6D.3a2﹣2a2=a26.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50 B.50,60 C.50,50 D.60,607.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC 9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.3410.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12πB.6πC.5πD.4π11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.3﹣4 B.4﹣5 C.4﹣2D.5﹣212.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P 和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是()A. B.C.D.2二、填空题(本大题共6小题,每小题4分,共24分)13.计算的结果是.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=.16.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为.17.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P 从A点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD 的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为.三、解答题(本题共9小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.20.先化简(﹣),再从1,2,3中选取一个适当的数代入求值.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h=m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.流量阶梯定价标准使用范围阶梯单价(元/MB)1﹣100MB a101﹣500MB 0.07501﹣20GB b语音阶梯定价标准使用范围阶梯资费(元/分钟)1﹣500分钟0.15501﹣1000分钟0.121001﹣2000分钟m【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB 的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.26.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB 为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.2016年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.1【考点】有理数大小比较.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小)比较即可.【解答】解:∵﹣2<﹣1<0<1,∴最小的一个数是:﹣2,故选C.2.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:C.3.2015年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108B.3.17×1010C.3.17×1011D.3.17×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将317亿用科学记数法表示为:3.17×1010.故选:B.4.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【考点】平行线的性质.【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°.故选A.5.下列运算正确的是()A.a6÷a2=a3B.(a2)3=a5C.a2•a3=a6D.3a2﹣2a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,对各选项分析判断后利用排除法求解.【解答】解:A、a6÷a2=a4,故A错误;B、(a2)3=a6,故B错误;C、a2•a3=a5,故C错误;D、3a2﹣2a2=a2,故D正确.故选:D.6.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50 B.50,60 C.50,50 D.60,60【考点】中位数;算术平均数.【分析】平均数的计算公式和中位数的定义分别进行解答即可.【解答】解:这组数据的平均数是:(60+30+40+50+70)÷5=50;把这组数据从小到大排列为:30,40,50,60,70,最中间的数是50,则中位数是50;故选C.7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b【考点】反比例函数图象上点的坐标特征.【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选D.8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC 【考点】菱形的判定;平行四边形的性质.【分析】根据菱形的定义和判定定理即可作出判断.【解答】解:A、根据菱形的定义可得,当AB=AD时▱ABCD 是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=AC,∴▱ABCD是菱形.故选C.9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【考点】一元一次不等式的应用.【分析】设三个连续正整数分别为x﹣1,x,x+1,列出不等式即可解决问题.【解答】解:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.10.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12πB.6πC.5πD.4π【考点】弧长的计算.【分析】如图,连接OC,利用圆周角定理和邻补角的定义求得∠AOC的度数,然后利用弧长公式进行解答即可.【解答】解:如图,连接OC,∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∴∠AOC=120°.又直径AB的长为12,∴半径OA=6,∴的长是:=4π.故选:D.11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.3﹣4 B.4﹣5 C.4﹣2D.5﹣2【考点】翻折变换(折叠问题);正方形的性质.【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=DF=,则C′A=3﹣,AG=(3﹣),设EB=x,则GE=2x,得出方程,解方程即可.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=DF=,则C′A=3﹣,AG=(3﹣),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,则(3﹣)+3x=3,解得:x=2﹣,∴GE=4﹣2;故选:C.12.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P 和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是()A . B.C.D.2【考点】三角形的内切圆与内心;矩形的性质.【分析】根据矩形的性质可得出⊙P和⊙Q的半径相等,利用直角三角形内切圆半径公式即可求出⊙P半径r的长度.连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB 交QE于点E,求出线段QE、EP的长,再由勾股定理即可求出线段PQ的长,此题得解.【解答】解:∵四边形ABCD为矩形,∴△ACD≌△CAB,∴⊙P和⊙Q的半径相等.在Rt△BC中,AB=4,BC=3,∴AC==5,∴⊙P的半径r===1.连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则∠QEP=90°,如图所示.在Rt△QEP中,QE=BC﹣2r=3﹣2=1,EP=AB﹣2r=4﹣2=2,∴PQ===.故选B.二、填空题(本大题共6小题,每小题4分,共24分)13.计算的结果是﹣2.【考点】二次根式的加减法.【分析】根据二次根式的性质,可化成同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=﹣3=﹣2,故答案为:﹣2.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=35度.【考点】线段垂直平分线的性质.【分析】由已知条件和等腰三角形的性质可得∠A=∠C=35°,再由线段垂直平分线的性质可求出∠ABD=∠A,问题得解.【解答】解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=﹣2.【考点】根与系数的关系.【分析】利用韦达定理求得x1+x2=2,x1•x2=﹣1,然后将其代入通分后的所求代数式并求值.【解答】解:∵一元二次方程x2﹣2x﹣1=0的两根为x1、x2,x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案是:﹣2.16.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为a⊕c.【考点】推理与论证.【分析】首先根据已知图形中两个图形中共同含有的图形,就可以判断每个符号所代表的图形,即可得出结论.【解答】解:结合前两个图可以看出:b代表正方形;结合后两个图可以看出:d代表圆;因此a代表线段,c代表三角形,∴图形的连接方式为a⊕c故答案为:a⊕c.17.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=2.【考点】相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质.【分析】设BC=4x,根据面积公式计算,得出BC=4BD,过E作AC,BC的垂线,垂足分别为F,G;证明CFEG为正方形,然后在直角三角形ACD中,利用三角形相似,求出正方形的边长(用x表示),再利用已知的面积建立等式,解出x,最后求出AC=BC=4x即可.【解答】解:过E作AC,BC的垂线,垂足分别为F,G,设BC=4x,则AC=4x,∵CE是∠ACB的平分线,EF⊥AC,EG⊥BC,∴EF=EG,又S△ACE=,S△BDE=,∴BD=AC=x,∴CD=3x,∵四边形EFCG是正方形,∴EF=FC,∵EF∥CD,∴=,即=,解得,EF=x,则×4x×x=,解得,x=,则AC=4x=2,故答案为:2.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P 从A点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD 的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为5.【考点】动点问题的函数图象.【分析】由函数图象上的点(6,8)、(10,0)的实际意义可知AB+BC、AB+BC+CD的长及△PAD的最大面积,从而求得AD、CD的长,再根据点P运动到点B时得S△ABD=2,从而求得AB的长,最后根据等腰三角形的中位线定理可求得当P运动到BC中点时,△PAD的面积.【解答】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=5,故答案为:5.三、解答题(本题共9小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°=1+﹣1+﹣2×=1+﹣1+﹣=.20.先化简(﹣),再从1,2,3中选取一个适当的数代入求值.【考点】分式的化简求值.【分析】首先利用分式的混合运算法则,将原式化简,然后代入求值即可.【解答】解:(﹣)==•=,∵a﹣2≠0,a+2≠0,∴a≠±2,∴当a=1时,原式=﹣3.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= 1.5m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【考点】解直角三角形的应用.【分析】(1)根据余弦定理先求出OE,再根据AF=OB+BD,求出DE,即可得出h的值;(2)过C点作CM⊥DF,交DF于点M,根据已知条件和余弦定理求出OE,再根据CM=OB+DE﹣OE,求出CM,再与成人的“安全高度”进行比较,即可得出答案.【解答】解:(1)在Rt△ANO中,∠ANO=90°,∴cos∠AON=,∴ON=OA•cos∠AON,∵OA=OB=3m,∠AON=45°,∴ON=3•cos45°≈2.12m,∴ND=3+0.6﹣2.12≈1.5m,∴h=ND=AF≈1.5m;故答案为:1.5.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3•cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.22.2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是120人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是54度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出B类人数,然后补全条形统计图;(3)用360度乘以D类人数所占的百分比即可;(4)用2400乘以样本中C类人数所占的百分比即可.【解答】解:(1)本次参与投票的总人数=24÷20%=120(人);故答案为:120;(2)B类人数=120﹣24﹣30﹣18﹣12=36(人),补全条形统计图为:(3)扇形统计图中,线路D部分的圆心角=360°×=54°,故答案为:54;(4)2400×=600,所以估计,选择“生态茶海”路线的人数约为600人.23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【考点】列表法与树状图法;轴对称图形;中心对称图形;概率公式.【分析】(1)若乙固定在E处,求出移动甲后黑色方块构成的拼图一共有多少种可能,其中是轴对称图形的有几种可能,由此即可解决问题.(2)①画出树状图即可解决问题.②不可能出现中心对称图形,所以概率为0.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率==.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB ∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.流量阶梯定价标准使用范围阶梯单价(元/MB)1﹣100MB a101﹣500MB 0.07501﹣20GB b语音阶梯定价标准使用范围阶梯资费(元/分钟)1﹣500分钟0.15501﹣1000分钟0.121001﹣2000分钟m【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB 的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.【考点】二元一次方程组的应用.【分析】(1)由600M和2G均超过500M,分段表示出600M 和2G的费用,由此可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,先求出丙定制1G流量的费用,再根据“套餐费用=流量费+语音通话费”即可列出关于m、x的二元一次方程组,解方程组即可得出m的值.【解答】解:(1)依题意得:,解得:.∴a的值为0.15元/MB,b的值为0.05元/MB.(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,丙定制了1GB的月流量,需花费100×0.15+×0.07+×0.05=69.2(元),依题意得:,解得:m=0.08.答:m的值为0.08元/分钟.26.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB 为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.【考点】圆的综合题.【分析】(1)过A作AF⊥BC于F,过P作PH⊥AB于H,根据等腰三角形的性质得到CF=AC•cos30°=6×=3,推出∠CEP=90°,求得CE=AC+AE=6+y,列方程PB+CP=x+=6,于是得到y=﹣x+3,根据BD=2BH=x<6,即可得到结论;(2)根据已知条件得到PE=PC=2=PB,于是得到射线CA与⊙P相切;(3)D在线段BA上和延长线上两种情况,根据三角形的面积列方程即可得到结果.【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB 于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.【考点】二次函数综合题.【分析】(1)把点C坐标代入y=x2+bx+c得一方程,利用对称轴公式得另一方程,组成方程组求出解析式,并求出G 点的坐标;(2)①作辅助线,构建直角△DEF斜边上的高FM,利用直角三角形的面积相等和勾股定理可表示F的坐标,根据点F在抛物线上,列方程求出m的值;②F点和G点坐标已知,可以求出直线FG的方程,那么FG和x轴的交点坐标(设为Q)可以知道,C点坐标已知,CG的方程也可以求出,那么H点坐标可以求出,可以证明△BPH和△MGH全等.【解答】解:(1)根据题意得:解得:∴抛物线的解析式为:y=x2+x,点G(0,﹣);(2)①过F作FM⊥y轴,交DE于M,交y轴于N,由题意可知:AC=4,BC=3,则AB=5,FM=,∵Rt△ABC沿x轴向右平移m个单位,使B点移到点E,∴E(﹣4+m,0),OE=MN=4﹣m,FN=﹣(4﹣m)=m ﹣,在Rt△FME中,由勾股定理得:EM==,∴F(m﹣,),∵F抛物线上,∴=(m﹣)2+(m﹣)﹣,5m2﹣8m﹣36=0,m1=﹣2(舍),;②易求得FG的解析式为:y=x﹣,CG解析式为:y=﹣x﹣,∴x﹣=0,x=1,则Q(1,0),﹣x﹣=0,x=﹣1.5,则H(﹣1.5,0),∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,∴BH=QH,∵BP∥FG,∴∠PBH=∠GQH,∠BPH=∠QGH,∴△BPH≌△QGH,∴PH=GH.2016年8月12日。