2011版小学数学新课程标准解读

合集下载

(完整版)小学数学新课程标准2011版

(完整版)小学数学新课程标准2011版

小学数学新课程标准第一部分前言数学是人们对客观世界定性掌握和定量刻画、逐渐抽象概括、形成方法和理论,并进行宽泛应用的过程。

20 世纪中叶以来,数学自己发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面获取了空前的拓展。

数学能够帮助人们更好地研究客观世界的规律,并对现代社会中大量纷繁复杂的信息作出合适的选择与判断,同时为人们交流信息供应了一种有效、简捷的手段。

数学作为一种宽泛适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创立价值。

义务教育阶段的数学课程,其基本出发点是促进学生全面、连续、友善地发展。

它不但要考虑数学自己的特点,更应依照学生学习数学的心理规律,重申从学生已有的生活经验出发,让学生亲身经历将实责问题抽象成数学模型并进行讲解与应用的过程,进而使学生获取对数学理解的同时,在思想能力、感神态度与价值观等多方面获取进步和发展。

一、基本理念1.义务教育阶段的数学课程应突出表现基础性、普及性和发展性,使数学教育面向全体学生,实现:--人人学有价值的数学;--人人都能获取必要的数学;--不同样的人在数学上获取不同样的发展。

2.数学是人们生活、劳动和学习必不能少的工具, 能够帮助人们办理数据、进行计算、推理和证明,数学模型能够有效地描述自然现象和社会现象;数学为其他科学供应了语言、思想和方法,是所有重要技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创立力等方面有着独到的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

3.学生的数学学习内容应该是现实的、有意义的、富饶挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、考据、推理与交流等数学活动。

内容的表现应采用不同样的表达方式,以满足多样化的学习需求。

有效的数学学习活动不能够单纯地依赖模拟与记忆,着手实践、自主研究与合作交流是学生学习数学的重要方式。

小学数学新课程标准解读ppt课件

小学数学新课程标准解读ppt课件
案例1:小学生的研究性学习
案例2:两幅条形图蕴涵的信息
.
28
五、数据分析观念
研究性学习的缘起:父子争论,看电视是否影响视力?
自行设计调查问卷:
教师需指出:“样本”问
1.你平均每天看多长时间的电视?题
半小时以下 半小时~1小时 1小时以上
2.你的视力怎样?
5.2~5.1 5.0~4.9 4.8~4.7 4.7以下
案例2:如图,“ ”与“ ”,哪个面积 大?
R 2r
S R 2 2r24 r2
.
27
五、数据分析观念
数据分析观念包括: 了解在现实生活中有许多问题应当先做调查研究,收 集数据,通过分析做出判断,体会数据中蕴涵着信息; 了解对于同样的数据可以有多种分析的方法,需要根 据问题的背景选择合适的方法; 通过数据分析体验随机性,一方面对于同样的事情每 次收集到的数据可能不同,另一方面只要有足够的数据 就可能从中发现规律。 数据分析是统计的核心。
注意学习习惯 .
34
七、推理能力
推理能力的发展应贯穿于整个数学学习过程中。推 理是数学的基本思维方式,也是人们学习和生活中经常 使用的思维方式。
推理一般包括合情推理和演绎推理,合情推理是从 已有的事实出发,凭借经验和直觉,通过归纳和类比等 推断某些结果;演绎推理是从已有的事实(包括定义、 公理、定理等)和确定的规则(包括运算的定义、法则、 顺序等)出发,按照逻辑推理的法则证明和计算。
.
16
二、符号意识
怎样让学生亲近符号,接受、理解符号呢? 例如:运算符号
.
17
二、符号意识
怎样让学生亲近符号,接受、理解符号呢? 例如:运算符号 又如:关系符号
“再也没有比平行而又等长的短线段更确切的相等

2011版小学数学课程标准解读(全)

2011版小学数学课程标准解读(全)

解读《义务教育小学数学课程标准》(2011年版)一【新旧课标比较】与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、理念中新增加了一些提法要处理好四个关系数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。

《义务教育数学课程标准》(2011版)解读

《义务教育数学课程标准》(2011版)解读

与2001年版相比,数学课程标准从基 本理念、课程目标、课程内容到实施建议 都更加准确、规范、明了和全面。 下面我们就2011修订版与2001版课标 相比较所体现出的变化具体的进行解读。
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、 内容标准和课程实施建议。 2011年版:前言、课程目标、课程内容 和实施建议,并有附录。把其中的“内容标 准”改为“课程内容”。前言部分由原来的 基本理念和设计思路,改为课程基本性质、 课程基本理念和课程设计思路三部分。
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。 按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。 2011年12月28日教育部正式颁布《全日制 义务教育数学课程标准(修改稿)》。
1.提纲挈领,领悟课标。 (1)理解课标理念 (2)明确“四基”要求 (3)正确处理“四个关系” (4)掌握四个领域内容调整 (5)提高“四个问题”能力( (6)领悟10个核心关键词的内涵和外延
2.依据课标,找出差距。 (1)改变教学中的“十多十少“现象 ●课程理念知道多,理解落实比较少; ●关注教学情景多,创设有效情景少; ●关注教学形式多,关注教学实效少; ●操作实践活动多,有效探究活动少; ●师生互动废话多,启发引导语言少; ●课堂无效活动多,学生必要练习少; ●教学设计拼凑多,个性创新设计少; ●现代媒体运用多,优化整合运用少; ●关注表面知识多,领悟思想方法少; ●学生参与活动多,积累活动经验少。 (2)克服课堂教学中的“四个满堂” ●满堂问●满堂动●满堂放●满堂夸 (3)避免教学中的“四个虚假“ ●虚假地自主学习 ●虚假地合作交流 ●虚假地自主探究 ●虚假地情感、态度、价值观的渗透

2011年版数学新课标解读

2011年版数学新课标解读

2011年版数学新课标解读一:从理念到行为把握操作方法最重要从理念到行为把握操作方法最重要新修订的数学课程标准到底对我们的教学会产生怎样的影响呢?我认为,准确把握标准变化特点、以案例为载体形成具体的实践操作方法、关注广义教材是三个核心环节进一步明确“学生发展为本”的教育理念,把握从“双基到四基,从两能到四能,从单一思维到复合思维、增加多个核心词”的变化特点。

修订后的课标对实验稿课标既有传承,也有发展,我学习了修订后的课标,觉得以下三点变化最为深刻。

调试数学观,明确新的数学课程观。

实验稿课标认为,“数学是人们对客观世界定性把握和定量刻画、逐步抽象概括、形成方法和理论,并进行广泛应用的过程。

”而修订后的标准将其调整为“数学是研究空间形式和数量关系的科学。

”数学是一门科学,而非过程,无论是直接来源于现实世界的,还是来源于数学世界的,只要是空间形式和数量关系,都可以构成数学的研究对象。

与此同时,将原有的“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”的数学课程观,修改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”,这样的表述方式,保留了实验稿课标所界定的数学课程观的精髓。

明确提出“四基”、“四能”和复合思维的要求。

对学生的培养目标,在注重基础知识、基本技能的前提下,增加了针对基本思想和基本活动经验的具体要求,更加凸显数学对于学生发展的特殊作用,将实验稿标准提出而尚未显性化的有关理念显性化,这是对10年改革成功经验的提纯和升华。

对于能力培养的问题,不仅直接提出能力培养,而且增加了“发现问题、提出问题”的能力要求。

这种变化,不仅充分延续实验稿对于创新精神关注,而且有了显著发展。

在继续关注归纳、猜测等思维形式的基础上,修订后的课标明确提出“归纳思维”与“演绎思维”并举的具体要求。

在核心词上,增加了“几何直观”,将“符号感”修改为“符号意识”,将“统计观念”修改为“数据分析观念”,并对“数感”、“空间观念”的内涵作了修正。

2011版小学数学新课程标准全部

2011版小学数学新课程标准全部

2011版小学数学新课程标准目录第一部分前言. 1一、课程性质. 1二、课程基本理念. 2三、课程设计思路. 4第二部分课程目标. 9一、总目标. 9二、学段目标. 10第三部分内容标准. 16第一学段(1~3年级). 16一、数与代数. 16二、图形与几何. 18三、统计与概率. 19四、综合与实践. 20第二学段(4~6年级). 20一、数与代数. 20二、图形与几何. 23三、统计与概率. 25四、综合与实践. 26第三学段(7~9年级). 26一、数与代数. 26二、图形与几何. 31三、统计与概率. 40四、综合与实践. 42第四部分实施建议. 43一、教学建议. 43二、评价建议. 54三、教材编写建议. 62四、课程资源开发与利用建议. 70附录. 75附录1 有关行为动词的分类. 75附录2 内容标准及实施建议中的实例. 78第一部分前言数学是研究数量关系和空间形式的科学。

数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。

特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。

一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。

数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。

2011版小学数学新课程标准

2011版小学数学新课程标准

2011版小学数学新课程标准一、总目标通过义务教育阶段的数学学习,学生能:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。

3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

总目标从以下四个方面具体阐述:知识技能●经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。

●经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。

●经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。

●参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。

数学思考●建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。

●体会统计方法的意义,发展数据分析观念,感受随机现象。

●在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。

●学会独立思考,体会数学的基本思想和思维方式。

问题解决●初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。

●获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。

●学会与他人合作交流。

●初步形成评价与反思的意识。

情感态度●积极参与数学活动,对数学有好奇心和求知欲。

●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心●体会数学的特点,了解数学的价值。

●养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。

总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。

小学数学课程标准(2011年版)解读

小学数学课程标准(2011年版)解读

二、第一部分,前言内容作了较大调整
在“前言”部分除修改了对数学的意义与 价值、数学教育的功能、数学课程的基本 理念以及数学课程设计思路的表述外,还 增加了“数学课程的性质”。
1.修改了 “数学”的定义
实验稿: 数学是人们对客观世界定性把握和定量刻
画、逐渐抽象概括、形成方法和理论,并 进行广泛应用的过程。 修订稿(标准P1): 数学是研究数量关系和空间形式的科学
(8)注意信息技术与课程内容的整合。
注意信息技术与课程内容的整合,注重实效。(标 准P3)
7.重新修订了课程设计思路:
(1)学段划分保持不变;(标准P4) 将九年的学习时间划分为三个学段: 第一学段(1-3年级) 第二学段(4-6年级) 第三学段(7-9年级)
(2)关于课程目标的调整(标准P4)
对课程目标动词及水平要求的设计基本保 持不变,增加了目标动词的同义词;
义务教育阶段数学课程目标分为总目标和 学段目标,从知识技能、数学思考、问题 解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。 结果目标使用“了解、理解、掌握、运用” 等行为动词表述,过程目标使用“经历、 体验、探索”等行为动词表。
2.修改了数学观
实验稿: 数学是人们生活、劳动和学习必不可少的工具。 数学为其他科学提供了语言、思想和方法; 数学是人类的一种文化,它的内容、思想、方法
和语言是现代文明的重要组成部分。 数学在提高人的推理能力、抽象能力、想象力和
创造力等方面有着独特的作用;
修订稿(标准P1): 数学更加广泛应用于社会生产和日常生活
实验稿:
“符号感”主要表现在:能从具体情境中抽象出 数量关系和变化规律,并用符号来表示;理解符 号所代表的数量关系和变化规律;会进行符号间 的转换;能选择适当的程序和方法解决用符号所 表达的问题。”

2011版小学数学新课程标准解读

2011版小学数学新课程标准解读
过于依赖量,过于特殊的量
一、数感
数感主要是指关于数与数量、数量关系、运算结果
估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解
或表述具体情境中的数量关系。
简单、通俗地说,数感就是数的感觉。
3000006000 三十亿零六千
读出数感!
30600, 30060, 30006
三万零六百 三万零六十 三万零六
“多样化”旨在“各取所需”, 乙湖
()
适应不同学生!
水深 60米
海平面0米 甲湖 水深 20米
20 米
甲湖水面高度记作0米,甲湖水底高度记作( -20)米;乙湖是堰
塞湖,水底高度记作( +20)米,水面高度记作( +80)米。
2.你知道全校做早操,操场上有多少人吗? 大约1000人,
想一想,( )个这样学校的学生集中在一起,约一万人.
数学课程标准解读
目录
第一部分 前言 第二部分 课程目标
一、总目标 二、学段目标 第三部分 课程内容 第四部分 实施建议 附录
第一部分 前言 一、课程性质
义务教育阶段的数学课程是培养公民素质 的基础课程,具有基础性、普及性和发展性。 数学课程能使学生掌握必备的基础知识和基本 技能;培养学生的抽象思维和推理能力;培养 学生的创新意识和实践能力;促进学生在情感、 态度与价值观等方面的发展。义务教育的数学 课程能为学生未来生活、工作和学习奠定重要 的基础。
2/3小时行6km 即3份中的2份是6 3份是9
1小时行
小学数学历来重视数感培养,从“自发”走向了“自觉”
一、数感
3.在解决实际问题中展现数感


1080稍大于1000;

2011版数学课程标准中“问题解决”专题解读

2011版数学课程标准中“问题解决”专题解读

2011版数学课程标准中“问题解决”专题解读小学数学问题解决,它贯穿于1-6年级教材,系统性很强,是教师教学、学生学习的难点。

2011年版数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、全面。

“课标”把“课程目标”分成“总目标”、“具体目标”、“学段目标”三部分。

“总目标”带有全局性、方向性、指导性;具体目标包括知识技能、数学思考、问题解决和情感态度;“学段目标”分三个学段叙述。

先总体,后具体,逐渐展开,层层深入。

“问题解决”不是一个独立的知识领域,它贯穿于数与代数、图形与几何、统计与概率及综合与实践等所有领域中。

下面从研课标、说教材、应对策略三方面来说说“问题解决”这一专题。

一、研课标研课标主要从新旧课标对比和学段的不同要求两方面来阐述。

(一)新旧课标对比涉及到具体目标的对比。

把解决问题变为问题解决。

是为了培养学生的问题意识,提高学生在具体情境中发现问题、提出问题,分析问题和解决问题的综合能力。

分析、解决问题固然重要,能够发现并提出新的问题则更为重要,这也是培养学生创新意识所需要的。

实验版:修订版:(二)核心概念内容对比在把握在三个学段的不同要求时发现,在三个学段行为动词的使用变化中,从“在教师的指导下”到“尝试”,到“初步学会”;从“在日常生活中”到“在具体情境中”;从“尝试解决”到“初步运用知识解决”,到“综合运用知识解决”;从“知道”到“了解”到“体验”解决问题方法的多样性,关注了各个学段学生的年龄心理特点,体现了层层深入、步步提高的意图,也反映了课程内容螺旋上升的思路。

二、说教材深入挖掘教材、理解教材的编写意图,是贯穿课标理念、为学生提供良好数学教育的重要途径。

如果说研课标是学交规,说教材就是驾校培训,这些都是平安上路的有力保证。

我们一起来看看人教版教材在问题解决方面是如何体现的。

(一)教材编写特点教材编写特点从以下3个方面具体体现:1、解决问题教学内容的编排采用分散式。

2011年版数学课程标准

2011年版数学课程标准

《2011年版数学课程标准》概况及解读一、《2011年版数学课程标准》颁布的意义和背景1.坚持改革不动摇,新课标的颁布是对10年课改的肯定和坚持2001年数学课程标准(实验稿)(约15万字)问世,取代了使用近五十年〈数学大纲〉,实验稿数学课程标准从2001年开始进入实验区,对中小学数学教育的影响是积极和明显的。

10年的课改实验,首先是转变了教师的教育观念、改变了传统教育理念,我们的基础教育过去非常强调“双基”,要求基础知识扎实、基本技能熟练。

但只要求这一点对学生的创造性思维不利。

实验稿课标提出了三维目标,从关心教师如何教到关心学生如何学,教学方法上改变了过去教师单一讲授、学生被动听讲的状况,更加关注学生的学,确立了学生学习的主体地位。

从教学评价来说,除了知识以外,还提出了教育过程的循序渐进,关注态度、情感、价值观方面的评价。

与教学大纲相比,课程标准更加重视学生能力的培养和素养的提高。

而(2011年版)课程标准的颁布是对10年课改的发扬,也传达国家、教委对课改不动摇的决心。

2.充分吸纳了10年义务教育课改实验的经验与教训但是,由于实验稿课标在制订过程中的一些局限性,比如时间比较仓促等,内容上有些地方系统性不够,同时,对教育价值的表述也不够清晰。

一是目标不够清晰,可操作性不强。

比如:实验稿只提出通过数学学习让学生分析问题和解决问题,其实发现问题与提出问题也很重要(但是我省普教室研究、福建省教育学会小学数学教学委员会的一数学教研专题:问题解决,5月8-11日在福州举行第十七届小学数学“问题解决”课题研究现场教学观摩研讨会,我省已经开始重视这方面的问题了)。

让学生亲身参与活动很好,但仅有活动是不够的,应该追问活动为了什么?活动是否脱离了数学本质,活动如何突出数学特点?三维目标如何鉴定?如何操作?等系列问题摆在教师面前,二是对数学实质的表述不清楚,比如计算的本质是什么,符号的本质是什么,等等。

这样,在教师中就会造成两大问题:一是对所教的内容从数学角度吃得不透,数学意义不清楚。

《义务教育数学课程标准》(2011年版)

《义务教育数学课程标准》(2011年版)

《义务教育数学课程标准》(2011年版)解读——小学数学2011年12月28日,教育部正式公布了《义务教育阶段数学课程标准(2011年版)》(以下简称《标准》),并于2012年秋季开始执行。

这意味着2001年公布的义务教育阶段数学课程标准(实验稿)将完成它的历史使命,随之而来的,就是教材的改革,数学课程改革也必将进入一个新的发展阶段。

对修订版数学课程标准的学习和研究也将成为数学教育工作者们当前的头等大事。

经过几年来对数学课程标准修订情况的跟踪研究以及对数学课程标准(2011年版)的深入研读,我认为修订版是对实验稿的继承和发扬,改进与完善,但又不乏创新之举,让人读来眼前一亮,对数学与数学教育的意义与价值的定位更准确,对学生思维能力和创新能力的培养目标的要求更明晰,对学习方式、教学方式等教学策略与手段的指导更明确,对课程内容的调整更合理。

与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化为如下几个方面:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6 条”改“5条”2001年版“三句话”:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读-最新资料

《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读-最新资料

《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读“综合与实践”是《义务教育数学课程标准(2011年版)》的一个特色,安排这一内容的意图在于培养学生运用所学知识与方法解决实际问题的意识,引导学生在综合实践活动中积累相应的活动经验,以此提高学生解决问题的能力,但在教学过程中大多数教师对这一内容并不太重视,甚至“跳过”这一教学进度(特别是第一学段),所以,“综合与实践”实际上还没有真正在小学阶段“登堂入室”。

为此,时值《义务教育数学课程标准(2011年版)》实施,结合自己的教学实际对这一内容进行解读,作为一线教师教学时的参考。

一、新旧课标内容对比二、第一学段“综合与实践”内容概要在第一学段中,通过综合实践活动,让学生充分感受到数学在实际生活中特有的价值及其作用,引领学生经历运用所学知识与方法解决日常生活中实际问题的过程,从而积累相应的基本数学活动经验。

在解决问题的活动中,也增强了对所学知识与方法的理解与巩固。

本学段(其他学段也如此)“综合与实践”这种教学形式应当体现在日常教学活动中,贯彻“少而精”的原则,针对性要强,但要保证每学期至少有一到二次的实践活动。

它的活动形式灵活多样,可以穿插在课内,也可以课内外结合,使之常态化地落实于教学活动之中。

三、结合具体的教学案例(教学片段),逐条解读 1. 通过实践活动,感受数学在日常生活中的作用,体验运用所学的知识和方法解决简单问题的过程,获得初步的数学活动经验。

从本条目标提出的要求看,“综合与实践”的教学方案不一定要独立设计,可以将它“体现在日常教学活动中”,也可以将其融合于各个领域的学习内容之中,让学生感受到数学与生活密切相关,感受数学在生活中的作用。

例如在学习“数与代数”中“数的认识”时,学生“能认、读、写万以内的数”后,让学生走进生活就能感受到“万以内的数”在生活中无处不在,就能感受到“万以内的数”在生活中的作用,进而感受到数学在日常生活中特有的价值。

2011年(新版)小学数学新课程标准解读

2011年(新版)小学数学新课程标准解读

小学数学新课程标准(修改稿)解读一、前言《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。

根据《义务教育法》、《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学、评价、教材编写)提出建议。

《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。

《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。

《标准》是教材编写、教学、评估、和考试命题的依据。

在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。

为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。

二、设计理念数学是研究数量关系和空间形式的科学。

数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。

数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。

数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。

课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。

2011小学数学新课程标准

2011小学数学新课程标准

2011小学数学新课程标准2011年,我国对小学数学课程进行了全面的改革,制定了新的数学课程标准。

这一标准的出台,对于小学数学教育的发展具有重要的意义。

新课程标准旨在培养学生的数学素养,提高他们的数学能力,促进他们全面发展。

下面我们就来详细了解一下2011小学数学新课程标准的主要内容和特点。

首先,新课程标准强调数学教育的目标是培养学生的数学素养。

这就要求教师在教学过程中注重培养学生的数学思维能力、创新能力和解决问题的能力。

教师要引导学生主动探究、积极合作,培养他们的数学兴趣和学习动力。

同时,新课程标准还要求教师注重培养学生的数学情感,使他们在学习数学的过程中体验到成功的喜悦,克服困难的成就感,形成积极的数学学习态度。

其次,新课程标准强调数学教育的内容要贴近学生的生活实际,注重数学的应用。

教师要结合学生的生活经验和实际情境,设计丰富多彩的数学教学活动,使学生能够将数学知识和技能应用到实际生活中去,培养他们的数学实际应用能力。

这样既能增加学生对数学的兴趣,又能提高他们的数学学习效果。

再次,新课程标准强调数学教育的方法要多样化,注重培养学生的数学思维能力。

教师在教学中要采用启发式教学法,引导学生通过实际操作和探究,发现问题、解决问题,培养他们的逻辑思维、创造思维和批判性思维。

同时,教师还要注重培养学生的合作精神,让他们通过合作学习,相互交流、合作解决问题,培养他们的团队合作能力。

最后,新课程标准强调数学教育的评价要多元化,注重发展学生的全面素质。

评价不仅要注重学生数学知识和技能的掌握情况,还要注重学生的数学思维能力、创新能力和解决问题的能力的发展情况。

评价方式要多样化,注重考察学生的综合能力,鼓励学生通过多种途径展示自己的数学学习成果。

综上所述,2011小学数学新课程标准的出台,对于小学数学教育的发展具有重要的意义。

新课程标准的实施,将有助于培养学生的数学素养,提高他们的数学能力,促进他们全面发展。

教师要深入学习新课程标准,积极探索符合新课程标准要求的教学方法,努力提高教学质量,为学生的数学学习创造更好的条件。

数学课程标准(2011版)解读

数学课程标准(2011版)解读

八、内容标准的变化
调整的内容和要求: ❖将“理解等式的性质”,改为“了解等式的性质” ❖将“会用等式的性质解简单的方程(如3x+2=5, 2x-x=3)”,改为“能解简单的方程(如3x+2=5, 2x-x=3)”。 ❖降低要求:降低了“可能性”部分的要求,只要 求学生体会随机现象,并能对随机现象发生的可能 性大小做定性描述,定量描述放入第三学段。
珠海新世纪学校
四、设计思路的变化
❖学段划分保持不变; ❖对课程目标动词及水平要求的设计基本保持不变, 增加了目标动词的同义词; ❖对四个学习领域的名称作适当调整; ❖对学习内容中的若干关键词作适当调整对其意义 作更明确的阐释。
珠海新世纪学校
五、四个领域名称的变化
❖ 2001年版:数与代数、空间与图形、统计与概率、 实践与综合应用。 ❖2011年版:数与代数、图形与几何、统计与概率、 综合与实践。
珠海新世纪学校
六、核心概念的变化
应用意识有两个方面的含义,一方面有意识利用数学的概念、 原理和方法解释现实世界中的现象,解决现实世界中的问题; 另一方面,认识到现实生活中蕴涵着大量与数量和图形有关 的问题,这些问题可以抽象成数学问题,用数学的方法予以 解决。在整个数学教育的过程中都应该培养学生的应用意识, 综合实践活动是培养应用意识很好的载体。
七、目标的变化
活动经验:亲自或间接经历了活动过程而获得的经 验,包括操作的经验,思考的经验,探究的经验, 复合的经验。
七、目标的变化
2 、“两能”变“四能” ❖“两能”:分析问题和解决问题能力 ❖“四能”:发现问题、提出问题、分析问题和解 决问题能力
3、总目标和学段目标分别并从知识技能、数学思考、 问题解决、情感态度等四个方面加以具体阐述。学 段表述目标有所变化。

《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读-最新资料

《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读-最新资料

《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读“综合与实践”是《义务教育数学课程标准(2011年版)》的一个特色,安排这一内容的意图在于培养学生运用所学知识与方法解决实际问题的意识,引导学生在综合实践活动中积累相应的活动经验,以此提高学生解决问题的能力,但在教学过程中大多数教师对这一内容并不太重视,甚至“跳过”这一教学进度(特别是第一学段),所以,“综合与实践”实际上还没有真正在小学阶段“登堂入室”。

为此,时值《义务教育数学课程标准(2011年版)》实施,结合自己的教学实际对这一内容进行解读,作为一线教师教学时的参考。

一、新旧课标内容对比二、第一学段“综合与实践”内容概要在第一学段中,通过综合实践活动,让学生充分感受到数学在实际生活中特有的价值及其作用,引领学生经历运用所学知识与方法解决日常生活中实际问题的过程,从而积累相应的基本数学活动经验。

在解决问题的活动中,也增强了对所学知识与方法的理解与巩固。

本学段(其他学段也如此)“综合与实践”这种教学形式应当体现在日常教学活动中,贯彻“少而精”的原则,针对性要强,但要保证每学期至少有一到二次的实践活动。

它的活动形式灵活多样,可以穿插在课内,也可以课内外结合,使之常态化地落实于教学活动之中。

三、结合具体的教学案例(教学片段),逐条解读1.通过实践活动,感受数学在日常生活中的作用,体验运用所学的知识和方法解决简单问题的过程,获得初步的数学活动经验。

从本条目标提出的要求看,“综合与实践”的教学方案不一定要独立设计,可以将它“体现在日常教学活动中”,也可以将其融合于各个领域的学习内容之中,让学生感受到数学与生活密切相关,感受数学在生活中的作用。

例如在学习“数与代数”中“数的认识”时,学生“能认、读、写万以内的数”后,让学生走进生活就能感受到“万以内的数”在生活中无处不在,就能感受到“万以内的数”在生活中的作用,进而感受到数学在日常生活中特有的价值。

课程标准(2011年版)的主要变化

课程标准(2011年版)的主要变化

《义务教务阶段数学课程标准(2011年版)》解读2001年,在国务院的直接领导下,教育部启动了基础教育课程改革,颁布了义务教育20个学科课程标准(实验稿)。

于2001年秋开始在各实验区实施,逐年推广。

经过几年的实施取得了明显成效,也发现了一些问题。

2005年教育部成立修订组,开展了对课程标准(实验稿)的修订工作。

2011年3月,基本完成了修订任务。

2011年5月通过审议,2011年12月正式颁布。

据我所知,现在有的县区已经拿到了《义务教育数学课程标准(2011年版)》(以下简称《标准》)。

下面我们就一起来看一看新的《标准》和实验稿相比有哪些变化。

标准修订的主要内容《标准》从体例结构、文本表述、具体内容和实施建议等方面都做了的修订,主要包括以下几个方·面。

(一)完善标准的体例与结构本次修订,在保持《标准(实验稿)》基本体例不变的基础上,经充分讨论,在结构上有以下调整。

1.重新撰写“前言”在“前言”部分除了修改了对数学的意义与价值、数学教育的功能、数学课程的基本理念以及数学课程设计思路的表述外,增加了“数学课程的性质”。

《标准》重新阐述了数学的意义与性质,进一步明确了数学教育的作用和义务教育阶段数学课程的特征。

2.整合三个学段的“实施建议”为了避免行文的重复、进一步突出义务教育阶段数学教育的完整性,《标准》将原来分三个学段撰写的实施建议进行了整合,三个学段统一撰写了教学建议、评价建议和教材编写建议,并增加了课程资源开发与利用建议。

3.将“行为动词”和“案例”等统一放入附录《标准》增加课程目标中的有关“行为动词”的解释,这些行为动词分为两类:一类是描述结果目标的行为动词,包括“了解、理解、掌握、运用”等术语;另一类是描述过程目标的行为动词,包括“经历、体验、探索”等术语。

将这些行为动词和相关的同义词的解释统一列入附录。

同时课程内容和实施建议中的“案例”也统一列入附录中,分别成为附录1和附录2。

小学数学课程标准新旧对照

小学数学课程标准新旧对照

小学数学课程标准新旧对照Jenny was compiled in January 2021小学数学课程标准新旧对照与2001年版相比,《数学课程标准(2011年版)》从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念的变化:“三句”变“两句”、“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、课程理念中新增加了一些提法要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理是数学的基本思维方式,也是人们学习和生活中经常 使用的思维方式。
推理一般包括合情推理和演绎推理,合情推理是从
已有的事实出发,凭借经验和直觉,通过归纳和类比等 推断某些结果;演绎推理是从已有的事实(包括定义、 公理、定理等)和确定的规则(包括运算的定义、法则、 顺序等)出发,按照逻辑推理的法则证明和计算。
“多样化”旨在“各取所需”, 乙湖
()
适应不同学生!
水深 60米
海平面0米 甲湖 水深 20米
20 米
甲湖水面高度记作0米,甲湖水底高度记作( -20)米;乙湖是堰
塞湖,水底高度记作( +20)米,水面高度记作( +80)米。
2.你知道全校做早操,操场上有多少人吗? 大约1000人,
想一想,( )个这样学校的学生集中在一起,约一万人.
(数概念生活化的练习)
3.读一读,填一填.(数概念形式化的练习)
如前面的填空练习
一、数感
2.在计算教学中发展数感
小数乘法计算法则推导: 分数除法计算法则推导:
0.15×3=? 0.15 ×3 0.45
2 小时行6千米,1小时行?
3
6

2 3

6
2
3

6

1 2

3

3 6
3 2

1
1 先求1份是多少→再求3份是多少
主要是指能够根据法则和运算律正确地进行运算的 能力。
培养运算能力有助于学生理解运算的算理,寻求合 理简洁的运算途径解决问题。
合理选择算法正确运算 估算过程中的合理判断
传统的“简便运算”适度保留,发挥它的训练功能。
例如:89×1.01=89.89
反例:125×8÷125×8 =1
六、运算能力
主要是指能够根据法则和运算律正确地进行运算的 能力。
一、数感
数感主要是指关于数与数量、数量关系、运算结果 估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解 或表述具体情境中的数量关系。
如同球员的球感,歌手的乐感一样……
简单、通俗地说,数感就是数的感觉。
教学数数、数的基数意义与序数意义、数序与数的 大小比较……都有助于形成数感。
数感培养实践的误区……
几何直观可以帮助学生直观地理解数学,在整个数 学学习过程中都发挥着重要作用。
案例1:团体操原来队伍每行10人,有5行。现在调整成每行增 加3人,增加2行,现在需要增加多少人?
案例2:如图,“ ”与“ ”,哪个面积 大?
R 2r
S R2 2r2 4 r2
五、数据分析观念
❖ 在各学段中,安排了四个部分的课程内容: “数与代数”“图形与几何”“统计与概 率”“综合与实践”。
❖ “综合与实践”是一类以问题为载体、以学生 自主参与为主的学习活动。在学习活动中,学 生将综合运用“数与代数”“图形与几 何”“统计与概率”等知识和方法解决问题。 “综合与实践”的教学活动应当保证每学期至 少一次,可以在课堂上完成,也可以课内外相 结合。
空间想象(表象的改造)
实物指认 图形指认 剖面指认
三种水平既递进发展,又交错共存
三、空间观念
小学生空间观念发展的若干特点
(1)从感知强成份到感知弱成份 强弱具有相对性,特殊性
如:形状;边的长短是强成份; 关系;角的大小是弱成份。
三、空间观念
小学生空间观念发展的若干特点
(1)从感知强成份到感知弱成份 强弱具有相对性,特殊性
案例1:小学生的研究性学习
案例2:两幅条形图蕴涵的信息
五、数据分析观念
研究性学习的缘起:父子争论,看电视是否影响视力?
自行设计调查问卷:
教师需指出:“样本”问
1.你平均每天看多长时间的电视?题
半小时以下 半小时~1小时 1小时以上
2.你的视力怎样?
5.2~5.1 5.0~4.9 4.8~4.7 4.7以下
2/3小时行6km 即3份中的2份是6 3份是9
1小时行
小学数学历来重视数感培养,从“自发”走向了“自觉”
一、数感
3.在解决实际问题中展现数感


1080稍大于1000;
72×15=1080(米)
1080超过2000的一半,都是真正的数感,与量无关
二、符号意识
符号意识主要是指能够理解并且运用符号表示数、 数量关系和变化规律;知道使用符号可以进行运算和推 理,得到的结论具有一般性。
5.信息技术的发展对数学教育的价值、目标、内容以 及教学方式产生了很大的影响。
三、课程设计思路
❖ (一) 学段划分 ❖ 为了体现义务教育数学课程的整体性,统
筹考虑九年的课程内容。同时,根据学生 发展的生理和心理特征,将九年的学习时 间划分为三个学段:第一学段(1~3年 级)、第二学段(4~6年级)、第三学段 (7~9年级)。
在数学课程中,应当注重发展学生的数
感、符号意识、空间观念、几何直观、数据 分析观念、运算能力、推理能力和模型思想。 为了适应时代发展对人才培养的需要,数学 课程还要特别注重发展学生的应用意识和创 新意识。
义务教育数学课程标准(2011年版)
最大的改变: “双基”→“四基” “六个核心词”→“十个核心词” 四基: 数学的基础知识、基本技能、基本思想、基 本活动经验 十个核心词: 数感、符号意识、空间观念、几何直观、数 据分析观念、运算能力、推理能力、模型思想、 应用意识、创新意识
过于依赖量,过于特殊的量
一、数感
数感主要是指关于数与数量、数量关系、运算结果
估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解
或表述具体情境中的数量关系。
简单、通俗地说,数感就是数的感觉。
3000006000 三十亿零六千
读出数感!
30600, 30060, 30006
三万零六百 三万零六十 三万零六
实际物体
几何图形
特征描述
由此可见:两者之间的可逆关系
三、空间观念
空间观念主要是指根据物体特征抽象出几何图形,
根据几何图形想象出所描述的实际物体;想象出物体的
方位和相互之间的位置关系;描述图形的运动和变化;
依据语言的描述画出图形等。
空间观念发展规律
例如:指认圆柱高
空间知觉(表象的基础) ↓
空间观念(表象的形成) ↓
5.0-4.9
4.8-4.7
4.7以下
半小时以下
半小时-1小时
1小时以上
信息 图的直观性可能产生“误导” 一格表示的数量越小 条形的长短相差越大 条形图与折线图可以混用
六、运算能力
主要是指能够根据法则和运算律正确地进行运算的 能力。
培养运算能力有助于学生理解运算的算理,寻求合 理简洁的运算途径解决问题。
如:形状;边的长短是强成份; 关系;角的大小是弱成份。
2
三、空间观念
3.8 4.5
小学生空间观念发展的若干特点
1.9 3.5
4.8
(2)从认识单一要素到认识要素关系
一个包装盒,如果从里面长3.8分米, 宽2分米,容积是34.2立方分米。小胖 想用它来装一件长3.5分米,宽1.9分米, 高4.8分米的礼物,是否装得下?
6789读作( 6 )千 ( 7 ) 百 ( 8 ) 十 ( 9 ) ;
6789由( )个千,( )个百,( )个十和( )个一组成.
6789=( )×1000+( )×100+( )×10+( )
一、数感
1.在数概念教学中培养数感
个十 百

一、数感
1.看图写数。
(数概念直观化的练习)

()
()
建立符号意识有助于学生理解符号的使用是数学表 达和进行数学思考的重要形式。
对于小学数学来说: 首先是让学生亲近符号,接受、理解符号!
二、符号意识
怎样让学生亲近符号,接受、理解符号呢? 例如:运算符号
二、符号意识
怎样让学生亲近符号,接受、理解符号呢? 例如:运算符号 又如:关系符号
“再也没有比平行而又等长的短线段更确切的相等
700000 600000 500000 400000 300000 200000 100000
0
我为歌狂 狮子王
动画片投资和收益的关系
罗 山 小 学 视 力情 况和看 电视 时间统 计
单位:人
40
35
30
25
20
15
10
投资(万元) 目前5收益(万元)
1500 36000
0 300
600050.02-5.1
二、课程基本理念
1.数学课程应致力于实现义务教育阶段的培养目标, 要面向全体学生,适应学生个性发展的需要,
2.课程内容要反映社会的需要、数学的特点,要符合 学生的认知规律。
3.教学活动是师生积极参与、交往互动、共同发展的 过程。
4.学习评价的主要目的是为了全面了解学生数学学习 的过程和结果,激励学生学习和改进教师教学。
三、空间观念
怎样发展学生的空间观念?
(1)观察:有序观察,选择对象,变换角度 (2)操作:学会画图,动手操作,自我释疑 (3)变式:变化形状,变化位置,变化大小 (4)辨析:同中见异,异中求同,精确分化 (5)结合:形象与语言结合,数与形结合
四、几何直观
几何直观主要是指利用图形描述和分析问题。借助 几何直观可以把复杂的数学问题变得简明、形象,有 助于探索解决问题的思路,预测结果。
数学课程标准解读
金乡县教研室 朱琳叶
目录
第一部分 前言 第二部分 课程目标
一、总目标 二、学段目标 第三部分 课程内容 第四部分 实施建议 附录
第一部分 前言 一、课程性质
义务教育阶段的数学课程是培养公民素质 的基础课程,具有基础性、普及性和发展性。 数学课程能使学生掌握必备的基础知识和基本 技能;培养学生的抽象思维和推理能力;培养 学生的创新意识和实践能力;促进学生在情感、 态度与价值观等方面的发展。义务教育的数学 课程能为学生未来生活、工作和学习奠定重要 的基础。
相关文档
最新文档