自动控制理论基础知识

合集下载

自动控制理论知识点总结

自动控制理论知识点总结

自动控制理论知识点总结1.控制系统的基本结构:一个典型的控制系统由被控对象、传感器、执行器、控制器和连接它们的信号线组成。

传感器将被控对象的状态转化为电信号,控制器根据目标和实际状态的差异来产生控制信号,执行器根据控制信号来调整被控对象的状态。

2.控制系统的稳定性:稳定性是控制系统最重要的性能之一、控制系统稳定即表示系统输出能够在有界的范围内保持在稳定值附近,不会出现无限增长或无限衰减的情况。

稳定性的分析基于控制系统的传递函数,通过判断系统的特征根位置来确定系统稳定性。

3.控制系统的性能指标:控制系统除了要求稳定外,还需要满足一定的性能指标。

常见的性能指标包括超调量、调节时间、稳态误差、抗干扰能力等。

这些指标通常与控制系统的设计需求有关,不同应用领域的控制系统对性能指标的要求也有所不同。

4.PID控制器:PID控制器是自动控制中最常见的一种控制器。

PID控制器根据比例、积分和微分三个部分对误差进行调节,从而实现系统状态的稳定控制。

PID控制器结构简单、调节方便,并且在很多领域都有广泛应用。

5.系统辨识:系统辨识是指通过对已有数据进行分析和处理,确定出系统的数学模型。

系统辨识可以基于频域分析、时域分析等方法进行。

通过系统辨识,可以为控制系统的设计、分析和优化提供重要的基础。

6.线性系统与非线性系统:控制系统可以分为线性系统和非线性系统。

线性系统的特点是可以通过叠加原理进行分析,传递函数和状态空间模型可以直接应用于控制系统。

而非线性系统则需要利用非线性控制的方法进行分析和设计。

7.鲁棒控制:鲁棒控制是一种能够保证控制系统在不确定性和干扰的情况下依然能保持稳定性和性能的控制方法。

鲁棒控制通常使用基于频域设计的方法,能够有效地抑制外界不确定性和不良影响。

8.自适应控制:自适应控制是指能够根据系统动态特性和外界环境变化,自动调整控制器参数和结构的控制方法。

自适应控制可以有效地应对系统参数不确定性和变化的情况,有助于提高系统的稳定性和性能。

自动控制的基本知识

自动控制的基本知识

七、调节过程的品质指标 调节过度过程: 1)等幅振荡 2)扩散振荡 3)衰减振荡 4)非周期过程
1。稳定性:衰减率
Ψ愈大,越稳定。 Ψ=0.75~0.98
2.准确性:准确性是指被控量的偏差大小,它包括动态偏差yM和 静态(稳态)偏差yK 动态偏差:在控制过程中,被控量与给定值之间的最大偏差称为动态偏差. 静态偏差:在控制过程结束后,被控量的稳态值y∞与给定值yg之间的残余
只包含一个容积
单容对象是最简单的热工调节对象,电厂热工生产过程中 许多储水容器,如除氧器、加热器、凝汽器等。
2)多容对象
包含两个或以上容积
(1)有自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和个时间常数为Tc的惯性环节 近似。
(2)无自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和一个积分环节近似。
3。阶跃响应特性:比较直观 在阶跃输入信号的作用下,系统的输出特性。 突然的扰动。 在电厂生产过程中,有许多输入信号近似于阶跃信号, 如负荷突然变化,阀门、挡板的开与关等。只要生产 过程允许,一般也比较容易通过控制机构(如控制阀 门)或扰动机构造成一个阶跃输入扰动。所以常在现 场用阶跃响应试验来检验控制系统的工作性能。
3。比例带δ对调节过程的影响
比例带: 3。比例带δ对调节过程的影响
比例带δ 小:调节作用强;
比例带δ太小:调节阀动作过频繁,不稳定。
二、积分调节规律调节器(P)
1。积分规律调节器的动态特性
U (S ) 1 WI ( S ) KP E (S ) Ti s 式中 Si——称为积分规律调节器的积分速度; Ti,——积分时间,习惯上多用积分时间来表示被调量偏差 积累的快慢。 Ti 越小表示偏差积累越快,积分作用越强。Ti是积分规律调节 器的整定参数。

自动控制基础知识总结(环工 给排水专业)

自动控制基础知识总结(环工 给排水专业)

第一章自动控制基本知识1.任何自动化系统都是由被控对象和自动化装置两大部分组成。

2.被控对象是指需要控制的设备、机器或生产过程。

3.自动化装置指实现自动化的工具。

包括:测量元件及变送器,控制器,执行器,定值器,辅助装置(如电源,稳压装置)。

4.自动检测是实现生产过程自动化的首要基础。

5.在自动控制系统中,需要控制工艺参数的生产设备叫被控对象,简称对象。

6.测量元件与变送器在自动控制系统中起着获取信息的作用。

7.控制器:接收测量元件与变送器的信号,根据被控对象的数学模型及控制所要达到的要求,按照一定的控制规律进行运算,并输出相应的信号给执行器。

8.执行器:接收来自控制器的信号,改变操纵变量的大小或符号,从而实现对生产的控制,在过程控制系统中,常用的有电动、气动执行器。

9.定值器:将被控变量的给定值转换成统一信号的装置,以便使给定值送入控制器和测量信号进行比较。

10.在自动控制系统中,被控对象中需要控制的那个参数叫做被控变量。

被控变量要求保持的那个规定值称为给定值(亦称设定值),烦恼影响被控变量偏离给定值的各种因素称为干扰。

11.方框图具有单向传递性。

c(t)是被控对象的被控变量,z(t)是被控对象的测量值,r(t)是被控对象的希望值即给定值,e(t)是给定值与测量值的偏差,e(t)=r(t)-z(t).12.方框图的优点:只要依照信号的流向,便可将表示各元件或设备的方框连接起来,很容易组成整个系统。

与纯抽象的数学表达式相比,它还能比较直观、形象地表示出组成系统的各个部分间的相互作用关系及其在系统中所起的作用。

与物理系统相比,它能更容易地体现系统运动的因果关系。

13.反馈:把系统的输出信号又返回输入端的做法。

14.把被控变量不随时间而变化的平衡状态称为系统的静态,而把被控变量随时间而变化的不平衡状态称为系统的动态、15.平衡是暂时的、相对的、有条件的;不平衡是普遍的、绝对的、无条件的。

16.过度过程:自动控制系统在动态过程中被控变量是不断变化的,这种随时间而变化的过程,称为自动控制系统的过度过程,也就是系统由一个平衡状态过渡到另一个平衡状态的过程,或者说是自动控制系统的控制作用不断克服干扰的全过程。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。

下面将对自动控制原理的一些关键知识点进行总结。

一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。

控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。

控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。

反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。

在控制系统中,常用的术语包括输入量、输出量、偏差量等。

输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。

二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。

状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。

三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。

常见的性能指标包括稳定性、准确性和快速性。

稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。

准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。

快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。

四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。

常用的稳定性判据有劳斯判据和赫尔维茨判据。

劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。

自动控制原理知识点汇总

自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。

它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。

下面是自动控制原理的一些重要知识点的汇总。

一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。

2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。

3.控制系统的分类:开环控制和闭环控制。

4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。

二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。

2.控制信号的形式化表示:开环信号和闭环信号。

三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。

2.传递函数的性质:稳定性、正定性、因果性等。

3.频率响应:描述了控制系统对不同频率输入信号的响应。

四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。

2.稳定性分析的方法:根轨迹法、频域方法等。

3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。

五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。

2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。

六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。

2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。

3.根轨迹的设计方法:增益裕量法、相位裕量法等。

七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。

2.频率响应的评价指标:增益裕量、相位裕量、带宽等。

3.频域设计方法:根据频率响应曲线来调整系统参数。

八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。

自动控制原理知识点

自动控制原理知识点

第一节自动控制的基本方式一、两个定义:(1) 自动控制:在没有人直接参与的情况卞,利用控制装置使某种设备、装置或生产过程 中的某些物理屋或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。

(2) 自动控制系统:由控制器(含测量元件)和被控对彖组成的有机整体。

或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。

称为自动控制系统。

在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。

系统的输入屋,通常指两种:给定输入量和扰动输入量。

给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。

扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电 源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输 入量。

扰动输入量影响给定输入量对系统输出量的控制。

自动控制的基本方式二、基本控制方式(3种)1、开环控制方式⑴定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。

具有这种控制方式的有机整体,称为开坏控制系统。

如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。

⑵职能方框图任何开坏控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。

2、闭坏控制方式(1)定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭坏控制方式。

如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。

自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为 电压。

反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放人器放大后去控制 电动机的转速。

当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速 运行。

当系统受到某种干扰时(例如负载变人),电动机的转速会发生变化(下降),测速反馈扰动输入量输出量电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变人),经放人后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。

自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结自动控制原理是现代控制工程的基础理论,研究自动控制系统的建模、分析与设计方法。

掌握自动控制原理的基本概念对于理解和应用控制技术起着重要的作用。

本文将对自动控制原理的基本概念知识点进行总结。

一、控制系统基本概念1.1 控制系统的定义控制系统是通过对被控制对象施加命令,以达到预期目标的系统。

它由输入信号、输出信号、被控制对象和控制器等组成。

1.2 开环控制系统与闭环控制系统开环控制系统是指控制器的输出不受被控制对象的反馈信号影响的控制系统。

闭环控制系统是指控制器的输出受到被控制对象的反馈信号影响的控制系统。

1.3 正反馈与负反馈正反馈是指系统的输出信号与输入信号同方向,有放大的作用;负反馈是指系统的输出信号与输入信号反向,有稳定的作用。

二、控制系统的数学描述2.1 传递函数传递函数是用来描述控制系统输入与输出之间的关系的数学模型。

它通常由拉普拉斯变换或者Z变换得到。

2.2 系统的稳定性系统的稳定性是指当系统受到扰动或者参数变化时,输出信号是否趋于有限,并且不出现无穷大的情况。

2.3 时域指标时域指标包括超调量、调节时间、上升时间等,用来衡量系统的动态性能。

三、控制系统的设计方法3.1 PID控制器PID控制器是最常用的一种控制器,它由比例项、积分项和微分项组成,可用于调节系统的稳态误差、快速响应和抑制振荡。

3.2 稳态误差补偿稳态误差补偿方法用于减小系统在达到稳态时的误差,例如使用积分控制器。

3.3 根轨迹法根轨迹法是一种用于分析系统稳定性和性能的图形法,它通过在复平面上绘制传递函数的极点和零点来描述系统的特性。

四、控制系统的稳定性分析4.1 极点配置法极点配置法是一种通过调整系统的极点位置来改变系统的动态响应,从而实现稳定性分析和改进的方法。

4.2 Nyquist准则Nyquist准则是一种通过绘制传递函数的频率响应曲线,并通过判断曲线与负实轴交点的数量来判断系统稳定性的方法。

自动控制原理知识点

自动控制原理知识点

自动控制原理知识点自动控制原理是研究如何有效地对系统进行控制的一门学科。

以下是一些与自动控制原理相关的知识点:1. 控制系统:自动控制原理研究的对象是各类控制系统。

控制系统通常由输入、输出、执行器和传感器组成。

输入是系统的控制命令,输出是系统的控制结果。

执行器根据输入控制命令来执行相应的动作,传感器用于检测系统的状态并将信息反馈给控制器。

2. 控制器:控制器是控制系统中的关键部分,用于决定执行器的控制命令。

常见的控制器包括比例控制器(P控制器)、积分控制器(I控制器)和微分控制器(D控制器)。

这些控制器可以根据系统的需求进行组合以实现更好的控制效果。

3. 反馈:自动控制原理中的一个重要概念是反馈。

反馈是通过传感器将系统的实际输出信息反馈给控制器,以便控制器可以根据实际输出对控制命令进行调整。

反馈可以帮助控制系统实现更准确、稳定的控制。

4. 控制策略:控制系统可以采用不同的控制策略来实现不同的控制目标。

常见的控制策略包括比例控制、积分控制、微分控制、比例-积分控制、比例-微分控制和模糊控制等。

每种控制策略都有其特定的适用场景和优缺点。

5. 系统建模:在进行自动控制设计之前,需要对要控制的系统进行建模。

系统建模可以分为传递函数模型和状态空间模型两种。

传递函数模型通常用于线性系统,而状态空间模型适用于线性和非线性系统。

6. 频域分析:频域分析是自动控制原理中常用的分析方法之一,用于理解系统的频率响应特性。

常见的频域分析方法包括频率响应曲线、Bode图和Nyquist图等。

7. 闭环控制与开环控制:自动控制系统可以分为闭环控制和开环控制两种。

闭环控制中,系统的输出信息被反馈给控制器,以便对控制命令进行调整,以达到系统要求的性能。

而开环控制中没有反馈,系统的控制命令只基于输入信号来决定。

8. 鲁棒控制:鲁棒控制是自动控制原理中一种可以应对系统参数变化、外界扰动等不确定性因素的控制方法。

鲁棒控制可以提高系统的稳定性和抗干扰能力。

自动控制原理知识点.

自动控制原理知识点.
(SISO) (MIMO)
数 学 传递函数
状态方程
模型
研 究 频域法、根轨 状态空间方法
手段 迹法
研 究 系统综合、校 最优控制、系
目的 正
统辨识、最优
估计、自适应
控制
4、室
温控
制系统
5、控制系统的基本组成
◎被控对象:在自动化领域,被控制的装置、
物理系统或过程称为被控对象(室内空气)。
◎控制装置:对控制对象产生控制作用的装
温度的变化及房间散热条件的变化等)。 ◎输入信号的响应:由某一个输入信号产生 的输出信号又称为该输入信号的响应。 8.负反馈原理:将系统的输出信号引回输入 端,与输入信号相比较产生偏差,控制器利 用偏差的大小、正负进行控制,达到减小偏 差、消除偏差的目的。(以偏差纠偏差)
——构成反馈控制系统的核心 9. 由于有了负反馈,自动控制系统便形成 了一个按偏差进行进行控制的闭环系统(又 称反馈控制系统)
制实现(正如微积分是一种数学工具一 样)。 ◎解决的基本问题:
•建模:建立系统数学模型(实际问题抽象, 数学描述)
•分析:分析控制系统的性能(稳定性、动 /稳态性能)
•综合:控制系统的综合与校正——控制器 设计(方案选择、设计) 3、自动控制原理研究的主要内容
经典控制理论 现代控制理论 研 究 单输入、单输 多输入、多输 对象 出 系 统 出 系 统
◎闭环系统必须考虑稳定性问题。 特点: 输出影响输入,所以能削弱或抑制干 扰;低精度元件可组成高精度系统;因为可 能发生超调,振荡,所以稳定性很重要 3、闭环系统与开环系统的区别 ◎与开环控制系统相比,闭环控制系统的最 大特点是检测偏差、纠正偏差 ; ◎从系统结构上看,闭环系统具有反向通 道; ◎从功能上看,闭环系统具有如下特点:

自动控制理论和控制工程技术的基础知识

自动控制理论和控制工程技术的基础知识

自动控制理论和控制工程技术的基础知识自动控制理论和控制工程技术是现代科学技术的重要分支,它的应用范围涵盖了工业自动化、航空航天、军事等众多领域。

本文将就这一主题展开讨论。

一、自动控制理论的基础知识自动控制理论是指对各种控制系统的性能、稳定性、鲁棒性等进行研究和分析的学科。

自动控制系统通常包括控制器、被控对象和传感器。

在自动控制系统中,控制器是指对被控对象进行控制的设备。

被控对象是指需要进行控制的对象,例如飞机、工业机器人、化工流程等。

传感器负责将被控对象的状态转换成数字信号,供控制器使用。

自动控制系统的设计通常包括两个阶段:确定系统的传递函数和控制器的设计。

传递函数可以描述系统的输入输出关系,控制器的设计需要根据系统性能要求进行优化。

二、控制工程技术的基础知识控制工程技术是实现自动控制的关键技术之一。

它主要包括电气控制、机械控制、液压控制等方面。

电气控制是指利用电气元件和电路来实现对被控对象的控制,例如通过电动机来控制机器人的运动。

机械控制是指利用机械元件和传动装置来实现对被控对象的控制,例如通过齿轮传动来控制工厂输送带的运动。

液压控制是指利用液压元件和液压电路来实现对被控对象的控制,例如通过液压缸来控制重型机械的运动。

控制工程技术的设计需要根据被控对象的特性和具体应用场景进行选择。

例如,在需要控制功率较大的载体时,通常选择电气控制;而在需要控制精度较高的场景时,则需要采用机械控制或液压控制。

三、自动控制理论及控制工程技术的应用自动控制理论及控制工程技术的应用涵盖了各个领域,以下是其中的一些应用场景。

1. 工业自动化工业自动化是目前应用最广泛的自动化应用场景之一,主要应用于自动化生产线、工业机器人、CNC加工机床等领域。

自动化生产线可以大幅提高生产效率和品质,工业机器人可以替代部分人工操作,CNC加工机床则可以提高加工精度和成品质量。

2. 航空航天航空航天是应用自动控制理论及控制工程技术的一个重要领域。

自动控制原理基本知识点

自动控制原理基本知识点

自动控制原理基本知识点21.控制(Control):是指为了改善系统的性能或达到特定的目的,通过对系统有关信息的采集和加工而施加到系统的作用。

2.自动控制(Automatic Control):是关于受控系统的分析、设计和运行的理论和技术。

3.自动化(Automation):是指机器或装置在无人干预的情况下按规定的程序或指令自动地进行操作或运行。

4.自动控制系统(Automatic Control System):由控制器、执行器、传感器和被控对象等相互关联、相互制约、相互影响的一些部分组成的能对被控对象的工作状态进行自动控制的系统。

5.系统(System):是指由相互关联、相互制约、相互影响的一些部分组成的具有某种功能的有机整体。

6.信息(Information):是指符号信号或消息所包含的内容,用来消除对所关心的客观事物认识的不确定性。

7.反馈(Feedback):是指将系统的实际输出和期望输出进行比较,形成误差,从而为确定下一步的控制行为提供依据。

8.科学(Science):是指对各种事实和现象进行观察、分类、归纳、演绎、分析、推理、计算和实验,从而发现规律,并对各种定量规律予以验证和公式化的知识体系。

9.技术(Technology):是指人类根据自身生产实践经验和自然科学原理改变或控制其环境的手段和活动,是人类活动的一个专门领域。

10.工程(Engineering):是指应用科学知识和科学原理使自然资源最好地为人类服务的专门技术。

11.对控制系统的基本要求:稳定性、快速性、准确性。

12.模型:是对于对象和过程的某一方面本质属性的一种表述。

13.控制系统的数学模型:是描述系统输入、输出变量,以及内部各变量之间关系的数学表达式。

14.传递函数:线性定常系统在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比,用G(s)表示。

零初始条件:是指在t=0时刻,系统的输入、输出及其它们的各阶导数均为零。

自动控制原理知识点

自动控制原理知识点

第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。

◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。

◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。

除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。

•测量元件:用以测量被控量或干扰量。

•比较元件:将被控量与给定值进行比较。

•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。

参与控制的信号来自三条通道,即给定值、干扰量、被控量。

2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。

而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。

◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。

◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。

◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。

◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。

◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。

◎放大元件:放大偏差信号的元件。

◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。

自动控制基础知识复习

自动控制基础知识复习

自动控制基础知识复习目录一、自动控制基本概念 (3)1.1 自动控制的基本原理 (4)1.2 自动控制系统的组成 (4)1.3 自动控制系统的分类 (6)二、自动控制系统的数学模型 (7)2.1 线性系统的数学模型 (9)2.1.1 微分方程 (10)2.1.2 积分方程 (11)2.1.3 非线性系统的数学模型 (13)2.2 传递函数 (14)2.3 状态空间表达式 (15)三、自动控制系统的时域分析 (16)3.1 典型输入信号 (18)3.2 系统的稳定性分析 (19)3.3 系统的稳态误差分析 (20)四、自动控制系统的频域分析 (22)4.1 频率特性 (23)4.2 相频特性 (24)4.3 系统的频域性能分析 (26)五、自动控制系统的校正与设计 (27)5.1 校正装置的选择 (28)5.2 串联校正 (30)5.3 并联校正 (31)5.4 反馈控制系统的设计 (32)六、自动控制系统的工程应用 (34)6.1 工业自动化系统 (35)6.2 交通运输系统 (36)6.3 生物医学控制系统 (37)七、智能控制基础 (38)7.1 智能控制的基本概念 (40)7.2 智能控制系统的类型 (41)7.3 智能控制算法简介 (42)八、自动控制系统的仿真与实验 (43)8.1 计算机仿真的基本概念 (45)8.2 自动控制系统的仿真方法 (46)8.3 实验技能与实验指导 (48)九、自动控制技术的发展趋势 (49)9.1 控制理论的发展 (51)9.2 控制设备的智能化 (52)9.3 控制系统的绿色化 (53)一、自动控制基本概念自动控制定义:自动控制是指通过某种装置或系统,使得某一过程或设备能够自动地按照预定的规律或程序运行,而无需人为的干预和调整。

在自动控制系统里,输入信号会激发反馈机制,系统会根据反馈调整其输出以达到预期目标。

系统组成:一个基本的自动控制系统通常由控制器、被控对象、执行器和传感器等部分组成。

自动控制原理基础知识点总结

自动控制原理基础知识点总结

自动控制原理基础知识点总结自动控制原理是研究自动控制系统的基本原理和方法的一门学科,其核心思想是通过输入-输出关系来实现对系统的控制和调节。

以下是自动控制原理的一些基础知识点总结:1. 控制系统的组成:自动控制系统主要由输入信号、控制器、执行器和被控对象组成。

其中输入信号是控制系统的指令,控制器是根据输入信号和输出信号之间的差异来生成控制信号,执行器将控制信号转换为作用于被控对象的物理量。

2. 反馈控制和前馈控制:反馈控制是指将系统输出信号通过传感器反馈到控制器中,并与输入信号进行比较来生成控制信号;前馈控制是指将输入信号直接作用于控制器,不考虑系统输出信号的影响。

反馈控制可以有效地补偿系统的不确定性和扰动,提高系统的稳定性和鲁棒性。

3. 系统的数学模型:自动控制系统的设计和分析通常需要建立系统的数学模型,常见的数学模型包括差分方程、微分方程和状态空间方程。

通过对系统的数学模型进行分析,可以获得系统的稳定性、响应速度、稳态误差等性能指标,并用于控制器的设计和参数调节。

4. 控制器的类型:常见的控制器类型包括比例控制器、积分控制器和微分控制器,它们分别根据输出信号与误差信号的线性关系、积分关系和导数关系对系统进行控制。

此外,还可以通过组合和级联这些控制器来设计更复杂的控制系统。

5. 根轨迹和频率响应:根轨迹图可以用来分析系统的稳定性和动态特性,通过观察根轨迹的形状和分布可以确定系统的稳定性和阻尼特性。

频率响应则是通过输入信号在不同频率下的响应来分析系统的频域特性和频率补偿。

6. 系统的稳定性:系统的稳定性是指在某种条件下,系统输出能够在有界的范围内保持稳定。

常见的稳定性分析方法包括稳定性判据、稳定裕度和相角裕度分析。

7. 系统的性能指标:常见的性能指标包括系统的超调量、调整时间、静态误差和稳态误差,这些指标用于评估系统的控制性能和稳定性。

8. 控制系统的校正和调节:通过对系统控制器参数的调整和优化,可以改善系统的控制性能和稳定性。

自动化专业考试知识点总结

自动化专业考试知识点总结

自动化专业考试知识点总结一、自动控制基础知识1、控制系统的基本概念(1)控制系统的定义和组成(2)控制系统的分类(3)控制系统的特点2、控制系统的数学模型(1)动态系统的数学建模(2)常见控制系统的数学模型(3)系统的时域分析和频域分析3、控制系统的稳定性分析(1)系统的稳定性概念(2)连续时间系统的稳定性分析(3)离散时间系统的稳定性分析4、控制系统的性能指标(1)阶跃响应的性能指标(2)频率响应的性能指标(3)系统的灵敏度分析二、自动化技术1、传感器与执行器(1)传感器的分类及特点(2)传感器的工作原理(3)执行器的分类及特点(4)执行器的工作原理2、PLC技术(1)PLC的基本概念(2)PLC的组成和工作原理(3)PLC的程序设计语言(4)PLC的应用3、人机界面技术(1)人机界面的基本概念(2)人机界面的设计原则(3)人机界面的开发工具(4)人机界面的应用4、工业控制网络(1)工业控制网络的分类(2)工业控制网络的组成和工作原理(3)工业控制网络的应用5、自动化生产系统(1)自动化生产系统的基本概念(2)自动化生产系统的组成和特点(3)自动化生产系统的应用案例三、控制系统设计1、控制系统的设计方法(1)经验设计方法(2)分析与合成法(3)优化设计方法2、根轨迹法(1)根轨迹法的基本原理(2)根轨迹法的应用3、频域法(1)Bode图的绘制及应用(2)Nyquist图的绘制及应用(3)频域法的应用4、状态空间法(1)状态空间模型的建立(2)状态反馈控制器(3)状态观测器设计5、系统辨识与参数估计(1)系统辨识的基本原理(2)参数估计的方法(3)系统辨识与参数估计的应用四、自动控制系统的应用1、机械运动控制系统(1)位置控制系统(2)速度控制系统(3)力控制系统2、温度控制系统(1)恒温控制系统(2)恒湿控制系统(3)温度变送器的特性及应用3、流量控制系统(1)开环控制系统(2)反馈控制系统(3)流量变送器的特性及应用4、压力控制系统(1)压力控制的方法(2)压力传感器的特性及应用5、光电控制系统(1)光电传感器的特性及应用(2)光电控制系统的设计原则(3)光电控制系统的应用案例五、现代控制理论1、模糊控制(1)模糊集合的概念(2)模糊控制系统的基本原理(3)模糊控制系统的应用2、神经网络控制(1)神经元的模型(2)感知器的工作原理(3)神经网络控制系统的应用3、自适应控制(1)自适应控制系统的基本原理(2)自适应控制系统的应用4、鲁棒控制(1)鲁棒控制系统的基本原理(2)鲁棒控制系统的应用5、多变量控制(1)多输入多输出系统的模型(2)多变量控制系统的设计原则(3)多变量控制系统的应用案例六、自动化系统的维护与管理1、维护管理的基本概念(1)维护管理的目标(2)维护管理的原则(3)维护管理的方法2、故障诊断与排除(1)故障诊断方法(2)故障排除技术3、安全防护技术(1)安全控制系统的基本原理(2)安全防护措施的设计原则(3)安全防护技术的应用4、自动化系统的管理与优化(1)自动化系统的数据采集与分析(2)自动化系统的绩效评估与改进(3)自动化系统的管理与优化案例以上就是自动化专业考试知识点的总结,希望能帮助大家系统地复习和掌握相关知识。

自动控制基础知识

自动控制基础知识

一些基础知识:1.自动控制的基本概念及术语被控对象――被控制的生产过程或设备,也称为调节对象或简称对象。

例如汽包水位控制系统中的汽包。

被控量――控制系统所要控制的参数,又称为被调量,例如汽包水位。

设定值――被控量所要达到或保持的数值。

例如汽包水位定值。

扰动量――破坏被控量与设定值相一致的一切作用,例如汽包水位控制系统中的蒸汽流量、给水量。

调节器――用于自动控制系统中的控制装置、或具有相似作用的软件。

例如P、PI、PID调节器。

控制指令――或称调节指令。

一般是调节器的输出信号,也可是运行人员手动给出的控制信号,该信号被送往执行机构。

执行机构――接受控制指令、对被控对象施加作用的机构。

也称为执行元件、执行器。

例如,机械执行机构、电动执行机构、液压执行机构。

控制机构――其动作可以改变进入对象的质量或能量的装置,例如给水阀门、空气挡板。

2.自动控制系统的分类实际生产过程中采用的自动控制系统的类型是多种多样的,从不同的角度出发,可以进行不同的分类。

(1)按设定值变化的规律来分,有恒值控制系统、程序控制系统和随动控制系统。

恒值是指设定值不随时间而变化。

例如电厂锅炉水位、汽温控制系统,属于这一类型(2)按系统的结构来分,有闭环控制系统、开环控制系统和复合控制系统。

闭环控制系统亦称反馈控制系统,这是一种最基本的控制系统。

在闭环控制系统中。

被控量信号以反馈方式送入调节器的输入端,作为不断引起控制作用的依据,而控制的目的是尽可能地减少被控量与其设定值之间的偏差,因此,信号是沿控制系统的闭合回路传递的。

如果系统中不存在被被控量的反馈回路,“调节器”只是根据直接或间接反映扰动输入的信号来控制,例如前馈控制系统,这种控制系统被称为开环系统。

开关量控制,例如阀门的开、关,挡板的开、关、电机的启、停,一般称为顺序控制,但也有一些电厂将这类系统称为开环控制系统。

生产过程中,开环控制和闭环控制常常配合使用,组成复合控制系统,例如前馈、反馈控制系统。

自动控制基础知识.详解ppt课件

自动控制基础知识.详解ppt课件
双位控制在给排水工程中采用普遍,如:水池、水箱的液 位控制,实验室恒温箱的温度控制等。
双位控制的特点:控制器只有最大和最小两个输出值,执 行器只有“开”和“关”两个极限位置。被控对象中物料 量或能量总是处于不平衡状态,被控变量总是剧烈振荡, 得不到比较平衡的控制过程。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2)主要特点: 从信号传送来看,输出量经测量后回送到输入端,回送的
信号使信号回路闭合,构成闭环,即为负反馈。 从控制作用的产生看,由偏差产生的控制作用使系统沿减
少或消除偏差的方向运动。——偏差控制
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、比例控制
定义:使被控量的偏差量与调节阀的开关量对应起来,如 图1.15所示的系统,当液面高于给定值Lo后,阀门不是全 关,而是关小,液面越高,阀关得越小;反之.液面低于 给定值Lo,阀也不是全开,而是开大,液面越低,阀开得 越大。例如,液面低于给定值Lo的10%时,则调节信号也 能使阀门开大10%。这样当对象负荷变化时,调节作用就 会与之相适应。这种控制器的输出与被控量的偏差值成比 例的调节方式称为比例控制,又称P控制。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
被控量——输出量 给定量——输入量
给定输入:决定系统输出量的变化 规律或要求值
扰动输入:系统不希望的外作用

自动控制原理基础知识

自动控制原理基础知识

自动控制原理基础知识
自动控制是指利用各种控制器和控制装置,通过反馈信号来调节系统输出,使其达到预期的状态或行为。

在自动控制中,有一些基础的原理需要了解。

1. 反馈原理:反馈是指将系统输出的一部分作为输入,通过比较实际输出与期望输出之间的误差,来调节系统以减小误差。

反馈原理是自动控制的核心原则,它能够使系统具有自我调节的能力。

2. 控制器:控制器是自动控制系统中的一种重要装置,它接收反馈信号并产生控制输出,以调节系统状态。

常见的控制器有比例控制器、积分控制器和微分控制器,它们可以根据系统的需求组合使用。

3. 传感器:传感器是用来检测系统状态或环境变量的装置,它能将所检测到的信号转换成电信号,以供控制器使用。

常见的传感器有温度传感器、压力传感器和光线传感器等。

4. 执行器:执行器是根据控制器输出的信号,对系统进行调节或操作的装置。

执行器可以改变系统的输出,如电动机、阀门和伺服系统等。

5. 开环控制与闭环控制:开环控制是指控制器输出不受系统反馈影响,只根据预设的输入输出关系进行控制;闭环控制是指控制器根据系统反馈信号进行调节,以使系统输出满足预期要求。

闭环控制具有更好的稳定性和精度。

6. 控制系统的性能指标:控制系统的性能指标包括稳定性、灵敏度、响应时间和稳态误差等。

稳定性是指系统在各种干扰下保持稳定的能力;灵敏度是指系统输出对输入变化的敏感程度;响应时间是指系统从输入变化到输出变化的时间;稳态误差是指系统输出与期望输出之间的差异。

以上是自动控制原理的一些基础知识,它们是理解和设计自动控制系统的基础。

了解这些知识有助于理解自动控制的工作原理、应用和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档