概率论与数理统计重点总结及例题解析

合集下载

概率论与数理统计各章重点知识点汇总--最新版

概率论与数理统计各章重点知识点汇总--最新版

第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2 (n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。

现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。

(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。

P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=,P(B| A2)=,P(B| A3)=。

由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。

若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少(同步49页三、1)【】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。

解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品}(1)P(1B )=P(1A )P(1B |1A )+P(2A )P(1B |2A )=52301821501021=+ (2)P(1B 2B )=194.02121230218250210=+C C C C ,则P(2B |1B )=)()(121B P B B P = 二、连续型随机变量的综合题例:设随机变量X 的概率密度函数为⎩⎨⎧<<=othersx x x f 020)(λ求:(1)常数λ;(2)EX ;(3)P{1<X<3};(4)X 的分布函数F(x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P(4)当x<0时,⎰∞-==xdt x F 00)( 当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()( 当x ≥2时,F (x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)( 且E(X)=7/12。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

以下是对概率论与数理统计知识点的超详细总结。

一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

随机事件通常用大写字母 A、B、C 等来表示。

(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。

(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。

2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。

3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。

4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。

5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。

6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。

(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。

2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。

3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。

概率论与数理统计习题集及问题详解

概率论与数理统计习题集及问题详解

第1章 概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D 为开关。

设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。

A B L R C D1. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。

第1章作业答案§1 .8. 1: 用A,B,C,D 表示开关闭合,于是 T = AB ∪CD, 从而,由概率的性质及A,B,C,D 的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)424222p p p p p -=-+=2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38; (2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章 随机变量及其分布§2.2 10-分布和泊松分布1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;2 设随机变量X 有分布律: X 23 , Y ~π(X), 试求: p 0.4 0.6(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。

§2.3 贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6 均匀分布和指数分布2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

概率论与数理统计典型例题与解析(期末考试与考研必备的超强资料)

概率论与数理统计典型例题与解析(期末考试与考研必备的超强资料)

概率论与数理统计典型例题分析(期末考试与考研必备)1.在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立?(3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立.2.将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立? 解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+=== ()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0,而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?3.设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0?提示 利用事件的关系与运算导出.4.设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===5.某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 6.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P7.设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 8.在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P9.五个人抓一个有物之阄,求第二个人抓到的概率.解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P 所以 ⋅=⨯=514154)(2A P10.设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}. 试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.11.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).12.一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或. 13.用高射炮射击飞机,如果每门高射炮击中飞机的概率是0.6,试问:(1)用两门高射炮分别射击一次击中飞机的概率是多少?(2)若有一架敌机入侵,至少需要多少架高射炮同时射击才能以99%的概率命中敌机?分析 本题既可使用加法公式,也可使用乘法公式.解 (1)令B i ={第i 门高射炮击中敌机}(i =1,2),A ={击中敌机}.在同时射击时,B 1与B 2可以看成是互相独立的,从而21,B B 也是相互独立的,且有P (B 1)=P (B 2)=0.6,.4.0)(1)()(121=-==B P B P B P方法1(加法公式)由于A =B 1+B 2,有P (A )=P (B 1+B 2)=P (B 1)+P (B 2)-P (B 1)P (B 2)=0.6+0.6-0.6×0.6=0.84.方法2(乘法公式) 由于21B B A =,有,16.04.04.0)()()()(2121=⨯===B P B P B B P A P于是 .84.0)(1)(=-=A P A P(2)令n 是以99%的概率击中敌机所需高射炮的门数,由上面讨论可知,99%=1-0.4n 即 0.4n =0.01,亦即.026.53979.024.0lg 01.0lg ≈--==n 因此若有一架敌机入侵,至少需要配置6门高射炮方能以99%的把握击中它.14.设某人从外地赶来参加紧急会议.他乘火车、轮船、汽车或飞机来的概率分别是31110510、、及52,如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来迟到的概率分别为41、⋅12131、试问:(1)他迟到的概率;(2)此人若迟到,试推断他是怎样来的可能性最大? 解 令A 1={乘火车},A 2={乘轮船},A 3={乘汽车},A 4={乘飞机},B ={迟到}.按题意有:,103)(1=A P ,51)(2=A P ,101)(3=A P ,52)(4=A P,41)|(1=A B P ,31)|(2=A B P ,121)|(3=A B P .0)|(4=A B P (1)由全概率公式,有⋅=⨯+⨯+⨯+⨯==∑=203052121101315141103)|()()(41i i i A B P A P B P (2)由逆概率公式 ),4,3,2,1()|()()|()()|(41==∑=i A B P A P A B P A P B A P jj j i i i得到.0)|(,181)|(,94)|(,21)|(4321====B A P B A P B A P B A P 由上述计算结果可以推断出此人乘火车来的可能性最大.15.三人同时向一架飞机射击,设他们射中的概率分别为0.5,0.6,0.7.又设无人射中,飞机不会坠毁;只有一人击中飞机坠毁的概率为0.2;两人击中飞机坠毁的概率为0.6;三人射中飞机一定坠毁.求三人同时向飞机射击一次飞机坠毁的概率.解 设A i ={第i 个人射中}(i =1,2,3),有P (A 1)=0.5, P (A 2)=0.6, P (A 3)=0.7.又设B 0={三人都射不中},B 1={只有一人射中},B 2={恰有两人射中},B 3={三人同时射中},C ={飞机坠毁}.由题设可知,0)|(0=B C P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P并且.06.03.04.05.0)()()()()(3213210=⨯⨯===A P A P A P A A A P B P同理)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++=0.5×0.4×0.3+0.5×0.6×0.3+0.5×0.4×0.7=0.29;P (B 2)=0.44;P (B 3)=0.21.利用全概率公式便得到)|()()(30i i i B C P B P C P ∑===0.06×0+0.29×0.2+0.44×0.6+0.21×1=0.532.由上面的讨论可以看出,在使用全概率公式和逆概率公式解题时,“分析题目,正确写出题设,找出(或计算)先验概率和条件概率”是十分重要的.练习:两台机床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率;又:如果任意取出的零件经检查是废品,求它是由第二台机床加工的概率.答案是:0.973;0.25.16.某类电灯泡使用时数在1000 h 以上的概率为0.2,求三个灯泡在使用1000 h 以后最多只坏一个的概率.解 这是一个n =3,p =0.8二项概型问题P 3(μ≤1)=P (μ=0)+P (μ=1).17.袋中有10个球,其中2个为白色,从中有放回地取出3个,求这3个球中恰有2个白球的概率.解 方法1 设A ={恰有2个白球},由古典概型,有310=n , 8232⨯⨯=m ,因此 ⋅⨯⨯=3210823)(A P 方法2 由二项概型,有⋅⨯⨯====321223310823)108()102()2()(C P A P μ18.袋中有4个白球、6个红球,先从中任取出4个,然后再从剩下的6个球中任取一个,则它恰为白球的概率是______.分析 设A i ={第i 次取到白球},根据古典概型,我们有⋅==104)(110141C C A P 由于 ,)(212111222A A A A A A A ΩA A +=+==并且,94106)|()()(,93104)|()()(1212112121⨯==⨯==A A P A P A A P A A P A P A A P 因此 ⋅=⨯⨯+⨯=1049104634)(2A P 同理 ⋅=104)(5A P 19.有一批产品,其中正品有n 个,次品有m 个,先从这批产品中任意取出l 个(不知其中的次品数),然后再从剩下的产品中任取一个恰为正品的概率为( ).方法1 设A k ={前l 次中恰有k 个正品},k =q ,q +1,…,p ;其中q =max(l -m ,0),p =min(n ,l ).又设B ={第l +1个恰为正品},有,)(,1nm k l m k n k p q q C C C A P ΩA A A +-+==+++ 而 ,)|(11ln m k n C C A B P l n m k n k -+-==-+- 由全概率公式有⋅+==∑=nm n A B P A P B P k k p q k )|()()( 举例说明:(1)n =3,m =5,l =4,这时k =0,1,2,3.⋅=+++=8)4/()0306015()(48C B P⋅=+++=8)4/()5609020()(48C B P 方法2 利用抓阄问题的讨论,直接得到⋅+n m n 方法3 前l +1次取到正品的概率减去前l 次取到正品的概率(有条件限制,有时使用起来不一定方便)方法4 (全排列方法)令第l +1个位置上为正品,由于有n 个正品,故有n 种方法,于是⋅+=+-+=nm n n m n m n B P )!()!1()( 方法5 将第l +1次看成第1次,于是⋅+==+nm n C C B P n m n 11)( 20.袋中有5个球,其中1个是红球,每次取1个球,取出后不放回,前3次取到红球的概率为( ).分析 设A ={前3次取到红球},根据古典概型,有⋅==53)(352411C C C A P说明 利用这一结论,可以计算第3次取到红球的概率:P {第3次取到红球}=P {前3次取到红球}-P {前2次取到红球}⋅=-=-=515253251411352411C C C C C C 注意 这里实际用到了互斥情况下的加法公式.21.设两两相互独立的三事件A ,B ,C ,满足:ABC =∅,P (A )=P (B )=P (C )<21,并且169)(=++C B A P ,求事件A 的概率. 分析 设P (A )=p .由于ABC =∅,有P (ABC )=0,根据三个事件两两独立....情况下的加法公式,有P (A +B +C )=P (A )+P (B )+P (C )-P (A )P (B )-P (B )P (C )-P (A )P (C )+P (ABC ), 即 ,1690332=+-p p 亦即 ,01632=+-p p 解得 41=p 或43(由题意舍去).于是 ⋅=41)(A P 说明 (1)三个事件两两独立,不能推出三个事件相互独立.(2)由ABC =⇒∅P (ABC )=0,反之不真.22.设P (A )>0,P (B )>0,证明(1)若A 与B 相互独立,则A 与B 不互斥.(2)若A 与B 互斥,则A 与B 不独立.分析 (1)由于事件A 与B 相互独立,且P (A )>0,P (B )>0,因此P (AB )=P (A )P (B )>0.可见,AB ≠∅,即事件A 与B 不互斥(相容).(2)由于事件A 与B 互斥,即AB =∅,因此P (AB )=0,而P (A )>0,P (B )>0,故P (AB )≠P (A )P (B ),即事件A 与B 不可能相互独立.说明 (1)事件之间相互独立,并不意味着它们互斥,反之亦然.(2)在P (A )>0,P (B )>0的条件下,两个事件独立与否,是在它们相容情况下讨论的.(3)事件的“互斥”与“相互独立”是没有关系的两个“关系”.23.设A ,B 是两个随机事件,且0<P (A )<1,P (B )>0,)|()|(A B P A B P =,则P (AB )=P (A )P (B ).分析 由公式()()()(|),(|),()()1()P AB P AB P AB P B A P B A P A P A P A ===- 由题设 ),|()|(A B P A B P =即,)(1)()()(A P B A P A P AB P -= 于是,有 ()()(()())()()()(),P AB P A P AB P AB P A P AB AB P A P B =+=+=即A 、B 相互独立.说明 (1) )|()|(A B P A B P =是A ,B 独立的一个充要条件.(2)若此题换成下述选择题:设……,则______ (A)).|()|(B A P B A P = (B)(|)(|).P A B P A B =/(C)P (AB )=P (A )P (B ). (D )P (AB )≠P (A )P (B ).时,能否认为(A )与(B ),或(C )与(D )之中必有一个成立.24.设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,则 P (A )=______,P (B )=______.分析 方法1 因为P (A )>0,P (B )>0,且A 与B 相互独立,所以AB ≠∅(想一想为什么).一方面P (A +B )=P (A )+P (B )-P (A )P (B ); (1-6)另一方面).()(21)()()()()(B P A P B P A P B A P B A P B A P +=++=+ (1-7) 由于)()(B A P B A P =,有 ),()()()(B P AB B A P AB B A P A P =+=+=于是由式(1-6),式(1-7)有,))((21))(()(222A P A P A P +=- 即 ⋅===-21)(,21)(,41))(()(2B P A P A P A P 方法2 因为A 与B 相互独立,所以A 与B 也相互独立.由于)()(B A P B A P =,有P (A )=P (B ),于是,41))(1)(())(1)(()()()(=-=-==A P A P B P A P B P A P B A P 因此 ⋅==21)()(B P A P 问题 比较上述两种方法,哪个更简单一些,还有没有其他方法?25.设随机事件A 与B 的和事件的概率为0.6,且积事件B A ⋅的概率为0.3,则事件A 的概率P (A )=( ).分析 因为B A B A +=⋅,所以.4.06.01)(1)()(=-=+-=+=⋅B A P B A P B A P又因为,)(B A B A B B A ΩA A +=+==故 .7.04.03.0)()(=+=+=B A B A P A P26.甲、乙两封信随机地投入标号是1,2,3,4,5的五个信筒内,则第3号信筒恰好只投入一封信的概率为( ).分析 这是一个古典概型问题,有1422,5C m n ⨯==,因此P (A )=0.32.问题 (1)如何将信投入信箱转化为在信封上写号问题? (2)本题是否可用(有放回)摸球问题来解决?27.袋中有10个球,其中有4个白球、6个红球.从中任取3个,求这3个球中至少有1个是白球的概率.分析 这一个古典概型问题,样本空间中样本点的总数为⋅=310C n方法1 设A ={至少有1个白球},有⋅=++=65)(310063416242614C C C C C C C A P 方法2 设B ={取出的全是红球},有⋅-=-=3104361)(1)(C CC B P A P方法3 先从4个白球中任取一个,然后再从剩下的9个球(有红球又有白球)中任取2个,因此⋅=3102914)(C CC A P问题 上述三种方法都对吗,为什么?28.一批产品共100件,对产品进行不放回地抽样检查,整批产品不合格的条件是:在被检查的5件产品中至少有一件是废品.如果在该批产品中有5件是废品,求该批产品被拒绝接收的概率.解 设A i ={被检查的第i 件产品是废品},i =1,2,3,4,5;B ={该批产品被拒绝接收}.方法1 由于,54321A A A A A B ++++=于是1234512345()1()1()P B P A A A A A P A A A A A =-++++=-1213124123512341()(|)(|)(|)(|),P A P A A P A A A P A A A A P A A A A A =-而 ,9893)|(,9994)|(,10095)(213121===A A A P A A P A P ⋅==9691)|(,9792)|(432153214A A A A A P A A A A P因此 .23.09691979298939994100951)(=⨯⨯⨯⨯-=B P方法2 .23.01)(1)(5100595=-=-=C C B P B P29.由以往记录的数据分析,某船只在不同情况下运输某种物品,损坏2%,10%,90%的概率分别为0.8,0.15和0.05.现在从中随机地取三件,发现这三件全是好的,试分析这批物品的损坏率为多少?分析 设B ={三件都是好的},A 1={损坏率为2%}, A 2={损坏率为10%},A 3={损坏率为90%},则A 1,A 2,A 3两两互斥,且A 1∪A 2∪A 3=Ω.已知P (A 1)=0.8,P (A 2)=0.15,P (A 3)=0.05,且3198.0)|(=A B P , 3290.0)|(=A B P , 3310.0)|(=A B P .由全概率公式可知)()|()(31i i i A P A B P B P ∑==05.01.015.090.08.098.0333⨯+⨯+⨯= 8624.0≈.由贝叶斯公式,这批物品的损坏率为2%,10%,90%的概率分别是,8731.08624.08.098.0)()()|()|(3111≈⨯==B P A P A B P B A P,1268.08624.015.090.0)()()|()|(3222≈⨯==B P A P A B P B A P.0001.08624.005.01.0)()()|()|(3333≈⨯==B P A P A B P B A P由于P (A 1|B )比P (A 2|B ),P (A 3|B )大得多,因此可以认为这批货物的损坏率为2%.30.掷两枚匀称的骰子,X ={点数之和},求X 的分布. 答案是:⋅⎥⎦⎤⎢⎣⎡36/136/236/11232~ X 31.设⎪⎩⎪⎨⎧≤>+=,0,0,0,11)(2x x x x f f (x )是否为分布密度函数?如何改造?解 由于,2πd )(=⎰+∞∞-x x f 所以f (x )不是分布密度函数.令⎪⎩⎪⎨⎧≤>+⋅==.0,0,0,11π2)(π2)(2x x x x f x p则p (x )是分布密度函数.32.设随机变量X 的分布密度函数为⎩⎨⎧≤≤=.,0,10,)(其他x Cx x p求(Ⅰ)常数C ;(Ⅱ)P (0.3≤X ≤0.7);(Ⅲ)P (-0.5≤X <0.5).解 (Ⅰ)由p (x )的性质,有,21|2d d )(110210C x C x Cx x x p =⋅===⎰⎰∞+∞-所以C =2.(Ⅱ).4.0|d 2)7.03.0(7.03.027.03.0===≤≤⎰x x x X P(Ⅲ).25.0|d 2d 0)5.05.0(5.0025.0005.0==+=≤≤-⎰⎰-x x x x X P问题 若连续型随机变量X 的分布密度函数p (x )为不可求积函数,如何计算P (X ∈D )呢?33.从一批有13个正品和2个次品的产品中任意取3个,求抽得的次品数X 的分布列和分布函数,并求⋅≤<)2521(X P 解 先求X 的分布列,X 的所有可能取值为0,1,2,由古典概型的概率计算公式知3122113213213323151********(0),(1),(2)353535C C C C C P X P X P X C C C =========⋅ 故X 的分布列为四个区间.当x <0时,F (x )=P (X ≤x )=0.当10<≤x 时,⋅===3522)0()(X P x F 当12x ≤<时,⋅==+==3534)1()0()(X P X P x F 当x ≥2时,F (x )=P (X =0)+P (X =1)+P (X =2)=1. 综上有X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.2,1,21,3534,10,3522,0,0)(x x x x x F由分布函数可求出⋅=-=-=≤<351335221)21()25()2521(F F X P 34.设连续型随机变量X 的分布函数⎪⎩⎪⎨⎧≤>+=-,0,0,0,e )(22x x B A x F x求系数A 和B .解 由lim ()1n F x →+∞=,知A =1.再由F (x )在x =0处的连续性可知,)e(lim )(lim 02200B A B A x F x x x +=+==-+→→故 B =-A =-1.35.设连续型随机变量X 的分布函数为()1xAF x e-=+, +∞<<∞-x , 求(Ⅰ)常数A . (Ⅱ)X 的分布密度函数p (x ). (Ⅲ)P {X ≤0}.答案是:(Ⅰ)A =1.(Ⅱ)2)e 1(e )(x xx p --+= +∞<<∞-x . (Ⅲ)⋅==<21)0()0(F X P 问题 (1)离散型随机变量的概率分布与分布函数之间有什么关系?(2)连续型随机变量的概率分布密度与分布函数之间有什么关系? (3)如何利用分布函数计算P (X ∈D )?其中D =(a ,b ]. (4)如何确定分布函数中的待定常数?36.设X 服从指数分布,则Y =min{X ,2}的分布函数( ).(A)连续. (B)至少有两个间断点. (C)阶梯函数. (D)恰有一个间断点. 答案是:D .分析 方法1 由题设可知X ~E (λ),有⎩⎨⎧≤>=-.0,0,0,e )(x x x p x λλ 令X 1=X ,X 2=2,则⎩⎨⎧≥<=⎩⎨⎧>-≤=-.2,1,2,0)(;0,e 1,0,0)(21x x x F x x x F xλ于是,Y =min{X ,2}=min{X 1,X 2}的分布函数为))(1))((1(1)(21y F y F y F ---=○一⎪⎩⎪⎨⎧≥<<-≤=-.2,1,20,e 1,0,0y y y y λ 可见它只有一个间断点y =2.方法2 从图2-1中,容易看出它只有一个间断点y =2.图2-137.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,用X 表示取出的3只球中的最小号码数,求X 的分布函数.解 X 的可能取值为3,2,1.,106/)1(,103/)2(,101/)3(352435233522=========C C X P C C X P C C X P 即X 的分布阵为⎥⎥⎦⎤⎢⎢⎣⎡101103106321, 从而X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.3,1,32,109,21,106,1,0)(x x x x x F38.设X ~U (a ,b ),即⎪⎩⎪⎨⎧≤≤-=.,0,,1)(其他b x a a b x p则⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 其图形是一条连续的曲线,见图2-3.图2-339.设X ~N (0,1),求P (X <2.35),P (X <-1.25)以及P (|X |<1.55). 解 P (X <2.35)=Ф(2.35)查表0.9906.P (X <-1.25)=Ф(-1.25)=1-Ф(1.25)=1-0.8944=0.1056.P (|X |<1.55)=P (-1.55<X <1.55)=Ф(1.55)-Ф(-1.55)=2Ф(1.55)-1=2×0.9394-1=0.8788.40.设X ~N (1,22),求P (0<X ≤5). 解 这里μ=1,σ=2,β=5,α=0,有.5.0,2--=-σμασμβ 于是P (0<X ≤5)=Ф(2)-Ф(-0.5)=Ф(2)-[1-Ф(0.5)]=Ф(2)+Ф(0.5)-1=0.9772+0.6915-1=0.6687.41.若X ~N (μ,σ2),求(Ⅰ)P {μ-σ<X <μ+σ}; (Ⅱ)P {μ-2σ<X <μ+2σ}; (Ⅲ)P {μ-3σ<X <μ+3σ}. 解 (Ⅰ)由于X ~N (μ,σ2),故)()(}{σμσμσμσμσμσμ----+=+<<-ΦΦX P =Ф(1)-Ф(-1)=2Ф(1)-1=0.6826≈0.68.同理有:(Ⅱ) P {μ-2σ<X <μ+2σ}=2Ф(2)-1=0.9545≈0.95. (Ⅲ) P {μ-3σ<X <μ+3σ}=2Ф(3)-1=0.9973≈0.99.42.设X ~N (2,32),求:(Ⅰ)P {-1≤X ≤8};(Ⅱ)P {X ≥-4};(Ⅲ)P {X ≤11}. 解 由于X ~N (2,32),即μ=2,σ=3,因此 (Ⅰ)P {-1≤X ≤8}=P {2-3≤X ≤2+2×3}=P {2-3≤X <2}+P {2≤X ≤2+2×3}}322322{21}3232{21⨯+<≤⨯-++<≤-=X P X P.815.0295.0268.0=+≈(Ⅱ)P {X ≥-4}=P {-4≤X <+∞}=P {2-2×3≤X ≤2}+P {X ≥2}.975.021295.0=+≈(Ⅲ)P {X ≤11}=P {-∞<X ≤11}=P {-∞<X ≤2}+P {2≤X ≤2+3×3}.995.0299.021=+≈43.设X ~N (3,σ2),并且P (3≤X ≤7)=0.4,求P (X ≤-1).答案是:0.1. 分析(略)44.设某机器生产的螺栓的长度(cm)服从参数μ=10.05,σ=0.06的正态分布,规定长度在范围(10.05±0.12)cm 内为合格品,求螺栓的次品率.答案是:0.0455(或0.05). 分析(略).求Y =X +1的概率分布.解 由y i =2i x +1(i =1,2,…,5)及X 的分布,得到把f (x i )=2i x +1相同的值合并起来,并把相应的概率相加,便得到Y 的分布,即,21)2()2()5(==+-===X P X P Y P ,103)1()1()2(==+-===X P X P Y P ⋅====51)0()1(X P Y P 所以46.设X ~U (0,1),并且Y =X ,求Y 的分布密度p 2(y ). 解 X 的分布密度函数为⎩⎨⎧∈=.,0],1,0[,1)(1其他x x p 对于函数y =x 2,当x ∈[0,1]时,α=min{x 2}=0,β=max{x 2}=1,于是⎪⎩⎪⎨⎧≥<<≤=.1,1,10*,,0,0)(y y y y F 当0<y <1时)()()()(2y X P y X P y Y P y F ≤=≤=≤=.d 1d 0d )(01y x x x x p yy=+==⎰⎰⎰∞-∞-由 ,21)()()(2yy y F y p ='='=故随机变量Y 的分布密度函数为⎪⎩⎪⎨⎧<<=.,0,10,21)(2其他y yy p47.设随机变量)2π,2π(~-U X ,求随机变量Y =sin X 的分布密度p 2(y ). 解 X 的分布密度函数为⎪⎩⎪⎨⎧-∈=.0,],2π,2π[,π1)(1其他x x p因为y =sin x 在)2π,2π(-内单调增加,所以存在反函数x =arc sin y ,其导数为 ⋅-='211yx y利用公式求出Y 的分布密度函数,首先计算,1}{sin min 2π2π-==≤≤-x x α ππ22max {sin }1,x x β-≤≤== 于是⎪⎩⎪⎨⎧<<-'⋅=-.,0,11|,|))(()(112其他y x y f p y p y⎪⎩⎪⎨⎧<<--=.,0,11,11.π12其他y y 48.X ~U (0,π),Y =sin X ,求p 2(y ).解 X 的分布密度函数为⎪⎩⎪⎨⎧∈=.,0],π,0[,π1)(1其他x x p0π0πmin{sin }0,max{sin } 1.x x x x αβ≤≤≤≤====当0<y <1时,F (y )=P (Y ≤y )=P (sin X ≤y )=P (0≤X ≤arc sin y )+P (π-arc sin y ≤X ≤π),sin arc π2y =所以⎪⎩⎪⎨⎧≥<<≤=1,,11,0,sin arc π20,,0)(y y y y y F 即⎪⎩⎪⎨⎧<<-=.,0,10,1π2)(22其他y yy p 49.(1).,,2,1,}{N k NAk X P ⋅⋅⋅=== (2) ,!}{k B k X P kλ⋅==k =0,1,2,…,λ>0且λ为常数,试确定常数A 和B .解 (1)由分布律的性质可知,)(111A N NAN A k X P Nk N k =⋅====∑∑== 因此,A =1.于是,X 的分布律为).,,2,1(1)(N k Nk X P === 称这样的分布为离散型的均匀分布.(2)由分布律的性质,有,e !!10λλλ⋅===∑∑∞=∞=B k B k Bkk kk解得B =e -λ.于是.e !)(λλ-==k k X P k这表明X 服从参数为λ的泊松分布.50.设平面区域D 是由x =1,y =0,y =x 所围成(如图2-5),今向D 内随机地投入10个点,求这10个点中至少有2个点落在由曲线y =x 2与y =x 所围成的区域D 1内的概率.图2-5分析 分两步进行.第一步:先计算任投一点落入D 1的概率.根据几何概型,有11()123()1()32L A P A L Ω-===⋅第二步:设X ={落入D 1内的点数},有),31,10(~B X 于是P (X ≥2)=1-P (X =0)-P (X =1).)32)(31()32(1911010C --=51.设随机变量X 具有连续的分布函数F 1(x ),求Y =F 1(X )的分布函数F 2(y ).(或证明题:设X 的分布函数F 1(x )是连续函数,证明随机变量Y =F 1(X )在区间(0,1)上服从均匀分布.)分析 由于F 1(x )为X 的连续分布函数,可知α=min{F 1(x )}=F 1(-∞)=0, β=max{F 1(x )}=F 1(+∞)=1. 因为F 1(x )是单调递增函数,所以11-F (y )存在(单调函数必有单值反函数存在),因而有⎪⎩⎪⎨⎧≥<≤<=≤.1,1,10*,,0,0)()(def2y y y y Y P y F 当0≤y <1时,*=F 2(y )=P (F 1(X )≤y )=P (X ≤11-F (y )) =F 1(11-F (y ))=y .代入F 2(y )表达式有⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F 因此,Y 的分布密度函数为⎩⎨⎧≤≤=.,0,10,1)(2其他y y p即 ).1,0(~U Y52.设X ~E (2),证明Y =1-e -2X~U (0,1)分析 由于X ~E (2),因此⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x p x 当x =0时,y =0=α;当x →+∞时,y →1=β:因为y =1-e -2x单调增加,所以其反函数为)1ln(21y x --=,有 .e 21112111212x yy y x =-=---='方法1(公式法)⎩⎨⎧≤≤'=--.,0,10|,))((|))(()(1112其他y y f y f p y p⎪⎩⎪⎨⎧≤≤⋅=-.,0,10,e 21e 222其他y xx ⎩⎨⎧≤≤=.,0,10,1其他y 即Y ~U (0,1).方法2(定义法) 由分布函数的定义⎪⎩⎪⎨⎧>≤≤<=.1,1,10*,,0,0)(2y y y y F 当0≤y ≤1时,有))1ln(21()e 1()()(22y X P y P y Y P y F X --≤=≤-=≤=-12(ln(1))211(ln(1))1e 2---=--=-y F y,)1(1y y =--=因此⎪⎩⎪⎨⎧>≤≤<=,1,1,10,,0,0)(y y y y y F即Y ~U (0,1).53.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈=,,0],8,1[,31)(32其他x x x fF (x )是X 的分布函数.求随机变量Y =F (X )的分布函数.解 易见,当x <1时,F (x )=0;当x >8时,F (x )=1. 对于x ∈[1,8],有.1d 31)(1332-==⎰xx t t x F设G (y )是随机变量Y =F (X )的分布函数.显然,当y ≤0时,G (y )=0;当y ≥1时,G (y )=1.对于y ∈(0,1),有}1{})({}{)(3y X P y X F P y Y P y G ≤-=≤=≤=,])1[(})1({33y y F y X P =+=+≤=于是,Y =F (X )的分布函数为⎪⎩⎪⎨⎧≥<<≤=.1,1,10,,0,0)(y y y y y G即Y ~U (0,1).54.设随机变量X ~U (0,5),求方程4x 2+4Xx +X +2=0有实根的概率. 分析 因为X 在(0,5)上服从均匀分布,故X 的分布密度为⎪⎩⎪⎨⎧≤≤=.,0,50,51)(其他x x p方程4x 2+4Xx +X +2=0有实根的条件是∆=16X 2-16(X +2)≥0,即 (X +1)(X -2)≥0.解 得X ≤-1或X ≥2.舍去X ≤-1,最后得2≤X ≤5.因此,所求概率为⋅==≤≤⎰53d 51)52(52x X P 问题 本题可否使用其他方法?55. 设随机变量X 的绝对值不大于1,即|X |≤1,且===-=)1(,81)1(X P X P41,在事件{-1<X <1}出现的条件下,X 在(-1,1)内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数F (x )及P (X <0)(即X 取负值的概率).分析 (1)由题设,我们有x <-1时,F (x )=0;x ≥1时,F (x )=1.以下考虑-1<x <1时的情形.由于1=P (|X |≤1)=P (X =-1)+P (-1<X <1)+P (X =1), 故 ⋅=--=<<-8541811)11(X P 另据条件,有),1(21)11|1(+=<<-≤<-x X x X P 于是,对于-1<x <1,有(-1,x ]⊂(-1,1),因此P (-1<X ≤x )=P (-1<X ≤x ,-1<X <1)=P (-1<X <1)P (-1<X ≤x |-1<X <1)),1(165)1(2185+=+⨯=x x ⋅+=≤<-+-≤=1675)1()1()(x x X P X P x F综上,有⎪⎩⎪⎨⎧≥<≤-+-<=.1,1,11,16/)75(,1,0)(x x x x x F (2)P (X <0)=P (X ≤0)-P (X =0)=F (0)=7/16.56.射击用的靶子是一个半径为R 的圆盘,已知每次射击都能击中靶子,并且击中靶子上任一以靶心为圆心的圆盘的概率与该盘的面积成正比.设随机变量X 表示击中点与靶心的距离,求X 的分布密度函数.分析 根据分布函数的定义及几何概型,由图2-6有图2-6),0(ππ)()(2222R x R x R x x X P x F ≤≤==≤=于是 22()(),xp x F x R='=因此⎪⎩⎪⎨⎧≤≤=.,0,0,2)(2其他R x R xx p 说明 (1)注意其分布函数应为⎪⎪⎩⎪⎪⎨⎧>≤≤<=.,1,0,,0,0)(22R x R x R x x x F 57.点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布,求(1)落点的横坐标的概率分布密度函数p 1(x ).(2)落点与点(-R ,0)的弦长的概率分布密度函数p 2(y ). (提示:落点的极角θ均匀地分布在(0,2π)上)分析 设落点的极角为Θ,落点P 的横坐标为X ,落点与(-R ,0)点的弦长为Y ,则由题设可知Θ~U (0,2π),即()1,02π,2π0,.p θθΘ⎧≤<⎪=⎨⎪⎩其他 由图2-7不难看出⋅==2cos2,cos ΘR Y ΘR X图2-7(1)定义法试求点P 的横坐标X =R cos Θ的密度函数.因为x =R cos θ(0≤θ<2π)不是单调函数,由图2-8得到,使R cos θ≤x 成立的θ应满足⋅-≤≤Rx R x cos arc π2cosarc θ图2-8于是,对-R ≤x ≤R ,有θθθd )()cos ()()(cos ΘxR X p x ΘR P x X P x F ⎰≤=≤=≤=⋅-==⎰-Rx Rx Rx os arcc π11d 2π1arccosπ2arccosθ 对x <-R ,有.0)()cos ()()(=∅=≤=≤=P x ΘR P x X P x F X对x >R ,有,1)()cos ()()(==≤=≤=ΩP x ΘR P x X P x F X即⎪⎩⎪⎨⎧≥<<---≤=.,1,,cos arc π11,,0)(R x R x R R xR x x F X 所以X 的密度函数为⎪⎩⎪⎨⎧<<--='=.,0,,π1)()(22其他R x R x R x F x p X X(2)公式法设θ∈(-π,π).由,2cos 2θR y =有当0≤θ≤π时,单调递减,⋅--='=2242,2cosarc 2y R R y y θθ 当-π≤θ≤0时,单调递增,2arccos,2y y R θθ=-=' 可见p Y (y )=P θ(f -1(y ))|y y f'-))((1|⋅-=--+-=22222241π2|42|2π1422π1yR y R y R 因此⎪⎩⎪⎨⎧<≤-=.,0,20,4π2)(22其他R y y R y p Y58.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=.,0],6,3[,92],1,0[,31)(其他x x x p若使得32)(=≥k X P ,则k 的取值范围是________. 分析 由图2-9可知图2-9,32)36(92)63(=-⨯=≤≤X P 因此k ∈[1,3]时,⋅=≤≤=≥32)63()(X P k X P 59.设随机变量X 的分布函数为F (x ),则Y =-2ln F (X )的概率分布密度函数P Y (y )=______.分析 用定义法求出Y 的分布,首先求出Y 的分布函数. 当y >0时,有F (y )=P (Y ≤y )=P (-2ln F (X )≤y ))e )((2y X F P -≥= ))e ((21y F X P --≥= ))e ((121y F F ---=.e 12y--=当y ≤0时,F (y )=0.因此 ⎪⎩⎪⎨⎧≤>-=-.0,0,0,e 1)(2y y y F y 再求出Y 的分布密度函数⎪⎩⎪⎨⎧≤>='=-.0,0,0,e 21)()(2y y y F y p yY60.设)2π,2π(~-U X ,并且y =tan x ,求Y 的分布密度函数p (y ). 分析 由)2π,2π(~-U X ,有⎪⎩⎪⎨⎧-∈=.,0],2π,2π[,π1)(1其他x x p 下面利用公式法求出Y =tan X 的分布,为此先求出:α=-∞,β=+∞.,tan arc )(1y y f x ==-⋅+='='-2111))((yy f x y y 于是有121()(())|(1'())|y p y p f y f y --=⋅').(11.π12+∞<<-∞+=y y61.设二维随机向量(X ,Y )共有6个取正概率的点,它们是:(1,-1),(2,-1),(2,0)(2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布及边缘分布为62.设(X ,Y )的联合分布密度为⎩⎨⎧≥≥=+-.,0,0,0,e ),()43(其他y x C y x p y x试求:(1)常数C . (2)P {0<X <1,0<Y <2}. (3)X 与Y 的边缘分布密度p 1(x ),p 2(y ).解 (1)由p (x ,y )的性质,有y x C y x y x p y x d d e d d ),(1)43(0+-+∞+∞+∞∞-+∞∞-⎰⎰⎰⎰==3401e d e d ,12x y C x y C +∞+∞--=⋅⋅=⎰⎰ 即C =12.(2)令D ={(x ,y )|0<x <1,0<y <2},有y x y x p D Y X P Y X P Dd d ),(}),{(}20,10{⎰⎰=∈=<<<<).e 1)(e 1(d e d e 12d d e 128342310)43(----+---===⎰⎰⎰⎰y x y x y x y x D(3)先求X 的边缘分布:①当x <0时,p (x ,y )=0,于是10()(,)d 0.p x p x y y +∞==⎰②当x ≥0时,只有y ≥0时,p (x ,y )=12e-(3x +4y ),于是⎰+∞∞--+-==.e 3d e 12)(3)43(1x y x y x p因此⎩⎨⎧<≥=-.0,0,0,e 3)(31x x x p x 同理⎩⎨⎧<≥=-.0,0,0,e 4)(42y y y p y 63.设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中D ={(x ,y ):|x +y |≤1,|x -y |≤1},求X 的边缘密度p X (x ).解 区域D 实际上是以(-1,0),(0,1),(1,0),(0,-1)为顶点的正方形区域(见图3-9),其边长为2,面积S D =2,因此(X ,Y )的联合密度是图3-9⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 11111d ,10,21()(,)d d ,01,20,.x x x X x y x p x p x y y y x +--+∞--∞-⎧-≤≤⎪⎪⎪==<≤⎨⎪⎪⎪⎩⎰⎰⎰其他即 1,10,()1,01,0,.X x x p x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他 64.设二维随机向量(X ,Y )的联合分布函数为⎩⎨⎧≥≥+--=----.,0,0,0,333),(其他y x C y x F y x y x求(1)常数C ;(2)分布密度p (x ,y ).解 (1)由性质F (+∞,+∞)=1,得到C =1.(2)由公式:yx Fy x p ∂∂∂=2),(有3ln 33ln 3,x x y Fx--∂=-∂ .)3(ln 3)3ln 33ln 3(22y x y x x yyx F -----=-∂∂=∂∂∂故 ⎩⎨⎧≥≥=--.,0,0,0,)3(ln 3),(2其他y x y x p y x65.设D 2是x =0,y =0,y =2x +1围成的区域,ξ=(X ,Y )在D 2上均匀分布,求F (x ,y ).答案是:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅∈∈-∈+∈-+∈=54232221),(,1,),(,2,),(,)12(,),(,)12(2,),(,0),(D y x D y x y y D y x x D y x y x y D y x y x F 其中区域D 1,D 2,D 3,D 4,D 5如图3-10所示.图3-1066.求 (1)X 与Y 的边缘分布.(2)X 关于Y 取值y 1=0.4的条件分布. (3)Y 关于X 取值x 2=5的条件分布. 解(1)由公式),3,2,1()(====∑⋅i p x X p p ijji i),2,1()(====⋅j p y Y p p ijij j(2)计算下面各条件概率:,8380.030.0)(),()|(,16380.015.0)(),()|(1121211111======y p y x p y x p y p y x p y x p⋅===16780.035.0)(),()|(11313y p y x p y x p因此,X 关于Y(3)同样方法求出Y 关于X 取值x =5的条件分布为67.设二维随机向量(X ,Y )的联合分布密度为.e π1),()52(2122y xy x y x p ++-=求(1)X 与Y 的边缘分布密度; (2)条件分布密度.解 (1)由公式y y y x p x p y xy x d e π1d ),()()52(21122++-∞+∞-∞+∞-⎰⎰==)10125(d e 52e e π1222)10125(102x y x y x x +=⎰∞+∞-+-- ,e 5π2πe 52π1224.04.0x x --=⋅=这里应用了.πd e2=-+∞∞-⎰u u 同理,可求得Y 的边缘分布密度为.e π2)(222y y p -=(2)在给定Y =y 的条件下,X 的条件分布密度为,e 2π1)(),()|(2)(5.02y x y p y x p y x p +-==而在给定X =x 的条件下,Y 的条件分布密度为.e 2π5)(),()|(2)5(1.01y x x p y x p x y p +-==69.设随机变量X 与Y 相互独立,下表列出了二维随机向量(X ,Y )联合分布律及关于X和关于Y 的边缘分布律中的部分数值,试将其余数值填入下表中的空白处.分析 应注意到X 与Y 相互独立. 解 由于P (X =x 1,Y =y 1)=P (Y =y 1)-P (X =x 2,Y =y 1),2418161=-=考虑到X 与Y 相互独立,有P (X =x 1)P (Y =y 1)=P (X =x 1,Y =y 1),⋅===4161241}{1x X P所以同理,可以导出其他数值.故XY 的联合分布律为70.设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立. 证 X 的分布函数为⎩⎨⎧≥<=.0,1,0,0)(1时当时当x x x F 设Y 的分布函数为F 2(y ),(X ,Y )的分布函数为F (x ,y ),则当x <0时,对任意的y 有F (x ,y )=P {X ≤x ,Y ≤y }=P ({X ≤x }∩{Y ≤y })=P (∅∩{Y ≤y })=P (∅)=0=F 1(x )F 2(y ).当x ≥0时,对任意的y 有F (x ,y )=P ({X ≤x }∩{Y ≤y })=P {Y ≤y }=F 2(y )=F 1(x )F 2(y ).因此,对任意的x ,y 均有F (x ,y )=F 1(x )F 2(y ),即X 与Y 相互独立.71.设(X ,Y )的联合分布密度为⎪⎩⎪⎨⎧<<+=.,0,1||,1||,41),(其他y x xy y x p试证明:(1)X 与Y 是相依的. (2)X 2与Y 2是相互独立的.证 (1)先求X 的边缘分布密度.当|x |<1时,有⋅=+==⎰⎰-+∞∞-21d 41d ),()(111y xy y y x p x p当|x |≥1时,p 1(x )=0,因此⎪⎩⎪⎨⎧<=.,0,1||,21)(1其他x x p 同理⎪⎩⎪⎨⎧<=.,0,1||,21)(2其他y y p 可见,当|x |<1,|y |<1时p (x ,y )≠p 1(x )·p 2(y ),所以X 与Y 不独立,即是相依的.(2)令ξ=X 2,η=Y 2,其分布函数分别为F 1(x )和F 2(y ),于是当0≤x <1时,有)()()(21x X x P x X P x F ≤≤-=≤=⎰-==x x x x ,d 21因此⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(1x x x x x F同理可求得Y 2的分布函数⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F如图3-11所示,将Oxy 平面分成5块区域来讨论,并将(ξ,η)的分布函数记为F 3(x ,y ),则图3-11①当x <0或y <0时,F 3(x ,y )=0. ②当0≤x <1,y ≥1时,.)(),(),(2223x x X P y Y x X P y x F =≤=≤≤=③当0≤y <1,x ≥1时,同理.),(3y y x F =④当0≤x <1,0≤y <1时, F 3(x ,y )=P (X 2≤x ,Y 2≤y )),(y Y y x X x P ≤≤-≤≤-=1d 4sxs t +==⑤当x ≥1,y ≥1时,.1d d 41),(),(1111223=+=≤≤=⎰⎰--y x xyy Y x X P y x F综合起来得到⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤<≤≥<≤≥<≤<<=.1,1,1,10,10,,1,10,,1,10,,00,0),(3y x y x xy x y y y x x y x y x F 或不难验证,对于所有x ,y 都有F 3(x ,y )=F 1(x )·F 2(y ),所以ξ与η相互独立,即X 2与Y 2相互独立.72. 设(X ,Y )的联合分布为求(Ⅰ)Z 1=X +Y ;23解 (Ⅰ)Z 1=X +Y 的正概率点为0,1,2,3.因为。

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。

下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

概率则是衡量随机事件发生可能性大小的数值。

例 1:抛掷一枚均匀的硬币,求正面朝上的概率。

解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。

知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。

例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。

知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。

二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。

如果一个人的检测结果为阳性,求他真正患病的概率。

解:设 A 表示患病,B 表示检测结果为阳性。

则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。

根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。

再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。

知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。

三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。

(完整版)概率论与数理统计知识点总结

(完整版)概率论与数理统计知识点总结

p k q nk
其中 q 1 p,0 p 1, k 0,1,2,, n ,
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) .
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0—1)分布,
所以(0-1)分布是二项分布的特例。
泊 松 设随机变量 X 的分布律为
1
(完整版)概率论与数理统计知识点总结
A—B,也可表示为 A—AB 或者 AB ,它表示 A 发生而 B 不发生的事
件.
A、B 同时发生:A B,或者 AB。A B=Ø ,则表示 A 与 B 不可能 同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是
互不相容的.
—A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A .它表 示 A 不发生的事件。互斥未必对立。
P(A)= (1) (2 ) (m ) = P(1) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(6)几 若随机试验的结果为无限不可数并且每个结果出现的可能性均
1
(完整版)概率论与数理统计知识点总结
何概型 匀,同时样本空间中的每一个基本事件可以使用一个有界区域 来描述,则称此随机试验为几何概型。对任一事件 A,
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) .
对于离散型随机变量, F(x) pk ; xk x x
对于连续型随机变量, F(x) f (x)dx .
概型 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用

考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析

考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析

考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析概率论与数理统计是考研数学一大纲中的重要部分,也是考生们在备考过程中常常遇到的难点之一。

本文将重点解析概率论与数理统计的典型题型,帮助考生更好地掌握这一部分知识。

一、概率论1. 概率与事件概率论的基础是概率与事件的概念。

在此部分,考生需要掌握事件的基本概念、事件的运算、概率的定义、概率的性质等内容。

典型题型包括事件的互斥与独立性、事件的运算法则等。

考生在解答此类题目时应注意运用概率的基本性质,并进行合理的计算。

2. 随机变量及其分布律随机变量是概率论与数理统计的重要概念之一。

考生需要掌握随机变量的定义、离散随机变量与连续随机变量的概念、分布律的性质等知识点。

典型题型包括计算随机变量的期望、方差等。

考生在解答此类题目时应注意根据定义和性质进行计算,并合理运用公式。

3. 数理期望与方差数理期望与方差是随机变量的重要特征之一。

考生需要掌握数理期望与方差的概念、性质、计算方法等知识点。

典型题型包括利用数理期望与方差计算随机变量的相关性和条件概率等。

考生在解答此类题目时应注意计算过程的合理性,并运用数理期望与方差的性质进行推理。

4. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要理论。

考生需要掌握大数定律与中心极限定理的概念、条件以及应用方法。

典型题型包括利用大数定律和中心极限定理求解随机变量的极限分布等。

考生在解答此类题目时应注意运用大数定律和中心极限定理的条件,并进行合理的推导。

二、数理统计1. 参数估计参数估计是数理统计的重要内容之一。

考生需要掌握点估计和区间估计的概念、性质、计算方法等知识点。

典型题型包括利用最大似然估计和矩估计求解参数的估计量等。

考生在解答此类题目时应注意理解估计的概念和方法,并进行合理的计算与推导。

2. 假设检验假设检验是数理统计中的重要内容之一。

考生需要掌握假设检验的基本原理、步骤、常见假设检验方法等知识点。

概率论与数理统计考试知识点汇总及疑难解析

概率论与数理统计考试知识点汇总及疑难解析

疑难解析系统(概率论与数理统计中的疑难问题)目录第一章事件与概率………………………………………………3-4第二章条件概率与独立性………………………………………5-6第三章随机变量及其分布………………………………………7-8第四章多维随机变量及其分布…………………………………9-10第五章数字特征…………………………………………………11-14第六章数理统计的基本概念……………………………………15-17第七章参数估计…………………………………………………18-21第八章假设检验…………………………………………………22-23第一章 概率论基本概念1.什么是统计规律性?什么是随机现象?答 在一定条件下发生,其结果是多样的,因而在现象发生前不能预知确切结果的不确定现象,其结果在大量重复试验中呈现出一种规律性. 由于这种规律是根据统计数据分析出来的,因而称为统计规律性。

在一次试验或观察中结果不能预先确定,而在大量重复试验中结果具有统计规律性的现象称为随机现象. 随机现象是概率论与数理统计的主要研究对象.2.如何理解互逆事件与互斥事件?答 如果两个事件A 与B 必有一个发生,且至多有一个发生,则、A B 为互逆事件. B A =.如果两个事件A 与B 不能同时发生,则、A B 为互斥事件.如考试及格与不及格是互逆也是互斥的,但考试70分和80分互斥却不互逆. 区别互逆与互斥的关键是,当样本空间只有两个事件时,两事件才可能互逆. 而互斥适用于多个事件的情形. 互斥事件的特征是,在一次试验中两者可以都不发生,而互逆事件必发生一个且至多发生一个.3.如何用已知事件来表达与其有关的其它事件?答 首先要了解所讨论试验中事件的构成,所需表达事件与已知事件的关系,然后运用这些关系与运算法则将事件表达出来.例如,设S 为事件05x ≤≤,A 为事件12x ≤≤,B 为事件02x ≤≤,则 02x ≤≤为事件B 或A B U ,12x ≤≤为事件A 或BA ,25x <≤为事件S B -或B ,01x ≤<为B A -.4.样本空间与必然事件之间有什么关系?答 样本空间是随机试验E 的所有可能结果的集合,而必然事件是指随机试验中一定会出现的结果. 虽然在一次试验中只有样本空间的一个元素发生,但在把样本空间视作一个整体时,我们说它在每次试验中都发生了. 因此,可以说样本空间是必然事件.5.在什么情况下,随机事件A 的频率可以作为它的概率的近似值? 答 随机事件A 的频率()n f A 反映事件A 在多次重复试验中发生的频繁程度. 当n 增大时,频率在概率()P A 附近摆动. 因此,每一个从独立重复试验中测得的频率,都可以作为概率()P A 的近似值. 而且,一般n 越大,近似程度越好.事实上,当n 增大时,频率大量集中于包含()P A 的一个小区间. 任选区间中一值作为概率的近似值,称为统计概率. 在解题时,当n 较大时,可取统计概率为()/A P A n n ≈.6.概率是否可以看做频率的极限?答 这样理解是不恰当的. 因为如上题所述,当n →∞时,()n f A 在()P A 附近摆动,与高等数学中极限的N ε-概念是不同的. 由于概率是随机现象的可能性的赋值,对于任给的0ε>,存在偶然的因素,可能找不到()N ε,从而得不到|()()|n f A P A ε-<.7.怎样理解古典概型的等可能假设?答 等可能性是古典概型的两大假设之一,有了这两个假设,给直接计算概率带来了很大的方便. 但在事实上,所讨论问题是否符合等可能假设,一般不是通过实际验证,而往往是根据人们长期形成的“对称性经验”作出的. 例如,骰子是正六面形,当质量均匀分布时,投掷一次,每面朝上的可能性都相等;装在袋中的小球,颜色可以不同,只要大小和形状相同,摸出其中任一个的可能性都相等. 因此,等可能假设不是人为的,而是人们根据对事物的认识——对称性特征而确认的.8.概率为0的事件是否为不可能事件?概率为1的事件是否为必然事件?答 有关概念:不可能事件φ的概率为0,即()0P φ=,但其逆不真;同样,必然事件Ω的概率()1P Ω=,但其逆也不真。

概率论与数理统计 老师总结经典习题总汇

概率论与数理统计 老师总结经典习题总汇
设事件B:“第k+1个取出的球是白球”,
由于第k+1个球是白球,可先从m个白球中取一个留 1 Cm m种保留下来的取法, 下来作为第k+1个球,一共有 其余k个球可以是余下的m+n-1个球中任意k个球的排 k 列,总数为 Pmn1 k 事件B所包含的基本事件总数为 mP n1 m
在实际中,有许多问题的结构形式与抽球 问题相同,把一堆事物分成两类,从中随机地 抽取若干个或不放回地抽若干次,每次抽一个 ,求“被抽出的若干个事物满足一定要求”的 概率。如产品的检验、疾病的抽查、农作物的 选种等问题均可化为随机抽球问题。我们选择 抽球模型的目的在于是问题的数学意义更加突 出,而不必过多的交代实际背景。
1.3 古典概型与几何概型
一、古典概型的定义(p.11)
设随机实验E满足下列条件
1.有限性:试验的样本空间只有有限个可能的结果,即
S {1, 2 ,..., n}
2.等可能性:每个样本点的发生是等可能的,即
P(1 ) P(2 ) ... P(n ) 1/ n
则称此试验E为古典概型,也叫等可能概型。
设E是随机试验,S是它的样本空间,对于E的每一个 事件A,赋予一个实数P(A)与之对应,如果集合 函数P(· )具有如下性质: ①非负性:对任意一个事件A,均有P(A)≥0 ; ②完备性:P(S)=1; ③ 可列可性质 :若A1 ,A2 ,…,An ,…是两两互不相 容的事件序列,即Ai∩Aj=φ(i≠j, i, j=1,2,…),有 P(A1∪A2∪…∪An∪…)=P(A1)+P(A2) +…+ P(An)+… 则称P(A)为事件A的概率。
2、全概率公式(P.21) 定理1.1 设试验E的样本空间为S,B为E的事件。

概率论总复习 知识总结

概率论总复习 知识总结

P{X = xi ,Y = y j } = P{X = xi }P{Y = y j }
p(x, y) = pX (x) pY ( y)
F(x0+ ) = lim F(x) = F(x0 ). +
x→x0
10
分布函数的几点说明 1)分布函数 F(x) 是一个普通的函数, F(x) 在 x 处 2)离散型: 若 P( X = xk ) = pk 由于 F(x) 是X 取 ≤ x 的诸值
F(x)
pk
xk <x xk <x
的值表示了X落在 (−∞, x) 内的概率。
p(t)dt
F(x)= ( X ≤ x) ∫ P =
x
−∞
0
x
p (x)
x
P(x1 < X ≤ x2 )= (x2 ) − F( x1 ) F
= ∫

x2
x1
p(t) d t
x1 < x2
0
x1 x2 x
p( x) 的 续 处 连 点 , p( x) = F′( x)
12
4、随机变量函数的分布 、 1、问题:若 X,Y是随机变量, = ϕ(X ). 其中 y = ϕ(x) Y 是 x的函数。 已知X 的分布,求 Y = ϕ(X ) 的分布。 2、基本方法 1)由 Y = ϕ(X ) 研究 X,Y 之间的事件等价关系。 2)由 X,Y 之间的事件的关系再求 X,Y 之间的分布 关系和分布函数关系。 3)把Y的分布用表(离散型)或Y的密度(连续性) 表述出来。 3、具体讨论
F(x) P( X ≤ x) ∫ = =
x
−∞
p(u)du
p( x) ≥ 0 x ∈(− ∞,+∞)

考研数学(三)概率论与数理统计第一章复习重点总结

考研数学(三)概率论与数理统计第一章复习重点总结

2018考研数学(三):概率论与数理统计第一章复习重点总结一、第一章随机事件与概率1.重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。

2.难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。

3.常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。

事件关系及其运算是本章的重点和难点,概率计算是本章的重点。

注意事件与概率之间的关系。

本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。

近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。

相当一部分考生对本章中的古典概型感到困难。

大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。

考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。

应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。

【评注】本题是典型的根据全概率公式及条件概率的解题的题型,这类题型一直都是考查的重点。

三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。

但与线代一样,概率也常常被忽视,有时甚至被忽略。

一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。

概率这门课如果有难点就应该是“记忆量大”。

在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。

对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。

关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。

在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。

2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。

典型的概率分布包括正态分布、泊松分布和二项分布。

此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。

3.参数估计参数估计是根据样本数据估计总体参数的统计方法。

它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。

4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。

其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。

5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。

卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。

6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。

它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。

结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。

了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。

概率论和数理统计方面的知识点在实际应用中有着重要作用。

概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。

(完整版)概率论与数理统计知识点总结(最新整理)

(完整版)概率论与数理统计知识点总结(最新整理)
当 AB 不相容 P(AB)=0 时,P(A+B)=P(A)+P(B) 法公式
当 AB 独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B)
P(A-B)=P(A)-P(AB) (8)减
当 B A 时,P(A-B)=P(A)-P(B) 法公式
当 A=Ω时,P( B )=1- P(B)
独立性 必然事件 和不可能事件 Ø 与任何事件都相互独立。
Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
1
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F (x) 1, x ;
2° F (x) 是单调不减的函数,即 x1 x2 时,有 F (x1) F (x2) ;
3° F () lim F (x) 0 , F () lim F (x) 1;
X ~ B(n, p) 。
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0-1)分布,所
以(0-1)分布是二项分布的特例。
1
泊松分 设随机变量 X 的分布律为

P( X k) k e , 0 , k 0,1,2,
k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或者
①每进行一次试验,必须发生且只能发生这一组中的一个事件; (2)基 ②任何事件,都是由这一组中的部分事件组成的。 本 事 这样一组事件中的每一个事件称为基本事件,用 来表示。 件 、 样 基本事件的全体,称为试验的样本空间,用 表示。 本 空 间 一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大 和事件 写字母 A,B,C,…表示事件,它们是 的子集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。

现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。

(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。

P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0.08,P(B| A2)=0.09,P(B| A3)=0.12。

由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。

若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5) (1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。

解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品}(1)P(1B )=P(1A )P(1B |1A )+P(2A )P(1B |2A )=52301821501021=+ (2)P(1B 2B )=194.02121230218250210=+C C C C ,则P(2B |1B )=)()(121B P B B P = 0.485 二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1<X<3};(4)X 的分布函数F(x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX(3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==x xx tdt dx dt t f x F 00241210)()( 当x ≥2时,F (x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E(X)=7/12。

求:(1)a , b ;(2)X 的分布函数F(x) (同步49页三、2)练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤=others x x x f 0102)( 求:(1)X 的分布函数F(x) ;(2)P{0.3<X<2}(同步45页三、3)三、离散型随机变量和分布函数 例:设X 的分布函数F (x)为:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31318.0114.010)(x x x x x F , 则X 的概率分布为( )。

分析:其分布函数的图形是阶梯形,故x 是离散型的随机变量 [答案: P(X=-1)=0.4,P(X=1)=0.4,P(X=3)=0.2.]练习:设随机变量X 的概率分布为P(X=1)=0.2,P(X=2)=0.3,P(X=3)=0.5,写出其分布函数F(x)。

[答案:当x <1时,F(x)=0; 当1≤x <2时,F(x )=0.2; 当2≤x <3时,F(x)=0.5;当3≤x 时,F(x )=1 四、二维连续型随机向量例:设X 与Y 相互独立,且X 服从3=λ的指数分布,Y 服从4=λ的指数分布,试求:(1)),(Y X 联合概率密度与联合分布函数;(2))1,1(<<Y X P ; (3)),(Y X 在{}343,0,0),(<+>>=y x y x y x D 取值的概率。

解:(1)依题知⎩⎨⎧>=-其他,00,3)(3x e x f x X⎩⎨⎧>=-其他,00,4)(4y e y f y Y 所以),(Y X 联合概率密度为⎩⎨⎧>>=--其他,00,0,12),(43y x e y x f y x 当0,0>>y x 时,有)1)(1(12),(430043y x xys t e e ds e dt y x F ------==⎰⎰所以),(Y X 联合分布函数⎩⎨⎧>>--=--其他,0;0,0),1)(1(),(43y x e e y x F y x(2))1)(1()1,1()1,1(43----==<<e e F Y X P ;(3)()3104330434112),(-----==∈⎰⎰e dy e dx D Y X P x y x练习:设二元随机变量(X ,Y )的联合密度是⎪⎩⎪⎨⎧>>=+-others y x e y x f y x 00,025001),()(501求:(1)关于X 的边缘密度函数f X (x);(2)P{X ≥50,Y ≥50}(同步52页三、4)五、二维离散型随机向量设随机变量X 与Y 相互独立,下表列出了二维随机向量(X,Y)的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其他数值填入表中的空白处。

161818121321ji p x x p y y y X Y ⋅⋅[ 答案: 131216143418381411218124121321ji p x x p y y y X Y ⋅⋅]六、协差矩阵例:已知随机向量(X,Y )的协差矩阵V为⎪⎪⎭⎫⎝⎛=9664V计算随机向量(X +Y , X -Y )的协差矩阵(课本116页26题) 解:DX=4, DY=9, COV(X,Y)=6 D(X +Y)= DX + DY +2 COV(X,Y)=25 D(X-Y) = DX + DY -2 COV(X,Y)=1 COV (X +Y , X -Y )=DX-DY=-5故(X +Y , X -Y )的协差矩阵⎪⎪⎭⎫⎝⎛--15525练习:随机向量(X,Y )服从二维正态分布,均值向量及协差矩阵分别为⎪⎪⎭⎫⎝⎛=21μμμ⎪⎪⎭⎫⎝⎛=22212121σσσρσσρσV 计算随机向量(9X +Y , X -Y )的协差矩阵(课本116页33题) 解:E(9X+Y)= 9EX+ E Y =9μ1+μ2 E(X -Y)= EX -E Y =μ1-μ2D(9X +Y)=81DX + DY +18 COV(X,Y)=81σ12+18ρσ1σ2+σ22D(X -Y)= DX + DY -2 COV(X,Y)=σ12-2ρσ1σ2+σ22 COV (9X +Y , X -Y )=9DX-DY -8 COV(X,Y)= 9σ12-8ρσ1σ2-σ22然后写出它们的矩阵形式(略)七、随机变量函数的密度函数例:设X ~U (0,2),则Y =2X 在(0,4)内的概率密度=)(y f Y ( )。

[答案 填:y41]解:X ~U (0,2) 1,02()20,x f x others⎧≤≤⎪∴=⎨⎪⎩,2(){}{}{()YF y P Y y P X y P X f x dx =≤=≤=≤≤=,求导出=)(y fY (X X f f -=y41 (04y <<)练习:设随机变量X 在区间[1,2]上服从均匀分布,求Y=X e 2的概率密度f(y)。

[答案:当42e y e ≤≤时,f(y)=y21,当y 在其他范围内取值时,f(y)=0.]八、中心极限定理例:设对目标独立地发射400发炮弹,已知每一发炮弹地命中率等于0.2。

请用中心极限定理计算命中60发到100发的概率。

(同步46页四、1)解:设X 表示400发炮弹的命中颗数,则X 服从B(400,0.2),EX=80,DX=64,由中心极限定理:X 服从正态分布N(80,64)P{60<X<100}=P{-2.5<(X-80)/8<2.5}=2φ(2.5)-1=0.9876练习:袋装食盐,每袋净重为随机变量,规定每袋标准重量为500克,标准差为10克,一箱内装100袋,求一箱食盐净重超过50250克的概率。

(课本117页41题)九、最大似然估计例:设总体X 的概率密度为⎩⎨⎧<<+=其他,010,)1()(x x x f θθ其中未知参数θ1->,n X X X ,,21是取自总体的简单随机样本,用极大似然估计法求θ的估计量。

解:设似然函数),,2,1;10()1()(1n i x x L i ni i =<<+=∏=θθθ对此式取对数,即:∑=++=ni i x n L 1ln )1ln()(ln θθθ且∑=++=ni i x nd L d 1ln 1ln θθ令,0ln =θd L d 可得∑=--=ni ixn1ln 1ˆθ,此即θ的极大似然估计量。

例:设总体X 的概率密度为)0,0(,0,00,)(1>>⎪⎩⎪⎨⎧≤>=--a x x e ax x f ax a λλλ 据来自总体X 的简单随机样本),,,(21n X X X ,求未知参数λ的最大似然估计量。

(同步39页三、3)解:由⎪⎩⎪⎨⎧≤>=--0,00,)(~1x x e ax x f X ax a λλ得总体X 的样本),,,(21n X X X 的似然函数∑∑∑=-=-=--==ni a i n i ai nx ni a in x x a eaxx x x L ai 1111121]ex p[)(),,,,(λλλλλ再取对数得:∑∑==-+-=ni i n i ai x a x a n L 11)ln()1()ln(ln λλ再求L ln 对λ的导数:∑=-=n i ai x a an d L d 1ln λλ令0ln 1=-=∑=n i ai x a an d L d λλ,得∑==ni aix n1λ所以未知参数λ的最大似然估计量为∑=ni a ixn1。

相关文档
最新文档