(新课程)高中数学 2.4.1《函数的零点》教案 新人教B版必修1
高中数学函数的零点教案(1)新人教B版必修1
教案:2.4.1函数的零点一、教学目标:1、知识与技能:了解函数的零点与方程根的关系。
理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点。
培养学生对事物的观察、归纳能力和探究能力。
2、过程与方法:通过描绘函数图像,分析零点的存在性. 体验函数零点概念的形成过程,提高数学知识的综合应用能力。
3、情感态度与价值观:培养学生的数形结合思想,渗透由抽象到具体思想,使学生理解动与静的辨证关系,在函数与方程的联系中体验数学中的转化思想的意义和价值.让学生初步体会事物间相互转化的辩证思想。
二、教学重点、难点:重点是函数零点的概念及求法;难点是利用函数的零点作图。
三、教学方法:本节课是对初中内容的加深,学生以相关知识比较熟悉,因此采用以学生活动为主,自主探究,合作交流的教学方法为宜。
四、教学流程:问题情境组织探究意义建构探索研究例题研究课外升华结合描绘的二次函数图像,提出问题,引入课题.体验数学,对二次函数的零点及零点存在性的初步认识.感知数学,以零点存在性为练习重点进行练习.建立数学,进一步探索函数零点存在性的判定.应用数学,零点的存在性判断及零点的确定.利用计算机绘制某类特殊函数图像,找出零点,并尝试五、教学过程:教学环节教学内容师生互动设计意图复习引入(1)一元二次方程是否有实根的判定方法:(2)二次函数y=ax2+bx+c的顶点坐标,对称轴方程等相关内容。
学生思考后回答以旧引新,利于学生建构知识网络。
1、实例引入引例:已知函数y=x2-x-6(1)当x取何值时,y=0?(2)作出函数的简图x=-2 或x=3是函数y=x2-x-6的零点。
问题:观察函数的零点在其图象上的位置。
学生动手解题,并观察思考,教师总结引例,引导学生解方程,画函数图象,分析方程的根与图象和x轴交点坐标的关系。
让学生动手动脑来感知知识发生发展的过程,了解函数的零点和方程根的联系,提高作图与识图以及自主解决问题的能力,使学生养成独立思考的好习惯。
人教新课标高中数学B版必修1《2.4.1 函数的零点》教学设计(表格式)
2.4.1《函数的零点》教学设计课题:函数的零点教材:人教B版新课标高中数学必修1教学内容:第二章函数2.4.1函数的零点教材分析:一.教材的地位和作用本课时主要学习函数的零点,通过研究二次函数的图象性质归纳函数的零点的性质。
本节课的内容起到了承上启下的作用。
本节课重点在于研究函数的零点概念及其存在性,函数零点的概念及求法,函数零点与方程根之间的关系。
难点是理解方程的根与函数零点的关系,利用函数的零点作图。
通过本节课的学习进一步加深学生对函数概念及性质的理解和认识,使学生能够整理出较为系统的函数知识体系和完整的思维方式方法,并由此及彼,帮助后面函数的学习。
二.教学目标:1.知识目标:(1)理解函数零点的定义,能判断二次函数零点的存在性;(2)会求简单函数的零点。
理解函数零点和方程的根的关系。
(3)理解函数零点存在的判定条件。
2.能力目标:通过充分运用函数与方程,数形结合的数学思想方法教学,体验函数零点概念的形成过程,体会数形结合、等价转化的数学思想.同时注重培养学生对于解题方法的灵活性和多样性的掌握。
3.情感态度与价值观目标:感悟形与数不同的数学形态间的和谐统一美,培养学生对事物之间转化的辩证唯物主义观点的认识三.教学重点和难点重点:函数零点的概念及求法,函数零点与方程根之间的关系难点:理解方程的根与函数零点的关系,利用函数的零点作图.教学关键点:从实际出发,在学生获得一定感性认识的基础上,通过观察,比较,归纳进一步提升到理性认识,逐步形成完整的概念,在此基础上结合图象,运用数学结合的数学思想解决问题。
学情分析:学生已经学习过函数的基本性质,本节课函数关系的建立做好了知识准备,在此基础上进行函数的零点的学习,可以将对函数的认识进一步系统化和完善化。
教法分析:(一)教学方式教师引导,学生讨论,与启发探究相结合。
(二)教学手段借助几何画板和函数编辑器等教学软件和投影仪等,展示学生的做图结果,并演示高次函数的图像。
高中数学人教B版必修一学案:2.4.1函数的零点
高一数学第二章第一课时学案2.5.1 函数的零点一、学习目标1、理解函数零点的意义,能判断二次函数零点的存在性。
2、会求简单函数的零点,了解函数的零点与方程根的关系。
3、能通过零点画出函数的图象,并研究其性质。
4、在函数与方程的联系中体验数学中的转化思想的意义和价值.二、自主学习1、引例:已知二次函数26y x x =--,试求当y=0时的x 值,并画出其图象,由图象观察当x 在何区间上使得y>0?y<0?。
2、零点的定义:一般地,如果函数))((D x x f y ∈=在实数α处的值等于,即 ,则α叫做这个函数的 。
在坐标系中表示 。
3、二次函数的零点:(1)△>0,方程02=++c bx ax 有 ,二次函数的图象与x 轴有 ,二次函数有 .(2)△=0,方程02=++c bx ax 有 ,二次函数的图象与x 轴有 ,二次函数有一个 .(3)△<0,方程02=++c bx ax 无 ,二次函数的图象与x 轴无 ,二次函数无 .4、二次函数零点的性质:当函数图象通过零点且穿过x 轴时,函数值 ;两个零点把x 轴分成三个区间,在每个区间上所有函数值 ;如果一个二次函数有一个二重零点,那么它通过这个二重零点时,函数值的符号 。
三、合作探究1、二次函数)0(2≠++=a c bx ax y 的是否一定有零点,判断依据是什么2、函数的零点与方程的根、函数图象与x 轴交点的关系:函数)(x f y =有零点⇔方程0)(=x f 有 ⇔函数)(x f y =的图象与x 轴 .3、函数零点的求法:求函数)(x f y =的零点即求 。
4、二次函数零点两侧的函数值有何变化?零点将x 轴分成几个区间,在每个区间上函数值有何特点?分别以下列函数为例说明①122+-=x x y ;②223y x x =--+;③322+-=x x y 。
四、典例示范例1、求下列函数的零点:①220y x x =--+;② 32332y x x x =+++;③()()22232y x x x =-++例2、求函数3222y x x x =--+的零点,并画出它的图象。
高中数学 241(函数的零点)教案 新人教B版必修1 教案
函数的零点 教案教学目标:1、知识目标:理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系 .2、能力目标:体验函数零点概念的形成过程,引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力.3、情感目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想.重点、难点:教学过程:一.自主达标1.如果函数y=f(x)在实数处的值等于零,即f(x)=0,则x叫做. 2.把一个函数的图像与叫做这个函数的零点.3.二次函数y=a2x +bx+c(a≠0),当Δ=2b -4ac>0时,二次函数有个零点;Δ=2b -4ac=0时,二次函数有个零点;Δ=2b -4ac<0时,二次函数有个零点.4.二次函数零点的性质:(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),.(2)在相邻的两个零点之间所有.二。
典例解析例1.若函数f(x)=2x +ax+b的两个零点是2和-4,求a,b的值. 例1、解:函数f(x)=2x +ax+b的两个零点是2和-4,也就是方程2x +ax+b=0的两个根是2和-4,由根与系数的关系可知⎩⎨⎧=-⨯-=-+ba )4(2)4(2得a=2,b=-8.评析:反常的根与函数零点的关系以及反常的根与系数的关系是本体解决关键. 例2.求证:方程52x -7x-1=0的一个根在(-1,0)上,另一个根在(1,2)上.例2、证明:设f(x)=52x -7x-1,则f(-1)f(0)=-11<0,f(1)(2)=-15<0.而二次函数f(x)=52x -7x-1是连续的.所以,f(x)在(-1,0)和(1,2)上分别有零点.即方程52x -7x-1=0的根一个在(-1,0)上,另一个(1,2)在上. 评析:判断函数是否在(a,b)上存在零点,除验证f(a)•f(b)<0是否成立外,还需考察函数是否在(a,b)上连续.若判断根的个数问题,还须结合函数的单调性.例3:学校请了30名木工,要制作200把椅子和100X 桌子.已知制作一X 桌子与制作一把椅子的工时数之比为10:7,问30名工人应当如何分组(一组制桌子,另一组制椅子),能使完成全部任务最快?例3、解:设名x工人制桌子,(30-x)名工人制椅子,一个工人在一个单位时间里可制7X 桌子或10把椅子,所以制作100X 桌子所需时间为函数p(x)=x7100,制作200把椅子所需时间为函数q(x)=)30(10200x -,完成全部任务所需时间为y(x)=max{p(x),q(x)}. x 7100=)30(10200x -,解得x=12.5,考虑到人数x N +∈,考察p(12)与q(13),p(12)=84100≈1.19,q(13)=≈17201.18,即y(12)>y(13).所以用13名工人制作桌子,17名工人制作椅子完成任务最快.评析:对于本题要用变化的观点分析和探求具体问题中的数量关系,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想建立函数关系式或列出方程,利用函数性质或方程观点来解,则可使应用问题化生为熟,尽快得到解决.三、达标练习:1.已知函数f(x)在区间(a,b)上单调且f(a)f(b)<0,则函数f(x)在区间(a,b)上( )A.至少有一个零点 B.至多有一个零点 C.没有零点 D.必有唯一零点 2.已知f(x)=(x-a)(x-b)-2并且α,β是函数f(x)的两个零点,则实数a,b,α,β的大小关系可能是( )A.a<α<b<β B.a<α<β<b C.Α<a<b<βD.a<a<β<b3.函数f(x)=222(1)2(1)x x x x x -≥⎧⎨-<⎩,则函数f(x)-0.25的零点 .4.如果函数f (x )=2x +mx +(m+3)至多有一个零点,则m的取值X 围. 5.对于函数f(x);若存在0x ∈R,使f(0x )=0x 成立,则称0x 为f(x)的不动点.已知函数f (x )=a 2x +(b +1)x +(b-1)(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值X 围. 参考答案:1.D 2.C 3.254,89- 4.2-6≤≤m 5.(1)当a=1,b=-2时,f(x)=x 2-x-3,由题意可知x=x 2-x-3 解得x=-1或x=3,故当a=1,b=-2时f(x)的两个相异的不动点为-1,3.(2) f (x )=a x 2+(b +1)x +(b-1)恒有两个相异的不动点.∴x=a x 2+(b +1)x +(b-1),即ax 2+bx+(b-1)=0恒有两个相异的实数根,得Δ=)(0)1(42R b b a b ∈>--恒成立,即)(0442R b a ab b ∈>+-恒成立,于是∆1=016162<-a a ,解得0<a<1.故当R b ∈,f(x)恒有两个相异的不动点时,a取值X 围为0<a<1.。
高中数学人教B版必修一学案:2.4.1 函数的零点
2.4函数与方程2.4.1函数的零点[学习目标]1.理解函数零点的概念.2.会求一次函数、二次函数的零点.3.初步了解函数的零点、方程的根、函数图象与x轴交点的横坐标之间的关系.[知识链接]考查下列一元二次方程与对应的二次函数:(1)方程x2-2x-3=0与函数y=x2-2x-3;(2)方程x2-2x+1=0与函数y=x2-2x+1;(3)方程x2-2x+3=0与函数y=x2-2x+3.请列表表示出方程的根,函数的图象及图象与x轴交点的坐标.答案[1.函数的零点(1)定义:一般地,如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.(2)性质①当函数图象通过零点且穿过x轴时,函数值变号.②两个零点把x轴分为三个区间,在每个区间上所有函数值保持同号.2.二次函数零点与二次方程实根个数的关系要点一求函数的零点 例1求下列函数的零点: (1)f (x )=-x 2-2x +3; (2)f (x )=x 4-1.解(1)∵f (x )=-x 2-2x +3=-(x +3)(x -1), ∴方程-x 2-2x +3=0的两根分别是-3和1. 故函数的零点是-3,1.(2)∵f (x )=x 4-1=(x 2+1)(x +1)(x -1), ∴方程x 4-1=0的实数根是-1和1. ∴函数的零点为±1. 规律方法函数零点的求法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程f (x )=0,可以将它与函数y =f (x )的图象联系起来,图象与x 轴的交点的横坐标即为函数的零点. 跟踪演练1求函数y =(ax -1)(x +2)的零点. 解(1)当a =0时,令y =0得x =-2; (2)当a ≠0时,令y =0得,x =1a 或x =-2.①当a =-12时,函数的零点为-2;②当a ≠-12时,函数的零点为1a ,-2.综上所述:(1)当a =0或-12时,零点为-2;(2)当a ≠0且a ≠-12时,零点为1a ,-2.要点二函数零点个数的判断例2若函数f (x )=ax 2-x -1仅有一个零点,求实数a 的取值范围.解①若a =0,则f (x )=-x -1为一次函数,易知函数仅有一个零点;②若a ≠0,则函数f (x )为二次函数,若其只有一个零点,则方程ax 2-x -1=0仅有一个实数根(也可说成有两个相等的实数根), 故判别式Δ=1+4a =0,a =-14.综上,当a =0或a =-14时,函数仅有一个零点.规律方法判断或求形如函数y =ax 2+bx +c 的零点时,首先对a 分a ≠0和a =0两种情况讨论,然后对a ≠0的情况,利用判别式法判别相应一元二次方程根的情况,即可判断函数零点的情况.跟踪演练2判断下列函数的零点个数: (1)f (x )=x 2-7x +12; (2)f (x )=x 2-1x.解(1)由f (x )=0即x 2-7x +12=0, 得Δ=49-4×12=1>0,∴方程x 2-7x +12=0有两个不等的实数根. ∴函数f (x )有两个零点.(2)方法一由x 2-1x =0得x 2=1x ,令h (x )=x 2(x ≠0),g (x )=1x,在同一坐标系中画出h (x )和g (x )的图象知两图象只有一个交点, 故函数有一个零点.方法二令f (x )=0得x 2-1x =0即x 3-1=0(x ≠0), ∴x =1,即方程只有一个根. ∴函数有一个零点. 要点三函数零点性质的应用例3已知关于x 的二次方程ax 2-2(a +1)x +a -1=0有两个根,且一个根大于2,另一个根小于2,试求实数a 的取值范围.解令f (x )=ax 2-2(a +1)x +a -1,依题意知,函数f (x )有两个零点,且一个零点大于2,一个零点小于2.∴f (x )的大致图象如图所示:则a 应满足⎩⎪⎨⎪⎧ a >0,f (2)<0或⎩⎪⎨⎪⎧a <0,f (2)>0, 即⎩⎪⎨⎪⎧a >0,4a -4(a +1)+a -1<0, 或⎩⎪⎨⎪⎧a <0,4a -4(a +1)+a -1>0, 解得0<a <5, ∴a 的取值范围为(0,5).规律方法解决此类问题可设出方程对应的函数,根据函数的零点所在的区间分析区间端点函数值的符号,建立不等式,使问题得解.当函数解析式中含有参数时,要注意分类讨论. 跟踪演练3已知关于x 的二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解由已知抛物线f (x )=x 2+2mx +2m +1的图象与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56,∴-56<m <-12,故m 的取值范围是(-56,-12).1.函数y =x 2-4的图象与x 轴的交点坐标及其函数的零点分别是() A.(0,±2);±2B.(±2,0);±2C.(0,-2);-2D.(-2,0);2 答案B解析令x 2-4=0,得x =±2,故交点坐标为(±2,0),所以函数的零点为±2.2.若函数f (x )在定义域R 上的图象是连续的,图象穿过区间(0,4),且方程f (x )=0在(0,4)内仅有一个实数根,则f (0)·f (4)的值() A.大于0B.小于0 C.等于0D.无法判断 答案B解析由题意可知,函数在零点左边和右边的函数值是异号的,所以f (0)·f (4)<0. 3.如果二次函数y =x 2+mx +m +3有两个不同的零点,则m 的取值范围是() A.(-2,6) B.[-2,6]C.(-∞,-2)∪(6,+∞)D.{-2,6} 答案C解析由题意,得Δ=m 2-4(m +3)>0,即m 2-4m -12>0,∴m >6或m <-2. 4.函数f (x )=x -4x 的零点个数为()A.0B.1C.2D.无数个 答案C解析f (x )=x 2-4x,得x 1=2,x 2=-2,即函数有2个零点.5.若函数f (x )=x 2+ax +b 的零点是2和-4,则a =________,b =________. 答案2 -8解析∵2,-4是函数f (x )的零点, ∴f (2)=0,f (-4)=0,即⎩⎪⎨⎪⎧ 2a +b =-4,-4a +b =-16,解得⎩⎪⎨⎪⎧a =2,b =-8.1.函数是否有零点是针对相应方程是否有实数根而言的,若方程没有实数根,则函数没有零点.反映在图象上就是函数图象与x 轴无交点,如函数y =1或y =x 2+1就没有零点.2.判断函数的零点,可利用的结论:若函数y =f (x )在闭区间[a ,b ]上的图象是连续曲线,并且在区间端点的函数值符号相反,即f (a )·f (b )<0,则在区间(a ,b )内,函数y =f (x )至少有一个零点,即相应的方程f (x )=0在区间(a ,b )内至少有一个实数解.。
2.4.函数的零点-人教B版必修一教案
2.4.函数的零点-人教B版必修一教案1. 学习目标本课程着重介绍函数的零点的概念和求解方法。
通过学习,学生应该能够:1.理解零点的概念;2.理解函数零点的意义;3.掌握二分法求解零点的方法;4.掌握牛顿迭代法求解零点的方法。
2. 教学重点1.理解函数零点的意义;2.掌握二分法求解零点的方法;3.掌握牛顿迭代法求解零点的方法。
3. 教学难点1.理解零点的概念;2.掌握求解零点的方法。
4. 教学准备1.课件;2.小班黑板标记笔。
5. 教学过程5.1 引入首先,通过一个例子引导学生猜测一下函数 f(x)=x3-x-1 的零点在 [1, 2] 之间,然后让他们自行使用二分法求解函数的零点,以此来引入零点的概念。
5.2 阐述函数的零点的概念在学生已经了解了二分法的情况下,进一步介绍零点的概念。
要求学生能够正确的理解函数零点的含义。
5.3 介绍二分法阐述二分法的思想和步骤,掌握二分法的模板,让学生能够熟练掌握二分法,进而运用到求解零点中。
5.4 介绍牛顿迭代法介绍更高效的牛顿迭代法,学生应该在知道二分法的情况下便容易理解牛顿迭代法的思想和步骤,进而进行练习。
5.5 习题讲解对于二分法和牛顿迭代法进行讲解,并举例演示具体的求解过程。
5.6 辅助练习教师可以分发相关的作业,让学生进行辅助练习。
6. 总结本课程主要介绍了函数的零点的概念和求解方法,要求学生掌握二分法和牛顿迭代法,在教学过程中,教师要时刻激发学生求知的欲望,鼓励学生多思考、多探究,从而提高学生的学习和思考能力。
人教B版必修一高中数学第二章第四节《函数的零点》教案
人教B版《必修一》第二章第四节《函数的零点》(第一课时)【教材分析与学情分析】1.本节课是人教B版《必修一》第二章第四节“函数与方程”的第一课时。
高一学生在学习本节内容之前,对三次函数的了解仅限于第二章的幂函数;而利用函数零点与方程根的关系作图也仅限于二次函数。
随着学习内容的加深与扩展,本节课的设计对学生来说,是一次思想方法上的突破和学习观念的提升。
2.任教班级学生数学基础良好。
【课型】新授课【教学目标】1.能说出函数零点的定义,会求简单函数的零点。
2.经历二次函数零点性质推广到一般连续函数的过程,体会“函数与方程”、“转化与化归”、、“数形结合”的数学精神。
3. 用数学的眼光发现问题,并用数学知识方法给予解决;在学习新知的过程中,体会数学的应用价值;树立正确的人生观、价值观以及爱国主义情怀。
【教学准备】1.多媒体技术;2.网络资源;3.三封信件4.图书文献资源和网络资源:对“我国女排发球技术研究”的查阅【教学方法】自主探究、合作探究【教学重点】函数零点的概念与求法,作三次函数图象【教学难点】作三次函数图象、解决简单应用问题【教学过程】(含时间分配)(先准备几封写好的信(其实为最后学习要点的引出埋下伏笔),鼓励课堂活动踊跃的学生)(一)新课引入(5分钟)1.情景引入(激发学生的好奇心)播放中国女排在2016年里约奥运会夺冠的视频,指出女排的夺冠与数学紧密相连。
2.问题引入(激发学生求知欲)(二)概念的形成与深化(5分钟)1.实例引入 ?062=--=y x x x y 取何值时,,当对于函数2.函数的零点3.概念深化 函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x 轴有交点(三)实践与探究(14分钟)1.自主尝试求下列函数的零点:2.总结升华(学生把一般二次函数零点的判定以表格形式给出)3.深入探究(学生自主探究)当二次函数有零点时,请由图象探究:(1)在零点的两侧,函数值符号是否改变?(2)相邻两个零点之间函数值的符号是否相同?1.你能画出函数y=2x+7的图象吗?22.你能画出函数y=x -x-6的图象吗?323.你能画出函数y=x -2x -x+2的图象吗?(1)236(2)y x y x =-+=222(3)(4)21(5)23y x x y x x y x x =+=-+=-+()=0f x x 使得函数的实数的值,叫做这个函数的零点.(学生自主完成)对于二次函数而言: (1)当函数图象穿过零点时,函数值变号; 当函数图象遇到零点但不穿过零点时,函数值不变号. (2)相邻两个零点之间的所有函数值保持同号.(师总结)推广:对任意函数,只要函数图象是连续不断的,上述性质同样成立.(四)应用举例(18分钟)1.(学生亲自投影,面对同学讲解做法,教师适当补充)在这4个区间内,取x 的一些值,以及零点,列出这个函数的对应值表: X … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 … Y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … 在坐标系内,描点连线,作出图象.x y 0 x 1x 1 x 2 0yx 321.例求函数y=x -2x -x+2的零点,并画出它的图象.322211x x x --+-解:因为 =(x-2)(x-1)(x+1)所以函数的零点为, , 2.x 4--1-11122,+∞∞3个零点把轴分成个区间:(,),(,),(,),()*学生总结方法求函数y=f(x)零点的方法:求方程f(x)=0的根.(常用:因式分解)画三次函数图象的步骤:(1)求函数的零点,用其将x 轴分成几个区间;(2)利用在区间内适当取的x 值及零点,得到图象上的一些点;(3)描点连线,得到图象.2.自主尝试(学生黑板板演)*课下研究课题3.(回扣课头)例 2 研究发现:排球发球的成功率y%与抛球角度x(单位:度)近似满足二次函数关系:216144,25y x x =-+-(3090)x << 在一场排球比赛中,每位发球队员的成功率只有大于80%,才有利于比赛胜出。
函数零点的教学设计
函数的零点教案设计※教案背景(1)、课题:函数的零点(2)、教材版本:人教B版数学必修(一)第二章2.4.1函数的零点(3)、课时:1课时※教材分析(1)本节课的主要内容有函数零点的概念、函数零点存在性判定定理。
函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
(2)本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。
※教学目标:1、知识与技能(1)理解函数(结合二次函数)零点的概念。
(2)领会函数零点与相应方程的根的关系,掌握零点存在的判定条件。
2、过程与方法(1)通过观察例题的图象,发现函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。
(2)让学生归纳整理本节所学知识。
3、情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生的观在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神。
※教学重点:是函数零点的概念及求法※教学难点:是利用函数的零点作图教学方法:※教学方法:以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,利用课件,视频等引导学生对问题的思考,运用学生自主学习、小组合作探究的教学方式。
※教学环节(一)、课前延伸1、知识链接,温故知新求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象。
通过学生熟悉一元二次方程入手,观察函数图像与x轴的交点与相应方程根的关系,让学生建立数型结合的思想。
高中数学 第二章 函数 2.4 函数与方程 2.4.1 函数的零
2.4.1 函数的零点整体设计教学分析函数作为高中的重点知识有着广泛应用,与其他数学内容有着密切联系.课本选取探究具体的一元二次方程的根与其对应的二次函数的图象与x轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般,由易到难,这符合学生的认知规律;本节体现的数学思想是:“数形结合”思想和“转化”思想.本节充分体现了函数图象和性质的应用.因此,把握课本要从三个方面入手:新旧知识的联系,学生认知规律,数学思想方法.另外,本节也是传统数学方法与现代多媒体完美结合的产物.三维目标1.让学生明确“方程的根”与“函数的零点”的密切联系,学会结合函数图象性质判断方程根的个数,学会用多种方法求方程的根和函数的零点.2.通过本节学习让学生掌握“由特殊到一般”的认知规律,在今后学习中利用这一规律探索更多的未知世界.3.通过本节学习不仅让学生学会数学知识和认知规律,还要让学生充分体验“数学语言”的严谨性,“数学思想方法”的科学性,体会这些给他们带来的快乐.重点难点教学重点:根据二次函数图象与x轴的交点的个数判断一元二次方程的根的个数;函数零点的概念.教学难点:理解函数的零点.课时安排1课时教学过程导入新课思路1.(情境导入)据新华社体育记者报道:昨晚足球比赛跌宕起伏,球迷经历了大喜到大悲,再到大喜的过程(领先则喜,落后即悲).请问:整场足球比赛出现几次“比分相同”的时段?学生思考或讨论回答:三次:(1)开场;(2)由领先到落后必经过“比分相同”时段;(3)由落后到领先必经过“平分”时段.点拨:足球比赛有“落后”“领先”“比分相同”,函数值有“负”“正”“零”,函数图象与足球比赛一样跌宕起伏.由此导入课题,为后面学习埋好伏笔.思路2.(事例导入)(多媒体动画演示)一枚炮弹从地面发射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,问炮弹经过多少秒回到地面?炮弹回到地面即高度h=0,求方程20t-5t2=0的根,得t=4秒.如下图所示.思路3.(直接导入)教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点.推进新课新知探究提出问题①求方程x2-2x-3=0的根,画函数y=x2-2x-3的图象.②求方程x2-2x+1=0的根,画函数y=x2-2x+1的图象.③求方程x2-2x+3=0的根,画函数y=x2-2x+3的图象.④观察函数的图象发现:方程的根与函数的图象和x轴交点的横坐标有什么关系?⑤归纳函数零点的概念.⑥如何判断一元二次方程根的个数,如何判断二次函数图象与x轴交点的个数,它的零点情况是怎样的?⑦怎样判断函数是否有零点?⑧函数的图象不易画出,又不能求相应方程的根时,怎样判断函数是否有零点?活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路:①先求方程的两个根,找出抛物线的顶点,画出二次函数的图象(图甲).甲乙丙②方程有一个根,说明抛物线的顶点在x轴上(图乙).③方程没有实数根,抛物线与x轴没有交点,找出抛物线的顶点是画二次函数图象的关键(图丙).④方程的根与函数的图象和x轴交点的横坐标都是实数.⑤对于其他函数这个结论正确吗?⑥函数的零点是一个实数.⑦可以利用“转化思想”.⑧足球比赛中从落后到领先是否一定经过“平分”?由此能否找出判断函数是否有零点的方法?函数图象穿过x轴则有零点,怎样用数学语言描述呢?讨论结果:①方程的两个实数根为-1,3,图象如图甲.②方程的实数根为1,图象如图乙.③方程没有实数根,图象如图丙.④方程的根就是函数的图象与x轴交点的横坐标.⑤一般地,如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.在坐标系中表示图象与x轴的公共点是(α,0)点.⑥我们知道,对于二次函数y=ax2+bx+c:当Δ=b2-4ac>0时,方程ax2+bx+c=0有两个不相等的实数根x1,x2,相应的二次函数的图象与x轴有两个交点(x1,0)、(x2,0),这时说二次函数y=ax2+bx+c有两个零点;当Δ=b2-4ac=0时,方程ax2+bx+c=0有两个相等的实数根x1=x2(重根),相应的二次函数的图象与x轴有唯一的交点(x1,0),这时说二次函数y=ax2+bx+c有一个二重的零点或说有二阶零点;当Δ=b2-4ac<0时,方程ax2+bx+c=0没有实数根,相应的二次函数的图象与x 轴没有交点,这时二次函数y=ax2+bx+c没有零点.⑦方程f(x)=0有实根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.⑧观察二次函数f(x)=x2-2x-3的图象,我们发现函数f(x)=x2-2x-3在区间[-2,1]上有零点.计算f(-2)与f(1)的乘积,发现这个乘积特点是小于零.在区间[2,4]同样如此.可以发现,f(-2)f(1)<0,函数y=x2-2x-3在区间(-2,1)内有零点x=-1,它是方程x2-2x-3=0的一个根.同样地,f(2)f(4)<0,函数y=x2-2x-3在(2,4)内有零点x=3,它是方程x2-2x-3=0的另一个根.因此可得以下结论:若函数y=f(x)在闭区间[a,b]上的图象是连续曲线,并且在区间端点的函数值符号相反,即f(a)f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解.应用示例思路1例求函数y=x3-2x2-x+2的零点,并画出它的图象.解:因为x3-2x-x+2=x2(x-2)-(x-2)=(x-2)(x2-1)=(x-2)(x-1)(x+1),所以已知函数的零点为-1,1,2.3个零点把x轴分成4个区间:(-∞,-1),(-1,1),(1,2),[2,+∞).在这4个区间内,取x的一些值,以及零点,列出这个函数的对应值表:在直角坐标系内描点连线,这个函数的图象如上图所示.不难看出,这一函数图象通过三个零点时,函数值分别改变了符号,并且在每个区间内,函数值保持同号.点评:本题主要考查函数的零点.讨论函数的零点通常转化为方程的解.轴有两个交点,所以函数有两个零点.-2=0的判别式Δ=有两个不相等的实根.所以函数-2=0可化为(2x+所以一元二次方程2x 2-3x -2=0有两个不相等的实根x 1=2,x 2=-12.所以函数f(x)=2x 2-3x -2有两个零点.证法三:因为函数f(x)=2x 2-3x -2的图象是一条开口向上的抛物线,且顶点在x 轴的下方,即f(0)=-2<0,所以函数f(x)=2x 2-3x -2有两个零点.如下图.思路2例 若方程2ax 2-x -1=0在(0,1)内有解,求实数a 的取值范围. 活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导: ①有解包括有一解和有两解,要分类讨论.②用一般解法固然可以,若结合函数图象观察分析,可以找到捷径. ③有两种情况:a =0,或a≠0,Δ≥0.解:令f(x)=2ax 2-x -1,(1)当方程2ax 2-x -1=0在(0,1)内恰有一个解时,f(0)·f(1)<0或a≠0且Δ=0, 由f(0)·f(1)<0,得(-1)(2a -2)<0,所以a >1.由Δ=0,得1+8a =0,a =-18,所以方程为-14x 2-x -1=0,即x =-2(0,1)(舍去).综上可得a >1.(2)当方程2ax 2-x -1=0在(0,1)内有两个解时,则⎩⎪⎨⎪⎧ a>0,f 0>0,f 1>0,0<14a <1,f 14a <0或⎩⎪⎨⎪⎧a<0,f 0<0,f 1<0,0<14a <1,f 14a >0,容易解得实数a 不存在. 变式训练若方程ax 2+3x +4a =0的根都小于1,求实数a 的取值范围. 解:(1)当a =0时,x =0满足题意.(2)当a≠0时,设f(x)=ax 2+3x +4a.方法一:若方程ax 2+3x +4a =0的根都小于1,则⎩⎪⎨⎪⎧Δ=9-16a 2≥0,-32a<1,af 1>0,∴⎩⎪⎨⎪⎧-34≤a≤34,a>0或a<-1.5,a>0或a<-0.6.∴0<a≤34.综上(1)(2),得0≤a≤34.方法二:若方程ax 2+3x +4a =0的根都小于1,则 ⎩⎪⎨⎪⎧Δ=9-16a 2≥0,x1+x 2<2,(x 1-1)(x 2-1)>0,∴⎩⎪⎨⎪⎧Δ=9-16a 2≥0,x 1+x 2<2,x 1x 2-(x 1+x 2)+1>0,即⎩⎪⎨⎪⎧Δ=9-16a 2≥0,-3a<2,4+3a +1>0,解得0<a≤34.综上(1)(2),得0≤a≤34.点评:方法一结合函数图象利用函数符号列不等式组.方法二代数方法,利用根与系数关系结合判别式列不等式组.知能训练1.判定方程(x -2)(x -5)=1有两个相异的实数解,且一个大于5,一个小于2. 分析:转化判断函数f(x)=(x -2)(x -5)-1在(-∞,2)和(5,+∞)内各有一个零点. 解:考虑函数f(x)=(x -2)(x -5)-1,有 f(5)=(5-2)(5-5)-1=-1, f(2)=(2-2)(2-5)-1=-1.又因为f(x)的图象是开口向上的抛物线(如下图),所以抛物线与横轴在(5,+∞)内有一个交点,在(-∞,2)内也有一个交点.所以方程(x -2)(x -5)=1有两个相异的实数解,且一个大于5,一个小于2.点评:这里说“若f(a)·f(b)<0,则在区间(a ,b)内,方程f(x)=0至少有一个实数解”,指出了方程f(x)=0实数解的存在,并不能判断具体有多少个实数解.2.已知m∈R ,设P :x 1和x 2是方程x 2-ax -2=0的两个根,不等式|m -5|≤|x 1-x 2|对任意实数a∈[1,2]恒成立;Q :函数f(x)=3x 2+2mx +m +43有两个不同的零点,求使P 和Q 同时成立的实数m 的取值范围.解:由题意知x 1+x 2=a ,x 1x 2=-2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8.当a∈[1,2]时,a 2+8的最小值为3.要使|m -5|≤|x 1-x 2|对任意实数a∈[1,2]恒成立,只需|m -5|≤3,即2≤m≤8. 由已知得Q 中:f(x)=3x 2+2mx +m +43的判别式Δ=4m 2-12(m +43)=4m 2-12m -16>0,得m <-1或m >4.综上,要使P 和Q 同时成立,只需⎩⎪⎨⎪⎧2≤m≤8,m<-1或m>4,解得实数m 的取值范围是(4,8].3.关于x 的方程x 2-ax +a 2-7=0的两个根一个大于2,另一个小于2,求实数a 的取值范围.解:设f(x)=x 2-ax +a 2-7,图象为开口向上的抛物线(如下图).因为方程x 2-ax +a 2-7=0的两个根一个大于2,另一个小于2,所以函数f(x)=x 2-ax +a 2-7的零点一个大于2,另一个小于2.即函数f(x)=x 2-ax +a 2-7的图象与x 轴的两个交点在点(2,0)的两侧.只需f(2)<0,即4-2a +a 2-7<0,所以-1<a <3. 拓展提升问题:如果函数y =f(x)在区间[a ,b]上的图象是连续不断的一条曲线,并且f(a)f(b)>0,那么函数y =f(x)在区间(a ,b)内是否有零点?可能有几个零点?活动:学生先思考或讨论,再回答.利用函数图象进行探索分析: ①有没有零点?②零点的个数是奇数还是偶数?解:零点个数可以是任意自然数.下面讨论在区间[-3,3]上函数零点个数, (1)可能没有零点如图甲.甲乙(2)可能有一个零点如图乙.(3)可能有两个零点如图丙.丙丁(4)可能有三个零点如图丁.(5)可能有n(n∈N+)个零点,图略.点评:在区间[-3,3]上函数零点个数可以是任意自然数.借助计算机可以验证同学们的判断,激发学生学习的兴趣.课堂小结本节学习了:①零点的概念;②零点的判断方法;③利用函数的单调性证明零点的个数;④零点的应用.学习方法:由特殊到一般的方法.数学思想:转化思想、数形结合思想.作业课本本节练习B 1、2.设计感想本节以事例导入,该事例是学生很感兴趣的话题,发人深思而紧贴本节主题,为后面讲解埋好了伏笔.因为二次函数、二次方程永远是高考的重点,所以本节结合二次函数的图象性质详实讨论了有关二次函数的零点和二次方程的根的问题.本节不仅选用了一些传统经典的题目进行方法总结,还搜集了一些最新的高三模拟题加以充实提高.另外,本节目的明确、层次分明、难度适中,对学生可能产生兴趣的问题进行了拓展,希望大家喜欢.备课资料[备选例题]例求下列函数的零点,并画出函数的图象.(1)y=-x2-x+2;(2)y=(x2-2)(x2-3x+2).活动:教师点拨提示:求函数的零点可转化为求相应方程的根.解:(1)如图甲,令y=0,即-x2-x+2=0,解得x1=-2,x2=1.所以所求函数的零点为-2,1.(2)如图乙,令y=0,即(x2-2)(x2-3x+2)=0,解得x1=2,x2=-2,x3=1,x4=2.所以所求函数的零点为2,-2,1,2.甲乙。
高中数学2.4函数与方程_函数的零点教案新人教B版必修1
§2.4.1函数的零点(课前预习案)一、新知导学1.函数零点的概念:对于函数y=f (x ),我们把使 叫做函数y=f (x )的零点.2.变号零点与不变号零点:(1)当函数通过变号零点时,函数值变号;(2)相临两个零点之间的所有函数值保持同号。
3.函数零点与方程根的关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与 有交点⇔函数y=f(x)有 注意:函数的零点不是一个点,而是函数图象与x 轴交点的 .4.函数零点的判断:如果函数y=f (x )在区间[a,b]上的图象是连续不断的一条曲线,并且有 ,那么函数y=f(x)在区间 内有零点,即存在),(b a c ∈,使得0)(=c f ,c 也就是方程0)(=x f 的根.二、预习自测:1.求下列函数的零点:(1)452--=x x y ; (2)202++-=x x y ;(3); (4))23)(2()(22+--=x x x x f .2.观察二次函数f (x )=x 2-2x -3的图象:在区间[-2,1]上有零点______; f (-2)=_______,f (1)=_______,f (-2)·f (1)_____0(“<”或“>”). 在区间(2,4)上有零点______;f (2)·f (4)____0(“<”或“>”).§2.4.1函数的零点(课堂探究案)§2.4.1函数的零点(课后拓展案)1.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( )A.),6()2,(+∞--∞B.)6,2(-C.]6,2[-D.}6,2{-2.方程063223=-+-x x x 在区间[-2,4]上的根必定属于区间( )A.[-2,1]B.]4,25[C.]47,1[D.]25,47[ 3. 函数f (x )=x (x 2-16)的零点为( )A .(0,0),(4,0)B .0,4C .(–4,0),(0,0),(4,0)D .–4,0,4 4.若函数b ax x f +=)(有一个零点是2,那么函数ax bx x g -=2)(的零点是( )A.0,2B.0,21 C.0,-21 D.2,-21 5若函数()21f x mx x =--有且仅有一个零点,则实数m 的值是________。
高中数学第二章函数2.4.1函数的零点学案新人教B版必修108012133
高中数学第二章函数2.4.1函数的零点学案新人教B 版必修1080121331.理解函数零点的概念.(重点)2.会求一次函数、二次函数的零点.(重点)3.初步了解函数的零点、方程的根、函数图象与x 轴交点的横坐标之间的关系.(重点、难点)[基础·初探]教材整理1 函数的零点阅读教材P 70~P 71“例”以上部分内容,完成下列问题. 1.定义如果函数y =f (x )在实数α处的值等于零,即f (α)=0,则α叫做这个函数的零点. 2.性质(1)当函数图象通过零点且穿过x 轴时,函数值变号.(2)两个零点把x 轴分为三个区间,在每个区间上所有函数值保持同号.判断(正确的打“√”,错误的打“×”) (1)所有的函数都有零点.( )(2)若方程f (x )=0有两个不等实根x 1,x 2,则函数y =f (x )的零点为(x 1,0),(x 2,0).( )(3)f (x )=x -1x只有一个零点.( )【答案】 (1)× (2)× (3)×教材整理2 二次函数零点与一元二次方程 实根个数的关系阅读教材P 70“倒数第2行”~P 71“例”以上的内容,完成下列问题. 判别式ΔΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实根二次函数y =ax 2+bx +c 的零点有两个零点x 1,x 2有一个二重零点x 1=x 2没有零点已知函数f (x )=x 2-2x +a 的图象全部在x 轴的上方,则实数a 的取值范围是________.【导学号:97512030】【解析】 函数f (x )的图象是开口向上的抛物线,所以Δ=4-4a <0,a >1. 【答案】 (1,+∞)[小组合作型]求函数的零点(1)函数y =1+1x的零点是( ) A .(-1,0) B .x =-1 C .x =1D .x =0(2)求下列函数的零点. ①f (x )=-x 2-2x +3; ②f (x )=x 4-1.【精彩点拨】 求函数对应方程的根,即为函数的零点. 【自主解答】 (1)令1+1x=0,解得x =-1,故选B.(2)①由于f (x )=-x 2-2x +3=-(x +3)(x -1), 所以方程-x 2-2x +3=0的两根是-3,1. 故函数的零点是-3,1.②由于f (x )=x 4-1=(x 2+1)(x +1)(x -1), 所以方程x 4-1=0的实数根是-1,1.故函数的零点是-1,1.【答案】 (1)B (2)①-3,1 ②-1,1求函数的零点时,通常转化为解方程f x =0,若方程f x =0有实数根,则函数f x 存在零点,该方程的根就是函数f x 的零点;否则,函数f x 不存在零点.[再练一题]1.函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.【导学号:60210059】【解析】 ∵函数f (x )=ax +b 有一个零点是2,∴2a +b =0,即b =-2a , ∴g (x )=bx 2-ax =-2ax 2-ax =-ax (2x +1), ∵-ax (2x +1)=0,即x =0,x =-12,∴函数g (x )=bx 2-ax 的零点是0,-12.【答案】 0,-12函数零点个数的判断判断下列函数零点的个数. (1)f (x )=x 2-7x +12;(2)f (x )=x 2-1x .【精彩点拨】 (1)中f (x )为一元二次函数,解答本题可判断对应的一元二次方程的根的个数;(2)中函数零点可用解方程法转化为两个熟知的基本初等函数求图象交点个数.【自主解答】 (1)由f (x )=0,即x 2-7x +12=0,得Δ=49-4×12=1>0, ∴方程x 2-7x +12=0有两个不相等的实数根3,4.∴函数f (x )有两个零点. (2)法一 由x 2-1x =0,得x 2=1x.令h (x )=x 2(x ≠0),g (x )=1x.在同一坐标系中画出h (x )和g (x )的图象,如图所示,两函数图象只有一个交点,故函数f (x )=x 2-1x只有一个零点.法二令f(x)=0,即x2-1x=0.∵x≠0,∴x3-1=0.∴(x-1)(x2+x+1)=0.∴x=1或x2+x+1=0.∵方程x2+x+1=0的根的判别式Δ=12-4=-3<0,∴方程x2+x+1=0无实数根.∴函数f(x)只有一个零点.确定函数零点个数的方法1.一元n次方程根的个数的问题,一般采用分解因式法来解决.2.一元二次方程通常用判别式来判断根的个数.3.指数函数和对数函数等超越函数零点个数的问题,一般用图象法来解决.4.利用函数的单调性判断函数零点的个数.[再练一题]2.判断函数y=x3-3x2-2x+6的零点个数.【解】y=x3-3x2-2x+6=x2(x-3)-2(x-3)=(x2-2)(x-3),令y=0,则x=±2或x=3,显然有三个零点.[探究共研型]函数零点的应用探究1 设F(x)=f(x)-g(x),则F(x)的零点与函数y=f(x)与y=g(x)有何关系?【提示】F(x)的零点是函数y=f(x)与y=g(x)的图象的交点的横坐标.探究2 若函数f(x)=x2-2x+a有零点,则实数a的取值范围是什么?【提示】若函数f(x)=x2-2x+a有零点,则方程x2-2x+a=0有根.故Δ=(-2)2-4a≥0,故a≤1.若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.【精彩点拨】把问题转化为方程|2x-2|=b有根问题,进而应用数形结合的思想转化为y =|2x -2|与y =b 图象的交点问题.【自主解答】 由f (x )=|2x-2|-b =0,得|2x-2|=b .在同一平面直角坐标系中画出y =|2x-2|与y =b 的图象,如图所示,则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 【答案】 (0,2)已知函数有零点方程有根求参数取值范围常用的方法:1直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.2分离参数法:先将参数分离,转化成求函数值域问题加以解决.3数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.[再练一题]3.若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则a 的取值范围是( ) A .a >15B .a >15或a <-1C .-1<a <15D .a <-1【解析】 根据函数零点的性质,f (1),f (-1)一正一负,f (1)=a +1,f (-1)=-5a +1所以⎩⎪⎨⎪⎧a +1>0-5a +1<0或⎩⎪⎨⎪⎧a +1<0-5a +1>0,解得a >15或a <-1.【答案】 B1.下列四个函数图象,在区间(-∞,0)内,函数f i (x )(i =1,2,3,4)中有零点的是( )A .B .C . D.【解析】 由函数图象可知,f 2(x )在(-∞,0)上与x 轴有交点,故f 2(x )在(-∞,0)上有零点.【答案】 B2.函数y =2x -4的零点是( ) A .2B .(2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12【解析】 由2x -4=0,得x =2,即函数y =2x -4的零点是2.【答案】 A3.已知函数y =f (x )是R 上的奇函数,其零点为x 1,x 2,x 3,x 4,x 5,则x 1+x 2+x 3+x 4+x 5=________.【解析】 由奇函数的对称性知:若f (x 1)=0, 则f (-x 1)=0,即零点关于原点对称,且f (0)=0, 故x 1+x 2+x 3+x 4+x 5=0. 【答案】 04.若函数f (x )=ax 2-x -1只有一个零点,则实数a =________.【解析】 (1)当a =0时,函数为y =-x -1,显然该函数的图象与x 轴只有一个交点,即函数只有一个零点.(2)当a ≠0时,函数y =ax 2-x -1是二次函数.因为y =ax 2-x -1只有一个零点,所以关于x 的方程ax 2-x -1=0有两个相等的实数根,所以Δ=0,即1+4a =0,解得a =-14.【答案】 0或-145.已知关于x 的二次方程ax 2-2(a +1)x +a -1=0有两个根,且一个根大于2,另一个根小于2,试求实数a 的取值范围.【解】 令f (x )=ax 2-2(a +1)x +a -1,依题意知,函数f (x )有两个零点,且一个零点大于2,一个零点小于2.∴f (x )的大致图象如图所示:则a 应满足⎩⎪⎨⎪⎧a >0,f 2<0,或⎩⎪⎨⎪⎧a <0,f 2>0,即⎩⎪⎨⎪⎧ a >0,4a -4a +1+a -1<0,或⎩⎪⎨⎪⎧a <0,4a -4a +1+a -1>0,解得0<a <5,∴a 的取值范围为(0,5).。
2.4.函数的零点-人教B版必修一教案
2.4 函数的零点-人教B版必修一教案
一、教学目标
1.理解函数的零点的概念及其与函数图像的关系。
2.掌握求解函数零点的方法。
3.进一步加深对函数的认识。
二、教学重难点
教学重点:
1.函数的零点的概念及其与函数图像的关系。
2.求解函数零点的方法。
教学难点:
理解函数零点的概念,掌握求解函数零点的方法。
三、教学过程
1. 导入(5分钟)
向学生介绍函数的零点的概念,并且给出一个函数的图像,请问该函数的零点是什么。
2. 讲解函数零点的概念(15分钟)
1.介绍函数零点的概念。
2.引导学生通过函数图像判断函数的零点。
3.用例题进一步加深学生对函数零点概念的理解。
3. 求解函数零点的方法(30分钟)
1.介绍函数零点的几种求解方法——解方程法、试位法等。
2.讲解各种方法的具体步骤和注意事项。
3.示例练习。
4. 讲解零点问题的应用(20分钟)
1.介绍与零点问题相关的具体应用场景,如物理学、经济学等。
2.通过具体案例分析,学生应用零点问题解决实际问题的能力。
5. 练习(30分钟)
1.练习不同求解方法的应用。
2.练习与实际问题相关的函数求零点问题。
6. 课堂小结(5分钟)
四、教学反思
本次课程通过教师简单明了的讲解,提醒学生注意函数的零点的概念和求解方法。
课程内容通过举例深入浅出,让学生明确应用函数零点问题的场景,对学生思维能力的提升和对函数零点问题的掌握都具有积极意义。
【B版】人教课标版高中数学必修一《函数的零点》导学案1-新版
2.4.1 函数的零点一.学习要点:函数零点的概念及其应用二.学习过程:1.函数零点的概念:如果函数()y f x =在实数α处的值等于0,即()0f α=,则α叫做这个函数的零点.概念解读:(1)函数的零点指的是一个实数,即当函数自变量取这个实数时,其函数值为零;(2)函数的零点也可理解为函数的图象与x 轴的交点的横坐标;(3)方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点;(4)并不是所有函数都有零点,如221,1,23y y x y x x ==+=-+就不存在零点。
例1下列函数是否存在零点,若存在求出零点。
(1)1y x =+ ;(2)1y x =+,()1,1x -ä ;(3)21y x x =-+ ;(4)223y x x =--,[]2,0x -ä ;(5)11y x =- ; (6)()()()123y x x x =--+ ;(7)1y =- ;(8)428y x x =- .2.常见函数的零点:常值函数y c =(c 为常数),当0c ≠时,没有零点,当0c =时,有无数个零点;一次函数()0y kx b k =+≠在R 上有唯一零点b k-; 反比例函数()0k y k x=≠没有零点。
二次函数c bx ax y ++=2零点与24b ac ∆=-有关,而与抛物线开口方向无关。
当240b ac ∆=->时,方程()0f x =有两个不等的实数根,函数()y f x =有两个零点;当240b ac ∆=-=时,方程()0f x =有两个相等的实数根,函数()y f x =有二阶零点;当240b ac ∆=-<时,方程()0f x =没有实数根,函数()y f x =没有零点。
3.函数零点的求解:例2 求函数3222y x x x =--+的零点,并画出它的图象.4.函数零点的应用:解一元二次不等式:例3 求函数223y x x =--+的零点,并指出0y >,0y <时,x 的取值范围。
高中数学 2.4.1《函数的零点》学案 新人教b版必修1
2.4.1函数的零点学习目标:理解函数零点的意义, 能判断函数零点的存在性,会求简单函数的零点,了解函数零点与方程跟的关系.学习难点:利用函数的零点作图.学习重点:函数零点的概念及求法一.自主达标1.如果函数y=f(x)在实数处的值等于零,即f(x)=0,则x叫做.2.把一个函数的图像与叫做这个函数的零点.3.二次函数y=a2x+bx+c(a 0),当Δ=2b-4ac>0时,二次函数有个零点;Δ=2b-4ac=0时,二次函数有个零点;Δ=2b-4ac<0时,二次函数有个零点.4.二次函数零点的性质:(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),.(2)在相邻的两个零点之间所有.二。
典例解析例1.若函数f(x)=2x+ax+b的两个零点是2和-4,求a,b的值.例2.求证:方程52x-7x-1=0的一个根在(-1,0)上,另一个根在(1,2)上.限时训练1.判断下列函数在给定的区间上是否存在零点.(1).f(x)=x3-3x-18, x∈[1,8] (2)f(x)=x3-x-1, x∈[-1,2]2.二次函数y = x2+mx+(m+3)有两个不同的零点,则m的取值范围是()A.(-∞,2)∪(6,+∞)B.(-2,6)C.[-2,6 ]D.[-2,6)5.函数f(x)=x-x的零点是( ) A.0 B.1 C.2 D.无数个6.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-27.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)x f(4)的值( ) A.大于0 B.小于0 C.等于0 D.无法判断8.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )A.1 B.2 C.3 D.4 9.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.510.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根 C. 有唯一的实数根 D .没有实数根11.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解12.已知函数y = f(x)=x2-1,则函数f(x+1)的零点是:________.13.方程x3-2x-5=0在区间 [2,3]内有实根,取区间中点 x0=2.5,那么下一个有根区间是:___________ .14.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是:_____________.15.关于x的方程2k2x-2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围.16.若函数f(x)=2x-ax-b的两个零点时2和3,则函数g(x)=b2x-ax-1的零点.三、解答题17.已知函数f(x)=2(m-1)2x-4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.18.求函数f(x)=x3-2x2-x+2的零点,则画出它的大致图像.19.方程x2+(m-2)x+5-m =0.(1).两根都大于2,求m的取值范围.(2).一根大于2,另一根小于2,求m的取值范围.(3).两根分别在区间(2,3)和之间(3,4),求m的取值范围.。
高中数学人教B版必修一2.4.1函数的零点教案
2.函数f(x)= 的零点是( )
A.1,2,3 B.-1,1,2 C.0,1,2D.-1,1,-2
3.若函数f(x)=m +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )
A.1 B.2 C.3 D.4
4.f(x)= ,方程f(4x)=x的根是( )
学科:数学
课题:2.4.1函数的零点
教学目标(三维融通表述):
1.通过讲解学生理解理解函数零点的概念与性质,会求函数的零点,能判断二次
函数零点的存在性,了解函数的零点与方程的根之间的关系,初步形成用函数的观点处理问题的意识。
2.在对二次函数的零点与方程根的关系研究过程中,体会由特殊到一般的思维方
法,通过由零点的性质作函数图像的过程及函数零点的性质的总结,渗透“数形结合”的思想方法。
4.二次函数零点的性质:
(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),.
(2)在相邻的两个零点之间所有
例1:已知函数 ,(1)当 取何值时, (2)作出函数的图像。
例2、求函数 的零点,并指出 时, 的取值范围。
例3.求函数 的零点,并画出它的图像
1.函数f(x)=2 -mx+3有一个零点为1.5,则f(1)=
会讨论零点个数,会解二次不等式
8分钟
15分钟
20分钟
引导学生理解
1.如果函数y=f(x)在实数a处的值等于零,即f(a)=0,则a叫做.
2.把一个函数的图像与叫做这个函数的零点.
3.二次函数y=a +bx+c(a 0),当Δ= -4ac>0时,二次函数有个零点;Δ= -4ac=0时,二次函数有个零点;Δ= -4ac<0时,二次函数零点.
2014年秋季高一数学新学期同步教案2.4.1《函数的零点》(人教B版必修1)
教学目标:理解零点的意义,会求简单函数的零点,了解函数的零点与方程根的关系;会用二分发求函数零点的近似值.
教学重点:函数零点的概念击求法;利用零点做函数的草图;会用二分发求函数零点的近似值.
教学过程:
1、复习一元二次方程的解法,根的判别式;二次函数的图像和性质
2、通过实例引入零点的概念:
如果函数)(x f y =在实数α处的值为0,即0)(=αf ,则α叫作这个函数的零点.
3、提出以下问题
(1) 如何求函数的零点?
(2) 函数零点与函数图像的关系?
(3) 讨论函数的零点、方程的根、不等式的解集之间的关系?
4、二次函数零点的判定同根的判定
5、图像连续的函数的零点的性质
(1) 函数的图像是连续的,当它通过零点时(非偶次零点),函数值变号. 推论:函数在区间],[b a 上的图像是连续的,且0)()(<b f a f ,那么函数)(x f 在区间],[b a 上至少有一个零点.
(2) 相邻两个零点之间的函数值保持同号
6、应用
(1)利用函数的零点研究函数的性质作函数的简图
例1、 求函数2223+--=x x x y 的零点,并画出函数的简图.
7、通过实力讲解二分法的方法
例2、 求函数22)(23--+=x x x x f 的一个为正数的零点(误差不超过0.1) 力求讲清:程序:详见教材第78页,
练习:用二分法求函数22-=x y 的零点
课堂练习:第77页练习B,第80页练习B
小结:本节学习了函数零点的定义及求法,应掌握二分法的方法,利用函数的零点做函数的简图。
课后作业:(略)。
人教B版高中数学必修1-2.4《函数的零点》教学教案2
2.4.1 函数的零点本节课选自《普通高中课程标准实验教课书数学I必修本(B版)》第70-72页的第二章2.4.1函数的的零点.本节是课标教材新增的教学内容,通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.给出函数零点概念的目的是要用函数的观点统摄中学代数知识,把所有的中学代数问题都统一到函数的思想指导之下.函数的零点是“函数与方程”这一单元的第一节内容,因此应该用适当的方式来说明函数与方程的关系,以突出用方程来研究函数的性质,用函数来研究解决方程的相关问题.但是教材中只体现了函数的零点与方程的解的关系,没有对函数与方程的联系与区别这方面的内容加以阐述.教学实践证明,学生在学习了“函数的零点”这一内容之后,仍然对函数与方程的关系没有较明确的认识.因此,本人认为应该利用一次函数与一元一次方程和二次函数与一元二次方程的关系来说明函数与方程的关系,让学生对函数与方程的关系有一个初步的感知,进而使学生体会学习函数零点的意义.因此在教学中我结合两点思考,将教学设计分为四个阶段.一、对函数零点定义的思考第一阶段:研究方程的根与函数的零点例题1:问题1:解方程①6x-1=0 ;②3x2+6x-1=0 ③④3x3+6x-1=0第一、二两题学生容易回答.第三题和第四题学生无法解答,产生疑惑引入课题.事实上,学生大多不清楚为什么要研究函数的零点,因为在此之前他们都能用公式法求方程的根.如果带着这样的疑虑学习,必然会降低其求知欲,从而影响学习的效果.所以,教学时可首先考虑解决这一问题.通过举例让学生知道,有些方程不能用公式法求解,为了研究更多方程的根,就有必要学习函数的零点.这样做,还为接下来学习二分法埋下了伏笔.问题2:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如图①方程与函数②方程与函数③方程与函数教师引导学生解方程、画函数图象、分析方程的根与图象和x轴交点坐标的关系,推广到一般的方程和函数引出零点概念.零点概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的.同时,让学生填表格根据概念,让学生理解函数y=f(x)的零点与函数y=f(x)的图象与x轴交点有什么关系,概括总结两个结论(请学生总结).1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数.例如函数的零点为x=-1,32)函数零点的意义:函数的零点就是方程实数根,亦即函。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
1、知识目标:理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系 .
2、能力目标:体验函数零点概念的形成过程,引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力.
3、情感目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想.
重点、难点:
教学过程:
一.自主达标
1.如果函数y=f(x)在实数处的值等于零,即f(x)=0,则x叫做 . 2.把一个函数的图像与 叫做这个函数的零点.
3.二次函数y=a2x +bx+c(a≠0),当
Δ=2b -4ac>0时,二次函数有 个零点;
Δ=2b -4ac=0时,二次函数有 个零点;
Δ=2b -4ac<0时,二次函数有 个零点.
4.二次函数零点的性质:
(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),
.
(2)在相邻的两个零点之间所有 .
二。
典例解析
例1.若函数f(x)=2x +ax+b的两个零点是2和-4,求a,b的值. 例1、解:函数f(x)=2x +ax+b的两个零点是2和-4,也就是方程2x +ax+b=0的两个根是2和-4,由根与系数的关系可知⎩⎨⎧=-⨯-=-+b
a )4(2)4(2得a=2,b
=-8.
评析:反常的根与函数零点的关系以及反常的根与系数的关系是本体解决关键. 例2.求证:方程52x -7x-1=0的一个根在(-1,0)上,另一个根在(1,2)上.
例2、证明:设f(x)=52x -7x-1,则f(-1)f(0)=-11<0,f(1)(2)=-15<0.而二次函数f(x)=52x -7x-1是连续的.所以,f(x)在(-1,0)和(1,2)上分别有零点.
即方程52x -7x-1=0的根一个在(-1,0)上,另一个(1,2)在上. 评析:判断函数是否在(a,b)上存在零点,除验证f(a)•f(b)<0是否
成立外,还需考察函数是否在(a,b)上连续.若判断根的个数问题,还须结合函数的单调性.
例3:学校请了30名木工,要制作200把椅子和100张桌子.已知制作一张桌子与制作一把椅子的工时数之比为10:7,问30名工人应当如何分组(一组制桌子,另一组制椅子),能使完成全部任务最快?
例3、解:设名x工人制桌子,(30-x)名工人制椅子,一个工人在一个单位时间里可制7张桌子或10把椅子,所以 制作100张桌子所需时间为函数p(x)=x 7100,制作200把椅子所需时间为函数q(x)=)
30(10200x -,完成全部任务所需时间为y(x)=max{p(x),q(x)}. x 7100=)
30(10200x -,解得x=12.5,考虑到人数x N +∈,考察p(12)与q(13),p(12)=84100≈1.19,q(13)=≈17
201.18,即y(12)>y(13).所以用13名工人制作桌子,17名工人制作椅子完成任务最快.
评析:对于本题要用变化的观点分析和探求具体问题中的数量关系,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想建立函数关系式或列出方程,利用函数性质或方程观点来解,则可使应用问题化生为熟,尽快得到解决.
三、达标练习:
1.已知函数f(x)在区间(a,b)上单调且f(a)f(b)<0,则函数f(x)在区间(a,b)上( )
A.至少有一个零点 B.至多有一个零点 C.没有零点 D.必有唯一零点 2.已知f(x)=(x-a)(x-b)-2并且α,β是函数f(x)的两个零点,则实数a,b,α,β的大小关系可能是( )
A.a<α<b<β B.a<α<β<b C.Α<a<b<β
D.a<a<β<b
3.函数f(x)=222(1)2(1)
x x x x x -≥⎧⎨-<⎩,则函数f(x)-0.25的零点 .
4.如果函数f (x )=2x +mx +(m+3)至多有一个零点,则m的取值范围 .
5.对于函数f(x);若存在0x ∈R,使f(0x )=0x 成立,则称0x 为f(x)的不动点.已知函数f (x )=a 2x +(b +1)x +(b-1)(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围. 参考答案:
1.D 2.C 3.254,89- 4.2-6≤≤m 5.(1)当a=1,b=-2时,f(x)=x 2-x-3,由题意可知x=x 2-x-3
解得x=-1或x=3,故当a=1,b=-2时f(x)的两个相异的不动点为-1,3.
(2) f (x )=a x 2+(b +1)x +(b-1)恒有两个相异的不动点. ∴x=a x 2+(b +1)x +(b-1),即ax 2+bx+(b-1)=0恒有两个相异的实数根,得Δ=
)(0)1(42R b b a b ∈>--恒成立,即)(0442R b a ab b ∈>+-恒成立,于是∆1=016162<-a a ,解得0<a<1.故当R b ∈,f(x)恒有两个相异的不
动点时,a取值范围为0<a<1.。