八年级数学平面直角坐标系知识点归纳
初中数学知识归纳平面直角坐标系与直线的方程
初中数学知识归纳平面直角坐标系与直线的方程初中数学知识归纳——平面直角坐标系与直线的方程平面直角坐标系在初中数学中是一个重要的概念,它能帮助我们研究平面上各种几何对象的性质。
直线的方程是研究平面直角坐标系中直线的一种方法。
本文将对平面直角坐标系与直线的方程进行归纳总结。
一、平面直角坐标系介绍平面直角坐标系是由两条互相垂直的坐标轴组成的。
通常我们将水平的坐标轴称为x轴,垂直的坐标轴称为y轴。
在平面直角坐标系中,我们可以通过一个点的坐标(x,y)来唯一确定这个点的位置。
二、直线的方程直线是平面上最简单的曲线,它有不同的表达方式,常用的有点斜式和截距式。
1. 点斜式方程点斜式方程是直线的一种表示方式,它的形式是y-y₁ = k(x-x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。
我们可以通过斜率k的正负和大小来判断直线的上升、下降趋势以及斜率的大小。
2. 截距式方程截距式方程是直线的另一种表示方式,它的形式是y = kx + b,其中k是直线的斜率,b是直线与y轴的交点,也称为y轴截距。
通过截距式方程,我们可以直接读取直线与y轴的截距,从而判断直线在平面上的位置。
三、直线和坐标轴的关系直线与坐标轴之间有一些特殊的关系,我们可以通过这些关系来确定直线的性质。
1. 直线与x轴的关系当直线与x轴平行时,它的斜率为0,此时直线的方程可以写为y = b,b为直线与y轴的交点,即y轴截距。
当直线与x轴垂直时,我们无法使用斜率来表示,但可以通过两点间的距离来确定直线的位置。
2. 直线与y轴的关系当直线与y轴平行时,斜率不存在,直线的方程可以写为x = a,其中a为直线与x轴的交点,即x轴截距。
当直线与y轴垂直时,它的斜率为无穷大或无穷小,这种情况下我们可以通过两点间的距离来确定直线的位置。
四、直线的性质和应用直线在平面直角坐标系中具有一些重要的性质,这些性质在实际问题中具有广泛的应用。
1. 斜率的意义直线的斜率是一个重要的概念,它代表了直线上每单位水平变化所对应的垂直变化。
初中数学知识归纳平面直角坐标系中两点的距离和中点的坐标
初中数学知识归纳平面直角坐标系中两点的距离和中点的坐标平面直角坐标系中,两点的距离和中点的坐标是初中数学中的基础知识。
通过学习和归纳,我们可以更好地理解和应用这些概念。
本文将对初中数学中关于平面直角坐标系中两点的距离和中点的坐标进行归纳总结。
1、两点间的距离在平面直角坐标系中,两点的距离可以通过勾股定理来求解。
设两点的坐标分别为A(x1,y1)和B(x2,y2),则两点间的距离d可表示为:d = √((x2-x1)^2 + (y2-y1)^2)2、中点的坐标中点是指连接两点线段的中心点,也是线段的对称点。
我们可以通过平均两点的x坐标和y坐标来求解中点的坐标。
设两点的坐标分别为A(x1,y1)和B(x2,y2),则中点的坐标M(x,y)可表示为:x = (x1 + x2) / 2y = (y1 + y2) / 2下面,结合具体的例子来说明两点的距离和中点的坐标的计算方法。
例子1:已知平面直角坐标系中点A(2,3)和点B(5,6),求两点间的距离和中点的坐标。
解:根据两点间的距离公式,可以得到两点A、B间的距离d:d = √((5-2)^2 + (6-3)^2)= √(9 + 9)= √18≈ 4.24根据中点的坐标公式,可以得到中点M的坐标:x = (2 + 5) / 2 = 3.5y = (3 + 6) / 2 = 4.5所以,点A和点B间的距离为4.24,中点的坐标为(3.5,4.5)。
例子2:已知平面直角坐标系中点C(-1,2)和点D(3,-4),求两点间的距离和中点的坐标。
解:根据两点间的距离公式,可以得到两点C、D间的距离d:d = √((3-(-1))^2 + (-4-2)^2)= √(16 + 36)= √52≈ 7.21根据中点的坐标公式,可以得到中点N的坐标:x = (-1 + 3) / 2 = 1y = (2 + (-4)) / 2 = -1所以,点C和点D间的距离为7.21,中点的坐标为(1,-1)。
八年级数学位置与坐标知识点
八年级数学位置与坐标知识点
八年级数学中,位置与坐标是一个重要的知识点。
以下是一些八年级数学位置与坐标
的基本知识点:
1. 直角坐标系:了解二维平面直角坐标系的定义和性质,包括x轴、y轴、原点以及
坐标轴之间的关系。
2. 点的坐标:学习如何根据一个点在直角坐标系中的位置确定它的坐标。
坐标通常用
一个有序数对(x, y)来表示,其中x是点在x轴上的投影坐标,y是点在y轴上的投影
坐标。
3. 坐标与位置关系:了解不同坐标对应于不同的位置,可以用坐标来确定点的位置,
也可以用位置确定点的坐标。
4. 定点与变量:区分定点和变量的概念。
定点是指在一个问题中位置不变的点,而变
量是指在一个问题中位置可以变化的点。
5. 平移:学习如何通过平移来改变点的位置,平移是指将点沿着一个方向按照相同的
距离保持方向不变地移动。
6. 位置关系的判定:学习如何通过坐标来判断点的位置关系,包括相等、平行、垂直、共线等。
7. 距离的计算:学习如何计算两点之间的距离,通常使用勾股定理或者坐标计算公式。
8. 坐标系的平移和旋转:学习如何通过平移和旋转来改变整个坐标系的位置和方向。
以上是八年级数学中位置与坐标的一些基本知识点。
通过学习这些知识点,可以帮助学生更好地理解点的位置和坐标在数学中的应用。
3.2 平面直角坐标系(课件)北师大版数学八年级上册
对称关系、平行关系、中点等 .
3.建立平面直角坐标系的方法是不唯一的,选择不同的
位置作为原点 ,其他位置的坐标是不同的 .
知4-练
例5 [母题 教材P60随堂练习]根据下面的条件画一幅示意图, 并在图中标出各个景点的位置和坐标. 菊花园:从中心广场向北走150 m,再向东走150 m. 湖心亭:从中心广场向西走150 m,再向北走100 m. 松风亭:从中心广场向西走100 m,再向南走50 m. 育德泉:从中心广场向北走200 m.
离为|b|,到 y 轴的距离为|a|,到原点的距离为 a2+b2 .
知2-练
例2 [母题 教材P59例1 ]如图3-2-2,写出点A,B,C,D, E,F,G,O的 坐标.
知2-练
解题秘方:紧扣点的坐标的定义,利用过点向两坐标 轴作垂线,用垂足表示的数求点的坐标.
解:A(3,4),B(-6,4),C(-5,-2),D(-5,2), E(0,3),F(2,0),G(-4,0),O(0,0).
知4-练
例6 [母题 教材P65例3]如图 3-2-6,已知正方形 ABCD 的
边长为4,建立适当的平面直角坐标系,写出各个顶点
的坐标.
(1)如果以点 C 为坐标原点,分别以 CB, CD 所在的直知线4-为练 x 轴、 y 轴建立平面直角坐标系,那么各个顶点的坐标分 别为 C(0,0), A _______, B_______ , D _______;
解:根据题意,可得点 A(2,2),点 B(2, -2), 点 C(-2, -2),点 D(-2,2) .
知4-练
6-1.如图,建立适当的直角坐标系,写出这个六角星 6 个 顶点 A, B, C,D, E, F 的坐标.
八上数学平面直角坐标系必背知识点总结
第三章平面直角坐标系
1、在平面内,确定一个物体的位置一般需要两个数据。
①列数和排数,(列数,排数)
②方位角和距离,(方位角以南北开头)
③经度和纬度
④区域定位法,如A2
2、平面直角坐标系
定义:在平面内,两条互相垂直且有公共原点重合的数轴组成平面直角坐标系
.......。
x轴与y轴的交
点为平面直角坐标系的原点
..(.0.,.0.).。
水平的数轴叫x.轴或横轴
....;x轴取向右为正方向。
竖直的数
轴叫y.轴或纵轴
....;y轴取向上为正方向。
坐标表示(横坐标,纵坐标)
象限:第一象限(+,+)第二象限(-,+)
第三象限(-,-)第四象限(+,-)
坐标轴(x轴或y轴)上的点不属于任何一个象限.
x轴正半轴(+,0),x轴负半轴(-,0);
y轴正半轴(0,+),y轴负半轴(0,-);
3、性质:
①位于x轴上的点,纵坐标等于0 ;
位于y轴上的点,横坐标等于0 .
②点(x , y)到x轴的距离等于纵坐标的绝对值(即|y|),
到y轴的距离等于横坐标的绝对值(即|x|)。
③ 与x轴平行(或与y轴垂直)的直线上的点,纵坐标相等;
与y轴平行(或与x轴垂直)的直线上的点,横坐标相等;
④关于x轴对称的两个点的坐标,横坐标相等,纵坐标互为相反数;
关于y轴对称的两个点的坐标,纵坐标相等,横坐标互为相反数;
关于原点对称的两个点的坐标,横坐标互为相反数,纵坐标互为相反数;第一象限(+,+)
第二象限(-,+)
第三象限(-,-)第四象限(+,-)。
八年级上册数学第三四章-知识点归纳与习题(教师)
第三章位置与坐标1.平面直角坐标系:(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.这个平面叫做坐标平面.(2)两条坐标轴把平面分成四个部分:右上部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限(如图1-5-1所示).2.点的坐标:(1)对于平面内任意一点P,过点P分别向x轴、y 轴作垂线,垂足在x轴y轴上对应的数a、b分别叫做点P的横坐标、纵坐标.有序数对(a、b)叫做点P的坐标.(2)坐标平面内的点可以用有序实数对来表示反过来每一个有序实数对都能用坐标平面内的点来表示;即坐标平面内的点和有序实数对是一一对应关系.(3)设P(a、b),若a=0,则P在y轴上;若b=0,则P在x轴上;若a+b=0,则P点在二、四象限两坐标轴夹角平分线上;若a=b,则P点在一、三象限两坐标轴夹角的平分线上.(4)设P1(a,b)、P2(c,d),若a=c,则P;P2∥y轴;若b=d,则P;P2∥x轴.3. 对称点坐标点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b),关于原点对称的点的坐标为(-a,-b),反过来,P点坐标为P1(a1,b1),P1(a2,b2),若a1=a2, b1+b2=0, 则P1 、P2关于x轴对称;若a1+a2=0,b1=b2,则P1 、P2关于y轴对称;若a1+a2=0,b1+b2=0,则P1 、P2关于原点轴对称.4.确定位置的方法确定位置的方法主要有两种:(1)由距离和方位角确定;(2)建立平面直角坐标系由一对有序实数对确定.第四章一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
(完整版)平面直角坐标系知识点总结
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
北师大版八年级上册数学[平面直角坐标系(提高版) 知识点整理及重点题型梳理]
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平面直角坐标系(提高)【学习目标】1.了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置.2.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.3.会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.【要点梳理】要点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位). 要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东30°方向78千米的位置,可用代码表示为__________.【思路点拨】根据题目的叙述可知:代码的前四位表示时间,前两位是几点,中间两位表示多少分,后两位是指距离,时间表示方向角,即正对钟表时按:上北,下南,左西,右东的方向,以钟面圆心为基准,时针指向所对应的时间.【答案】050078【解析】解:南偏东30°方向,时针正好指到5点00分,因而代码前4位是:0500,78千米的位置则代码的后两位是78.则代码是:050078.故答案填:050078.【总结升华】正确读懂题目的含义,是解决题目的关键,这一题目就是训练学生审题,理解题目的能力.类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD ,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A ,B ,C ,D 各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A 为坐标原点,边AB 所在的直线为x 轴,边AD 所在直线为y 轴,建立平面直角坐标系,如图(1):A (0,0),B (5,0),C (5,3),D (0,3).解法二:以边AB 的中点为坐标原点,边AB 所在的直线为x 轴,AB 的中点和CD 的中点所在的直线为y 轴,建立平面直角坐标系,如图(2):A (﹣2.5,0),B (2.5,0),C (2.5,3),D (-2.5,3).解法三:以两组对边中点所在直线为x 轴、y 轴,建立平面直角坐标系,如图(3): A (﹣2.5,-1.5),B (2.5,-1.5), C (2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x 轴和y 轴确定,每一个点的位置也确定,而一旦原点或x 轴、y 轴改变,每一个点的位置也相对应地改变.3.平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC 的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A 、C 分别作平行于y 轴的直线与过B点平行于x 轴的直线交于点D 、E ,则四边形ACED 为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD =4,CE =6,DB =4,BE =1,DE =5,所以△ABC 的面积为:111()222ABC S AD CE DE AD DB CE BE =+--△ 111(46)5446114222=+⨯-⨯⨯-⨯⨯=. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三: 【变式】(2015春•莘县期末)在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC 的三个顶点恰好是正方形网格的格点.(1)写出图中所示△ABC 各顶点的坐标.(2)求出此三角形的面积.【答案】解:(1)A(3,3),B((﹣2,﹣2),C((4,﹣3);(2)如图所示:S△ABC=S矩形DECF﹣S△BEC﹣S△ADB﹣S△AFC==.类型三、坐标平面及点的特征4.(2016春•沂水县期中)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【思路点拨】根据点的坐标特征一一求解.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,包括坐标轴上的点的坐标特征,平行于坐标轴的点的特征,以及到坐标轴的距离相等的点的特征,考察很全面.举一反三:【变式】若点C(x,y)满足x+y<0,xy>0,则点C在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点O、A的坐标为O(0,0),A(4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B、C,因为OABC是正方形,所以OC=BA=BC=OA=4.且OC∥AB,OA∥BC,则:(1)当顶点B在第一象限时,如图所示,显然 B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).。
平面直角坐标系知识点总结
平面直角坐标系知识点总结一、知识点框架图二、知识点整理1、有序数对两个数a 、b 组成的有顺序的数对即为有序数对,记作(a ,b )。
ps :有序,即强调(a ,b )和(b ,a )的区别 2、平面直角坐标系三要素:x 轴(横轴)、y 轴(纵轴)、原点O 。
四象限:第一、二、三、四 象限ps :x 轴、y 轴方向要死记 3、点的坐标写点的坐标:写出A 点的坐标(a ,b ),过A 做x 轴y 轴的垂线,点A 到y 轴的距离为a ,点A 到x 轴的距离为b 。
确定平面内点的坐标建立平面直角坐标系点P 坐标 (有序数对(x ,y ))画两条数轴 ①数轴 ②有公共原点1)写点的坐标时,横轴在前(a),纵轴在后(b)2)注意各象限中a、b的正负号4、点坐标的特征1)四象限中点的特征:2)数轴上点的特征:x轴上点的纵坐标为0,写为(a,0)y轴上点的横坐标为0,写为(0,b)ps:坐标轴上的点不属于任一象限!!!3)象限角分线上点的坐标:4)对称点坐标的特点:点A(a,b):5)平行于坐标轴的直线上的点三、平面直角坐标系的应用:1、坐标表示地理位置a)建立坐标系,选择原点,确定下x、y轴b)由具体问题建立适当的比例,标单位长度c)在坐标平面内画出点,写出坐标ps:即为,建系、定长度、写坐标2、用坐标表示平移a)点的平移:b)图形的平移:图形平移即为点平移,且为图形上的点的整体平移。
四、坐标系中的重点&难点重点:建立坐标系,点坐标的特征;难点:点的平移和图形的平移1:如图,在X轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作X轴的垂线,与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a >0,则图中阴影部分的面积是()A.12.5B.25C.12.5aD.25a2:在平面直角坐标系中,已知3个点的坐标分别为A1(1,1) 、A2(0,2)、A3(-1,1),一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P 2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______ ,_______).1、考点分析:此题包括坐标系、一次函数以及图形面积的求法。
八年级数学下册 第十九章 平面直角坐标系 . 平面直角坐标系平面直角坐标系中点的坐标特点
19.2 平面(píngmiàn)直角坐标系 3.平行于坐标轴的直线上的点的坐标特征:
平行于x轴的直线上的点的坐标特征:各点的纵坐标都相等;平行于y
轴的直线上的点的坐标特征:各点的横坐标都相等. 4.各象限(xiàngxiàn)夹角平分线上的点的坐标特征:
第一、三象限平分线上点的横、纵坐标相等;第二、四象限平分线上点的 横、纵坐标互为相反数.
知识(zhī shi)目标
1.通过探究平面直角坐标系各象限点的坐标特征,会根据各象限内 点的坐标特征确定字母的取值范围.
2.通过探索点的坐标与坐标轴的距离(jùlí)关系,会根据点的坐标特征求
点的坐标. 3.经过探索对称点作图的过程,会根据对称点的坐标特征求未知字母 的值.
第三页,共十九页。
19.2 平面(píngmiàn)直角坐标系
目标突破
目标一 会根据各象限(xiàngxiàn)内点的坐标特征确定字母的取值范 围
例1 教材补充(bǔchōng)例题
(1)已知点P(2-a,2a+6)在第四象限,则a的取值范围是( )
A.Aa<-3
B.-3<a<2
C.a>-3
D.a>2
[解析] 由第四象限的符号特征为(+,-),得1-a>0,2a+6<0,解得a<-3.
x轴上的点的 纵坐标 为0;y轴上的点的
横坐为标 0.
第十四页,共十九页。
19.2 平面(píngmiàn)直角坐标系
知识点三 关于x轴、y轴或坐标原点对称(duìchèn)的点的坐标特点
关于(guānxyú轴)
对称时,点的横坐标不变,纵坐标互为相反数;关
于 y轴 对称时,点的纵坐标不变,横坐标互为相反数;关于
8年级-上册-数学-第4章《图形与坐标》-知识点
浙教版-8年级-上册-数学-第4章《图形与坐标》分节知识点一、平面直角坐标系要点一、确定位置的方法1、有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:(1)有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同。
如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.(2)可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).要点二、平面直角坐标系与点的坐标的概念1、平面直角坐标系(1)在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2、点的坐标(1)平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1、象限(1)建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2、各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.二、坐标平面内图形的轴对称和平移要点一、关于坐标轴对称点的坐标特征1、关于坐标轴对称的点的坐标特征(1)P(a,b)关于x轴对称的点的坐标为(a,-b);(2)P(a,b)关于y轴对称的点的坐标为(-a,b);(3)P(a,b)关于原点对称的点的坐标为(-a,-b).2、象限的角平分线上点坐标的特征(1)第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);(2)第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3、平行于坐标轴的直线上的点(1)平行于x轴的直线上的点的纵坐标相同;(2)平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1、点的平移:(1)在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2、图形的平移:(1)在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化。
八年级上册数学知识点归纳大全
八年级上册数学知识点归纳大全一、数与式1.数的整除:整除的定义、性质;0的整除性;素数与合数。
2.代数式:代数式的概念;代数式的运算法则(加、减、乘、除、乘方)。
3.一元一次方程:一元一次方程的定义;一元一次方程的解法(代入法、消元法、加减法)。
二、平面直角坐标系1.坐标与图形:平面直角坐标系的概念;原点、坐标、象限;点的坐标。
2.直线与坐标轴:直线的概念;直线的方程(点斜式、两点式、一般式);坐标轴与直线的关系。
3.坐标与图形:通过坐标表示点、直线、角;平面内的图形变换(平移、旋转、对称)。
三、三角形1.三角形的基本性质:三角形的内角和;三角形的外角和;三角形的角平分线;三角形的中线。
2.三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。
3.三角形的面积:三角形的面积公式(海伦公式、底乘高公式);三角形面积的应用。
四、整式的乘法与因式分解1.整式的乘法:同底数幂的乘法;积的乘方;幂的乘方与积的乘方。
2.整式的因式分解:因式分解的方法(提公因式法、公式法、分组法);因式分解的应用(解方程、求值)。
五、方程与函数1.一元一次方程:一元一次方程的性质;一元一次方程的解法(代入法、消元法、加减法)。
2.一元一次不等式:一元一次不等式的性质;一元一次不等式的解法(代入法、消元法、加减法)。
3.一次函数:一次函数的概念;一次函数的图像与性质;一次函数的应用。
4.反比例函数:反比例函数的概念;反比例函数的图像与性质;反比例函数的应用。
六、数据的整理与描述性统计1.数据的整理:数据的收集与整理(调查、实验、观察);数据的表示与呈现(表格、条形图、折线图)。
2.数据的描述性统计:平均数、中位数、众数;频数与频率;数据的分布(集中趋势、离散程度)。
七、几何图形初步1.图形的认识:基本图形的认识(点、线、面);基本图形的性质。
2.几何变换:图形的旋转;图形的对称(轴对称、中心对称、中心对称图形);图形的平移。
八年级位置与坐标知识点总结归纳
八年级位置与坐标知识点总结归纳位置和坐标是数学中的基础概念,而在八年级的数学学习中,位置与坐标更是一个重要的知识点。
通过掌握位置和坐标的相关知识,我们可以更好地理解几何形状和图像之间的关系,解决实际问题,以及为进一步学习代数和几何打下坚实的基础。
本文将对八年级位置与坐标知识点进行总结归纳。
一、平面直角坐标系的建立及简单应用平面直角坐标系是描述位置和坐标的常用工具。
在平面直角坐标系中,我们通过确定一个原点及与原点相垂直的两条轴线来建立坐标系。
水平轴称为 x 轴,垂直轴称为 y 轴。
根据这个坐标系,我们可以用有序数对 (x, y) 来表示一个点的位置。
例如,点A在平面直角坐标系中的坐标为 (2, 3),其中2表示在 x轴上的位置,3表示在 y 轴上的位置。
平面直角坐标系的应用场景很多,比如在地图上确定一个城市的位置,或者描述电商平台中的商品坐标等。
通过了解坐标系的建立和使用,我们可以更好地处理这些实际问题。
二、点的位置关系及区域划分在平面直角坐标系中,点与点之间有着不同的位置关系,这些关系对我们理解图像形状的变化和判断图形位置都非常重要。
1. 同一直线上的点:如果两个点在同一条直线上,那么它们的 x 坐标相同或者它们的 y 坐标相同。
这个概念对于解决线段和直线问题非常有用。
2. 垂直线和水平线:垂直线与 x 轴正交,而水平线与 y 轴正交。
这种关系在确定直角的情况下非常常见。
3. 区域划分:平面直角坐标系可以将平面划分为四个象限,分别是第一象限、第二象限、第三象限和第四象限。
根据坐标的正负关系,我们可以判断一个点在哪个象限。
通过掌握点的位置关系及区域划分的知识,我们可以在解决问题时更准确地确定坐标的范围和位置。
三、图形的位置和运动在平面直角坐标系中,我们可以通过点的坐标来描述和判断图形的位置和运动。
以下是几种常见的图形情况:1. 点:点的位置由其坐标确定,点的运动就是坐标的变化。
2. 线段:线段是由两个点确定的,可以根据这两个点的坐标求解线段的长度、斜率等。
八年级数学上册知识点:平面直角坐标系
八年级数学上册知识点:平面直角坐标系一、平面直角坐标系1平面直角坐标系:在平面内两条有公共点而且相互垂直的数轴就组成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。
成立了直角坐标系的平面叫坐标平面x轴和轴把坐标平面分成四个部份,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如下图说明:两条坐标轴不属于任何一个象限。
2点的坐标:关于平面直角坐标系内任意一点P,过点P别离向x轴和轴作垂线,垂足在x轴,轴对应的数a,b别离叫做点P的横坐标,纵坐标,有序数对叫做P的坐标。
3点与有序实数对的关系:坐标平面内的点能够用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。
常见考法由点的位置确信点的坐标,由点的坐标确信点的位置;求某些特殊点的坐标。
误区提示求点的坐标时,容易将横、纵坐标弄反,还容易忽小坐标符号;试探问题不周,容易显现漏解。
【典型例题】(XX江苏常州)点p关于x轴的对称点p1的坐标是,点p关于原点的对称点P2的坐标是。
【解析】关于x轴的对称点的坐标是横坐标不变,纵坐标相反,关于原点对称的点的坐标,横、纵坐标都要乘以-1,故此题应当填,。
一、目标与要求1解有序数对的应用意义,了解平面上确信点的经常使用方式。
2培育学生用数学的意识,激发学生的学习爱好。
3把握坐标转变与图形平移的关系;能利用点的平移规律将平面图形进行平移;会依照图形上点的坐标的转变,来判定图形的移动进程。
4进展学生的形象思维能力,和数形结合的意识。
坐标表示平移表现了平面直角坐标系在数学中的应用。
二、重点把握坐标转变与图形平移的关系;有序数对及平面内确信点的方式。
三、难点利用坐标转变与图形平移的关系解决实际问题;利用有序数对表示平面内的点。
四、知识框架五、知识点、概念总结1有序数对:用含有两个数的词表示一个确信的位置,其中各个数表示不同的含义,咱们把这种有顺序的两个数a 与b组成的数对,叫做有序数对,记作其中a表示横轴,b 表示纵轴。
八年级数学上册期中知识点归纳
八年级数学上册期中知识点归纳1.八年级数学上册期中知识点归纳一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征(1)各象限内点的坐标的特征点P(x,y)在第一象限:x;0,y;0点P(x,y)在第二象限:x;0,y;0点P(x,y)在第三象限:x;0,y;0点P(x,y)在第四象限:x;0,y;0(2)坐标轴上的点的特征点P(x,y)在x轴上,y=0,x为任意实数点P(x,y)在y轴上,x=0,y为任意实数点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点(3)两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数(4)和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
平面直角坐标系知识点总结
平面直角坐标系知识点总结平面直角坐标系是数学中一个重要的概念,它在几何图形的分析与研究中起到了关键作用。
在本文中,我们将对平面直角坐标系的概念、性质以及常见的应用进行总结。
通过阅读本文,读者将更好地理解和应用平面直角坐标系。
1. 平面直角坐标系的定义平面直角坐标系是由两条相互垂直的数轴(x轴和y轴)所确定的坐标系统。
其中,x轴被称为横轴,y轴被称为纵轴。
x轴和y轴的交点称为坐标原点O,它是平面直角坐标系的起点。
通过在每个轴上引入单位长度,我们可以对平面上的点进行精确的描述。
2. 平面直角坐标系的性质- 平面直角坐标系中的任意一点都可以通过一对有序实数(x, y)来表示,这对实数分别表示点在x轴和y轴上的投影长度,称为该点的坐标。
- 坐标原点O的坐标为(0, 0)。
横轴上的点的坐标形式为(x, 0),纵轴上的点的坐标形式为(0, y)。
- 平面上两点的距离可以通过坐标计算公式来确定。
对于两个点A(x₁, y₁)和B(x₂, y₂),它们之间的距离为√((x₂ - x₁)² + (y₂ - y₁)²)。
- 平面上两条线段垂直的条件是它们的斜率互为相反数。
3. 平面直角坐标系的应用- 几何图形的位置表示:通过平面直角坐标系,我们可以精确地确定几何图形在平面上的位置。
通过计算坐标,我们可以判断图形的相对位置、大小和形状。
- 直线方程的表示:平面直角坐标系能够方便地将直线的方程表示出来。
一般地,直线的方程可以表示为y = kx + b的形式,其中k是斜率,b是与y轴的截距。
- 坐标变换:平面直角坐标系中,我们可以对坐标进行平移、旋转、缩放等变换操作。
这些操作对于解决几何问题和数学推导具有重要意义。
总结:通过本文的介绍,我们对平面直角坐标系的定义、性质以及应用有了更深入的了解。
平面直角坐标系不仅仅是一个几何概念,它在数学和实际问题的求解中具有广泛的应用。
希望读者通过阅读本文,能够更好地理解和运用平面直角坐标系,为进一步的数学学习和问题解决提供帮助。
初中数学点知识归纳平面直角坐标系中的方程和解法
初中数学点知识归纳平面直角坐标系中的方程和解法初中数学点知识归纳:平面直角坐标系中的方程和解法在初中数学学习中,平面直角坐标系是一个非常重要的概念。
它不仅帮助我们理解和描述几何图形,还可以用来解决方程和实际问题。
在本文中,我们将归纳总结平面直角坐标系中的方程和解法。
一、平面直角坐标系的基本概念在平面直角坐标系中,我们可以通过两条互相垂直的坐标轴来定位点的位置。
通常,我们将水平的坐标轴称为x轴,垂直的坐标轴称为y 轴。
通过x轴和y轴的交点,我们将其称为原点O。
对于任意一个点P,我们可以用其在x轴和y轴上的坐标表示为:P(x, y)。
二、平面直角坐标系中的方程在平面直角坐标系中,我们可以利用方程来描述几何图形或者求解实际问题。
以下是常见的几种方程形式。
1. 点的坐标对于已知点P,它的坐标可以表示为一个方程。
例如,如果点P的坐标为P(2, 3),则方程可以表示为x = 2,y = 3。
2. 线段的长度在平面直角坐标系中,我们可以利用勾股定理计算线段的长度。
对于线段AB,我们可以根据A(x1, y1)和B(x2, y2)的坐标,使用勾股定理得到方程:AB^2 = (x2 - x1)^2 + (y2 - y1)^2。
3. 直线的方程在平面直角坐标系中,直线的方程有多种表示形式。
最常见的两种形式是一般式和斜截式。
- 一般式方程:Ax + By + C = 0其中,A、B、C是常数,A和B不同时为0。
例如,2x + 3y - 6 = 0。
- 斜截式方程:y = kx + b其中,k是直线的斜率,b是y轴截距。
例如,y = 2x + 1。
4. 圆的方程圆在平面直角坐标系中的方程是一个常见的问题。
圆的方程可以表示为:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)是圆心的坐标,r是圆的半径。
三、平面直角坐标系中的解法在平面直角坐标系中,我们可以利用方程求解几何图形或者实际问题。
下面是一些常见的解法。
初中数学知识归纳平面直角坐标系和极坐标系的应用
初中数学知识归纳平面直角坐标系和极坐标系的应用初中数学知识归纳:平面直角坐标系和极坐标系的应用平面直角坐标系(Cartesian coordinate system)和极坐标系(polar coordinate system)是数学中常见的两种坐标系,它们在几何图形的表示和计算中有着广泛的应用。
本文将就平面直角坐标系和极坐标系的特点和应用进行归纳。
一、平面直角坐标系的特点和应用平面直角坐标系是由两根垂直的数轴(x轴和y轴)构成,它的特点是简洁明了,直观易懂。
在平面直角坐标系中,我们可以通过坐标表示一个点的位置,其中x轴表示横坐标,y轴表示纵坐标。
数轴的交点为原点,直角坐标系中的点用有序数对(x,y)表示。
在几何图形的表示中,平面直角坐标系常常用于描述点、线、线段和图形的位置、长度、面积等属性。
例如,对于一个三角形ABC,在平面直角坐标系中可以根据顶点A、B、C的坐标计算出三边的长度、三个内角的大小,并进一步进行三角形的分类。
此外,平面直角坐标系还可用于绘制函数图像,解决线性方程组等各种数学问题。
二、极坐标系的特点和应用极坐标系是由极轴Ox和极角θ构成的,其中极轴表示与x轴平行的直线,极角表示该直线与x轴正向的夹角。
在极坐标系中,我们用有序数对(r,θ)表示一个点的位置,其中r表示该点与极轴的距离,θ表示该点与极轴的夹角。
相比平面直角坐标系,极坐标系适用于描述圆心对称的图形,因为极坐标系能够唯一确定一个点的位置。
例如,通过极坐标系,我们可以直观地描述圆的位置、半径和角度;在绘制螺旋线、花瓣曲线等特殊曲线时,极坐标系也更为便捷。
不仅仅在几何图形的表示中,极坐标系还在物理学、工程学等领域有广泛的应用。
例如,在天文学中,极坐标系常被用于描述行星和恒星的轨迹、位置和运动规律;在雷达和导航系统中,极坐标系能提供更精确的目标定位信息。
三、平面直角坐标系和极坐标系的联系平面直角坐标系和极坐标系在描述一个点的位置时有着紧密的联系。
数学平面直角坐标系的知识点
数学平面直角坐标系的知识点漫长的学习生涯中, 是不是听到知识点, 就立刻清醒了?知识点也不一定都是文字, 数学的知识点除了定义, 同样重要的公式也可以理解为知识点。
想要一份整理好的知识点吗?下面是店铺精心整理的数学平面直角坐标系的知识点, 供大家参考借鉴, 希望可以帮助到有需要的朋友。
数学平面直角坐标系的知识点11.平面直角坐标系:(1)在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系, 通常把其中水平的一条数轴叫横轴或轴, 取向右的方向为正方向;铅直的数轴叫纵轴或轴, 取向上的方向为正方向;两数轴的交点叫做坐标原点。
(2)建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分, 称为四个象限, 按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限说明: 两条坐标轴不属于任何一个象限。
2.点的坐标:对于平面直角坐标系内任意一点P, 过点P分别向x轴和y轴作垂线, 垂足在x轴, y轴对应的数a,b分别叫做点P的横坐标, 纵坐标, 有序数对(a, b)叫做P的坐标。
3.点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示, 反过来每一个有序实数对应着坐标平面内的一个点, 即坐标平面内的点和有序实数对是一一对应的关系。
数学平面直角坐标系的知识点2一、平面解析几何的基本思想和主要问题平面解析几何是用代数的方法研究几何问题的一门数学学科, 其基本思想就是用代数的方法研究几何问题。
例如, 用直线的方程可以研究直线的性质, 用两条直线的方程可以研究这两条直线的位置关系等。
平面解析几何研究的问题主要有两类:一是根据已知条件, 求出表示平面曲线的方程;二是通过方程, 研究平面曲线的性质。
二、直线坐标系和直角坐标系直线坐标系, 也就是数轴, 它有三个要素: 原点、度量单位和方向。
如果让一个实数与数轴上坐标为的点对应, 那么就可以在实数集与数轴上的点集之间建立一一对应关系。
点与实数对应, 则称点的坐标为, 记作, 如点坐标为, 则记作;点坐标为, 则记为。
八年级上册知识点归纳总结
第十二章平面直角坐标系12.1平面上的点的坐标定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(),则x>0>0;第二象限:(-,+)点P(),则x<0>0;第三象限:(-,-)点P(),则x<0<0;第四象限:(+,-)点P(),则x>0<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(),关于x轴的对称点坐标是(), 横坐标相同,纵坐标反号关于y轴的对称点坐标是() 纵坐标相同,横坐标反号关于原点的对称点坐标是() 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等;平行于y 轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P ()的几何意义:点P ()到x 轴的距离为 ,点P ()到y 轴的距离为 。
点P ()到坐标原点的距离为22y x + 8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x ||12x x -=Y 轴上两点为C ),0(1y 、D ),0(2y ||12y y -=已知A ),(11y x 、B ),(22y x 212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为的中点则:( , )12.2点的平移特征: 在平面直角坐标系中,将点()向右平移a 个单位长度,可以得到对应点( ,y );将点()向左平移a 个单位长度,可以得到对应点( ,y );将点()向上平移b个单位长度,可以得到对应点(x,y+b);将点()向下平移b个单位长度,可以得到对应点(x,y-b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
平面直角坐标系知识点归纳
1.在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;
2.坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对(b a ,)一一对应;其中,a 为横坐标,b 为纵坐标坐标;
3.x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;
坐标轴上的点不属于任何象限;
4.四个象限的点的坐标具有如下特征:
5.在平面直角坐标系中,已知点P ),(b a ,则
(1)点P 到x 轴的距离为b ;
(2)点P 到y 轴的距离为a ;
(3)点P 到原点O 的距离为PO = 22b a 6.平行直线上的点的坐标特征:
a)在与x 轴平行的直线上,所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ;
b)在与y 轴平行的直线上,所有点的横坐标相等; 点C 、D 的横坐标都等于n ;
7.对称点的坐标特征:
A)点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; B)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; C)点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;
8.两条坐标轴夹角平分线上的点的坐标的特征:
A)若点P (n m ,)在第一、三象限的角平分线上,则n m
=,即横、纵坐标相等;
B)若点P (n m ,)在第二、四象限的角平分线上,则n m -=
,即横、纵坐标互为相反数;
在第一、三象限的角平分线上 在第二、四象限的角平分线上
X X P X -X。