(完整版)抽象函数解题方法与技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数解题方法与技巧
函数的周期性:
1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x -a)(或f(x -2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;
2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a -b|的周期函数;
3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a -b|的周期函数;
4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a -b|的周期函数;
5、若函数y=f(x)满足f(a+x)=f(a -x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;
6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-
⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1
1
f x f x a f x -+=
+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数;
8、若()()
()11
f x f x a f x -+=
+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
(7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b -x),则函数y=f(x)的图像关于直线2
a b x +=对称;
2、若函数y=f(x)满足f(x)=f(2a -x)或f(x+a)=f(a -x),则函数y=f(x)的图像关于直线x=a 对称;
3、若函数y=f(x)满足f(a+x)+f(b -x)=c ,则y=f(x)的图像关于点,2
2a b c +⎛⎫
⎪⎝⎭
成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a -x,2b -y)=0; 5、形如()0,ax b
y c ad bc cx d
+=
≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b
a c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝
⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;
6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b -x)的图像关于直线2b a x -=对称;
7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x)
()()()()()()()1
1
11212112()()
11
f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++
二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。
例2..23
2
|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设
三、待定系数法
如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。 例3.已知f(x)是二次函数,且f(x+1)+f(x -1)=2x 2-4x ,求f(x).
四、赋值法
有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。 例4.对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.
例5.已知f(x)是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论;
五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为
问题的解决带来极大的方便.
例6.设函数f(x)对任意实数x,y ,都有f(x+y)=f(x)+f(y),若x>0时f(x)<0,且f(1)= -2, 求f(x)在[-3,3]上的最大值和最小值。
例7.定义在R +上的函数f(x)满足: ①对任意实数m ,f(x m )=mf(x); ②f(2)=1. (1)求证:f(xy)=f(x)+f(y)对任意正数x,y 都成立; (2)证明f(x)是R +上的单调增函数; (3)若f(x)+f(x -3)≤2,求x 的取值范围。
六、递推法 对于定义在正整数集N*上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,
也常用递推法来求解.
例8.已知f(x)是定义在R 上的函数,f(1)=1,且对任意x ∈R 都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x ,则g(2002)=_________.
模型法
模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。
5个根之和=_____________
例11.设定义在R 上的函数f(x),满足当x>0时,f(x)>1,且对任意x ,y ∈R ,有f(x+y)=f(x)f(y),f(1)=2 (1)解不等式f(3x -x 2)>4;(2)解方程[f(x)]2+
1
2
f(x+3)=f(2)+1
例12.已知函数f(x)对任何正数x,y 都有f(xy)=f(x)f(y),且f(x)≠0,当x>1时,f(x)<1。试判断f(x)在(0,+∞)上的单调性,并说明理由。
函数性质练习
1. 已知函数为偶函数,则的值是( )
A. B. C. D.
2. 若偶函数在上是增函数,则下列关系式中成立的是( )
)127()2()1()(2
2
+-+-+-=m m x m x m x f m 1234)(x f (]1,-∞-