计量经济学模型
计量经济学模型建立:8步骤
一、往届的学生提交的作业存在问题归纳如下:1、缺少具有说服力的理论假说2、变量之间关系牵强,无研究价值和实际意义如:全国居民消费价格指数与商品零售价格指数;粮食出售量与蔬菜出售量;农民收入与居民收入;日照时间与粮食产量;等等。
3、自变量不是主要的影响因素,如日照时间就不是影响粮食产量的主要因素4、变量的度量指标不具体,模糊不清5、指标数据的类型不明确,是采用时间序列数据、还是截面数据。
二、提供可参考的计量经济学模型:1.生产函数:农业总产值与农业从业人员、财政用于农业资金、农业机械总动力关系工业总产值与固定资产、职工人数之间的关系2.消费函数:(1)食品消费支出与食品价格、家庭年(月)人均收入(2)不同地区城镇居民家庭人均可支配收入与人均消费支出(3)中国居民收入与消费的关系(4)农村居民消费函数:农村居民人均消费支出与农业经营纯收入、其他来源的纯收入3.需求函数:Y:居民对食品的消费量;X1:消费者消费支出总额;X2:食品价格指数三、计量经济学模型建立:8个基本步骤现实问题:经济形势对人们工作意愿的影响?第一步,建立一个理论假说假说一:受挫—工人假说。
即经济形势恶化(表现为高失业率),则工人的工作意愿下降(表现为低劳动参与率);假说二:增加—工人假说。
即经济形势恶化(高失业率),许多后备工人进入劳动市场以补贴家庭开支(尽管薪酬很低),进而导致劳动参与率上升。
第二步,收集数据变量:经济形势,劳动者的工作意愿具体的度量指标:城市失业率(%),城市劳动力参与率(%)数据一般来源:权威部门向社会发布的统计信息、公开出版物、亲自调查资料来源:总统经济报告,2008年 第三步,设定数学模型第四步,设立统计或经济计量模型 第五步, 估计经济计量模型参数第六步,检查模型的适用性:模型设定检验1.经济意义检验:2.统计学检验:3.计量经济学检验:第七步,检验源自模型的假说;1.验证估计的模型是否有经济意义;2.估计的结果是否与经济理论相符。
计量经济学--几种常用的回归模型课件
计量经济学--几种常用的回归模型
18
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。
• P166例6.4
计量经济学--几种常用的回归模型
19
对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
20
Yi 1 2 ln X i i
计量经济学--几种常用的回归模型
9
半对数模型
• 只有一个变量以对数形式出现
计量经济学--几种常用的回归模型
10
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
11
• 线性到对数模型(因变量对数形式)
计量经济学--几种常用的回归模型
12
Yt Y0(1 r )t
ln Yi 2 ln X i i
计量经济学--几种常用的回归模型
4
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。
• 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学--几种常用的回归模型
5
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
计量经济学--几种常用的回归模型
8
ห้องสมุดไป่ตู้意
• 是产出对资本投入的(偏)弹性,度量
在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比;
• 是产出对劳动投入的(偏)弹性,度量
在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比;
• 给出了规模报酬信息
计量经济学回归分析模型
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629
称i为观察值Yi围绕它旳期望值E(Y|Xi)旳离差
(deviation),是一种不可观察旳随机变量,又称 为随机干扰项(stochastic disturbance)或随机误 差项(stochastic error)。
例2.1中,个别家庭旳消费支出为:
(*)
即,给定收入水平Xi ,个别家庭旳支出可表达为两部分之和: (1)该收入水平下全部家庭旳平均消费支出E(Y|Xi),称为 系统性(systematic)或拟定性(deterministic)部分。
注意: 这里将样本回归线看成总体回归线旳近似替代
则
样本回归函数旳随机形式/样本回归模型:
一样地,样本回归函数也有如下旳随机形式:
Yi Yˆi ˆ i ˆ0 ˆ1 X i ei
式中, ei 称为(样本)残差(或剩余)项(residual),代表
了其他影响Yi 的随机因素的集合,可看成是 i 的估计量ˆ i 。
相应旳函数:
E(Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。
计量经济学回归分析模型
计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。
其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。
回归分析模型中的关系可以是线性的,也可以是非线性的。
线性回归模型是回归分析中最为常见和基础的模型。
它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。
回归模型的核心是确定回归系数。
通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。
最小二乘法通过使得误差的平方和最小化来估计回归系数。
通过对数据进行拟合,我们可以得到回归系数的估计值。
回归分析模型的应用范围非常广泛。
它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。
此外,回归分析模型还可以用于政策评估和决策制定。
通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。
在实施回归分析模型时,有几个重要的假设需要满足。
首先,线性回归模型要求因变量和自变量之间存在线性关系。
其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。
此外,回归模型要求误差项具有同方差性和独立性。
在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。
显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。
此外,还可以通过确定系数R^2来评估模型的拟合程度。
R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。
总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。
在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。
计量经济学GMM模型
计量经济学GMM模型计量经济学GMM模型是指基于计量经济学的Generalized Method of Moment(GMM)模型。
它是一种基于有限数学参数来解释经济现象的模型,它利用最优估计技术来拟合大量数据,预测和分析隐藏在它们背后的模式。
为了使用GMM模型来估计价格、需求、收入、消费、投资和其他宏观变量,需要对其进行调整和运行。
一、计量经济学GMM模型基本原理计量经济学GMM模型的基本原理建立在极大似然估计(MLE)的基础之上。
它假设某一经济现象的行为是由一个有限、可估计参数的定量模型来建模的,这些参数的估计值可以使模型的残差最小化。
模型除了参数之外,还规定了模型对应的经济现象的一般特征(比如相关性)。
因此,计量经济学GMM模型是通过最小化函数来拟合实验数据,以确定参数值的一种方法。
二、计量经济学GMM模型特点1.有效性:由于GMM模型能够在有限数据情况下得到准确估计,因此是一种十分可靠的估计方法。
2.准确性:与其他经济数据加工方法(如典型回归模型)相比,GMM的准确性要好得多,能够提供更精确的参数估计。
3.便捷性:GMM模型也是一种简单便捷的预测方法,可以轻易地从历史数据中抽取出参数,从而把它们应用到现实经济中。
4.减小噪音:GMM模型能够准确地对数据进行拟合,可以有效地压制测量误差的影响。
三、计量经济学GMM模型的应用1. 价格预测:GMM模型可以通过利用时间序列上的历史数据、均衡条件以及其他特征,预测出最终的物价变动情况;2. 投资分析:使用GMM模型,可以施行完整性的投资分析,以便估计未来对投资报酬的影响程度;3. 消费预测:使用此模型预测消费行为,可以估计预算支出,并调节它以达到给定的消费预算。
4. 估计协整模型:GMM模型可以被用来估计协整模型,这样可以用来衡量不同的经济变量是否存在协整关系。
总之,计量经济学GMM模型对于对数据拟合和通过数据估计市场变量都具有重要意义。
它具有有效性、准确性、便捷性和减少噪音的特点;并且可以被广泛用于价格预测、投资分析、消费预测和估计协整模型等领域。
计量经济学模型
模型参数的估计
模型参数的估计方法,是计量经 济学的核心内容。
模型参数的估计是一个纯技术的 过程,包括对模型进行识别(对联立 方程模型而言)、估计方法的选择、 软件的应用等内容。
模型的检验
一般讲,计量经济学模型必须 通过四级检验: (1)经济意义检验 (2)统计学检验 (3)计量经济学检验 (4)预测检验
计量经济模型
计量经济模型揭示经济活动中各个 因素之间的定量关系,用随机性的数学 方程加以描述。
Q =Aeγ tKα Lβ μ 其中μ 为随机误差项。这就是计量 经济学模型的理论形式。
计量经济学的根本 任务是建立、估计、 检验和运用计量经济 学模型。
建模步骤
一、理论模型的设计 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、分析总结
17 1994 china 46690.7 26796 19260.6
18 1995 china 58510.5 33635 23877
时间序列数据的注意事项
(1)时间序列误差项间往往存在强相关 (自相关);
(2)数据频率问题。有时样本观察值过于 集中,不能反映经济变量间的结构关系, 应增大观测区间;
5
133
1999 2
6
134
1999 1
15
3
16
4
1000 7 3500 3
截面数据的注意事项
(1)人们一般认为截面数据是随机的;
(2)样本点间的同质性;
(3)截面数据容易引起误差项的异方差 问题。
时间序列数据 (Time series data)
• 时间序列数据又称纵向数据,是对同一个变量 在不同时间取值的一组观测结果,或者说是一 批按照事件先后顺序排列的统计数据。例如, 我国自改革开放的1978-2000年GNP数据。
计量经济学GMM模型
计量经济学GMM模型GMM(Generalized Method of Moments)模型是一种常用的计量经济学研究方法,它可用于宏观和微观评估。
它可以有效地应用于估计模型参数,以及对时间序列数据和静态数据进行调查。
一、GMM模型的概述GMM模型一般用来拟合静止的观测数据,它从经济学的角度分析模型的稳定性和鲁棒性,以及估计模型参数的准确性。
它原本可以用于估计一组未知参数,例如通过给定实证拟合模型,或者提供模型和控制参数之间的最优拟合程度或优化。
二、GMM模型的方法GMM模型主要分为三个部分:模型假设、观测式和估计模型。
1)模型假设:使用GMM模型估计数据参数时,需要规定一定的模型假设,例如宏观和微观的假设,变量的变化趋势假设,以及假设误差的连续性和独立性等。
2)观测式:根据给定的模型假设,确定观测式,以估计模型中变量之间的关系,形成一套数学表达式,以及协变量和残差之间的相关关系等。
此外,还会考虑模型假设的健康性(例如时间序列的平稳性)。
3)估计模型:使用迭代方法对模型参数进行估计,通过调整参数得到模型中变量的参数估计量以及估计误差,以及观测的绝对误差估计,最后将以上结果装入优化算法,以获得最小残差平方和模型的优化参数。
三、GMM模型的应用(1)GMM模型在宏观计量经济学中可以用于计算长期均衡,估计投资、政府支出、净出口和 GDP 核算等变量,以及进行宏观估计;(2)时间序列模型,例如经济周期性模型和机会模型;(3)微观计量经济学中可用于计算企业间的差异,例如产品的可替代性,员工行为问题的解决。
四、GMM模型的优缺点(1)GMM模型的优点:GMM模型对于时间序列和静态数据都有较好的应用,而且可以用来估计模型参数,均衡拟合度以及评估模型的可行性等。
(2)GMM模型的缺点:GMM模型的计算复杂度较大,容易受到外部激励因素的干扰,估计偏差较大,而且模型假设不当也会导致研究失误。
计量经济学模型整理大全
1
E
需要
0
E
对变形后的模型做 OLS 估计即可
1
先忽略异方差做普通的 OLS,得到 ,然
后用 代替 来回归变形之后的模型
可以减小异方差
做平常的 OLS,然后在认为有异方差的情
况下,用 代替 ,进而得到一致估计量
∗
⇔
∗
∗ ∗
∗
方法:OLS 使得∑ ∗ 最小
∗
∑ ∑
∑ ∑
Var
∗
∑ ∑
∑
1
∑
∑ ∑
∑
性质
未知
E
E
1
对数法
怀特稳健
标准误
内
生
性
1
1
1
′
∑ 1
Var
∑
可线性化的模型
模型/用途
可
线
性
化
的
模
型
双对数
不变弹性模型
线性-对数
衡量增长率
设定
计量经济学理论的模型解释与预测
计量经济学理论的模型解释与预测引言计量经济学是经济学中一个重要的分支,其研究方法主要基于经济理论和数理统计学,旨在通过使用数学和统计方法来解释经济现象,并进行预测和政策分析。
计量经济学理论的模型是实现这一目标的核心工具。
本文将对计量经济学理论的模型进行解释,并探讨其在预测方面的应用。
一、计量经济学理论的模型解释1.1 常见的计量经济学模型计量经济学模型是对经济现象进行抽象和概括的数学表达式。
常见的计量经济学模型包括线性回归模型、时间序列模型、面板数据模型等。
线性回归模型是计量经济学中最基础且广泛应用的模型之一。
它假设变量之间存在线性关系,并通过估计各个变量的系数来解释经济现象。
时间序列模型是用于分析时间序列数据的模型,其中包括自回归模型、移动平均模型、ARMA模型等。
时间序列模型主要用于分析时间上的趋势和周期性。
面板数据模型是同时包含横截面和时间序列数据的模型,通常用于分析跨国或跨地区的经济现象。
面板数据模型可以同时考虑个体特征和时间特征,提高了模型的解释能力。
1.2 模型解释的基本步骤模型解释是对计量经济学模型进行参数估计和推断的过程。
基本的模型解释步骤包括模型设定、估计方法选择、参数估计和模型诊断。
模型设定是根据研究目的和数据特征选择适当的计量经济学模型,并确定模型中包含的变量和假设条件。
估计方法选择是根据模型的性质和数据的特点选择合适的估计方法,常见的估计方法包括最小二乘法、广义最小二乘法、极大似然估计等。
参数估计是利用选定的估计方法对模型的参数进行估计,通常使用计算机软件进行参数的数值计算。
模型诊断是对估计结果进行评价和检验,包括残差分析、假设检验等。
模型诊断可以用于判断模型的拟合程度和参数的显著性。
1.3 模型解释的应用领域计量经济学模型的解释应用广泛,包括实证研究、政策评估和预测分析等。
实证研究是计量经济学模型应用的基本领域,通过对模型进行解释,可以验证和检验经济理论的有效性,并提供实证证据支持。
计量经济学的模型
计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。
它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。
计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。
其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。
在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。
为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。
计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。
它在宏观经济、金融市场、产业经济等领域都有广泛的应用。
总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。
计量经济学模型方法
计量经济学模型方法
计量经济学是一种应用数学和统计学原理来研究经济现象的方法。
计量经济学模型是一种用来描述经济关系的数学模型。
常用的计量经济学模型方法包括:
1. 线性回归模型(Linear Regression Model):线性回归模型是最常用的计量经济学模型之一,用于描述一个或多个自变量与因变量之间的线性关系。
该模型可以用来估计变量之间的关系,并进行预测和因果推断。
2. 面板数据模型(Panel Data Model):面板数据模型是一种用于分析来自多个观察单位的经济数据的模型。
它结合了时间序列数据和截面数据的特点,可以考虑个体间的异质性和个体内的序列相关性。
3. 时间序列模型(Time Series Model):时间序列模型用于分析随时间变化的经济数据。
它考虑到数据的序列相关性和趋势,可以用来预测未来的值和分析数据的长期趋势。
4. 非线性回归模型(Nonlinear Regression Model):非线性回归模型用于描述自变量和因变量之间的非线性关系。
它可以更准确地拟合实际经济数据,但参数估计和推断方法更复杂。
5. 非参数模型(Nonparametric Model):非参数模型是一种不对数据分布做出假设的模型,它不依赖于具体的函数形式,通过比较观测值之间的相对顺序来估计变量之间的关系。
这些方法可以根据具体问题的需要进行选择和应用。
在实际研究中,常常会结合多种方法和模型,以得到更全面和准确的分析结果。
计量经济学4种常用模型
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。
计量经济模型确定供需关系大类商品预测方法
计量经济模型确定供需关系大类商品预测方法在市场经济中,准确预测供需关系对于企业决策和市场调控至关重要。
大类商品的供需关系预测可以帮助市场参与者更好地进行生产安排、销售策略制定和价格调整。
计量经济模型是一种常用的工具,可以帮助预测大类商品的供需关系,并为决策者提供有效的参考。
计量经济模型是一种建立在经济理论基础上的统计模型,通过对历史数据进行分析和拟合,以确定各种经济因素对供需关系的影响程度。
以下将介绍一些常见的计量经济模型,用于预测大类商品的供需关系。
1. 多元线性回归模型多元线性回归模型是一种简单而常用的计量经济模型,可以用于研究不同因素对供需关系的影响。
该模型基于一个或多个自变量与一个因变量之间的线性关系进行建模。
在预测大类商品的供需关系时,可以选择合适的自变量,如价格、收入水平、人口数量等,来解释大类商品的需求和供给变化。
模型建立后,可以使用历史数据对模型进行估计,然后应用估计得出的模型参数进行预测。
2. 时间序列模型时间序列模型是一种专门用于预测时间序列数据的计量经济模型。
在预测大类商品的供需关系时,可以将历史数据按照时间顺序排列,利用时间序列模型进行分析和预测。
常见的时间序列模型包括移动平均模型、指数平滑模型和自回归移动平均模型(ARIMA)。
这些模型可以帮助我们捕捉到大类商品供需关系中的季节性、趋势性和周期性变化,从而更准确地预测供需关系。
3. 面板数据模型面板数据模型是一种将时间序列数据和截面数据结合起来的计量经济模型。
在预测大类商品的供需关系时,可以将多个年份或多个地区的数据汇总,并使用面板数据模型进行分析和预测。
面板数据模型可以帮助我们探索不同因素对供需关系的影响,并考虑到时间和空间的变化。
常见的面板数据模型包括固定效应模型和随机效应模型,它们可以提供更准确的预测结果,并帮助决策者更好地理解供需关系。
上述三种计量经济模型是预测大类商品供需关系常用的方法,但在实际应用中,需要根据具体情况选择合适的模型。
计量经济学模型
1969 R. Frish J. Tinbergen 1973 W. Leotief 1980 L. R. Klein 1984 R. Stone 1989 T. Haavelmo 2000 J. J. Heckman D. L. McFadden ○16位担任过世界计量经济学会会长 ○ 30位左右在获奖成果中应用了计量经济学 ○“二战以后的经济学是计量经济学的时代”-Samuelson ○“计量经济学的讲授已经成为经济学课程表中最有权威 的济活动中各因素之间的理论关系, 用确定性的数学方程描述。例如,生产函数可描述为: Q Aet K L 公式描述了技术、资本、劳动与产出量之间 的理论关系,认为这种关系是准确实现的。利用数理经济 模型,可以分析经济活动中各种因素之间的互相影响,为 控制经济活动提供理论指导。但是,数理经济模型并没有 揭示因素之间的定量关系,在上式中,参数是未知的。
解释:如何正确地选择解释变量
• 首先,需要正确理解和把握所研究的经济现象中暗含的经济学理论和 经济行为规律。这是正确选择解释变量的基础 – 例如,在上述生产问题中,已经明确指出属于供给不足的情况, 那么,影响产出量的因素就应该在投人要素方面,而在当前,一 般的投人要素主要是技术、资本与劳动 – 如果属于需求不足的情况,那么影响产出量的因素就应该在需求 方面,而不在投入要素方面。这时,如果研究的对象是消费品生 产,应该选择居民收人等变量作为解释变量;如果研究的对象是 生产资料生产,应该选择固定资产投资总额等变量作为解释变量。
• 经济计量模型由系统或方程组成,方程由 变量和系数组成。其中,系统也是由方程 组成。
怎样看待计量经济模型?
• 广义地说,一切包括经济、数学、统计三 者的模型;
计量经济学----几种常用的回归模型
• P175图6.10
几种常用的回归模型计量经济学回归模型计量经济学常用模型常用回归模型常用的回归模型计量经济学回归分析计量经济学线性回归计量经济学回归计量经济学逐步回归法计量经济学非线性回归
几种常用的回归模型
1. 对数线性模型 2. 半对数模型 3. 倒数模型 4. 对数倒数模型
1. 对数线性模型(不变弹性模型)
2的含义?
• 其测度了Y的瞬时增长率,即Y随着时间t变化的变 化率。 • 例如,Y为个人的年消费支出,t为年度,那么斜 率系数为个人消费支出的年增长率。
证明:
d(ln Y ) dY Y dY dt 2 dt dt Y
• 注意根据斜率系数的估计值也可以求出复 合增长率r的值。
线性到对数模型
回归子的相对改变量 2 回归元的绝对改变量
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。 • P166例6.4
对数到线性模型(解释变量对数形式)
Yi 1 2 ln X i i
dY 2 d(lnX ) dX X
dY
2的含义?
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
适用性?
• 画出lnYi对lnXi的散点图,看是否近似为一 条直线,若是,则考虑此模型。 • P165例6.3
例:柯布--道格拉斯生产函数(P210)
Y AK L e
i
ln Y ln A ln K ln L i ln Y 0 lnK lnL i
• 其测度了X变化1%时Y的绝对变化量,当X变化1% 时,Y绝对变化为0.01 2
3. 倒数模型
常用计量经济学模型
Box和Pierce的Q统计量
Q T
2 2 ˆ ( k ) ~ (K ) k 1
K
如果检验通过,则随机过程是白噪声。
自相关函数还可被用于检验一个序列是否平稳。
平稳时间序列的自相关函数随着滞后期k的增加而快速下降为0
(k )
(k )
k
k
平稳序列
非平稳序列
齐次非平稳过程
yt非平稳,但yt – yt-1平稳,称yt为一阶齐次非平稳过程 [例] 随机游走过程是一阶齐次非平稳过程
对于季度资料
~ 此时可大致认为 yt 已无季节和不规则波动,可看作 L C 的估计
1 ~ yt (0.5 yt 2 yt 1 yt yt 1 0.5 yt 2 ) 4
第二步 估计S×I
令
yt zt ~ yt
L S C I ( S I) LC
zt即为S×I的估计
第三步 消除不规则变动,得到S的估计
对S×I中同一季节的数据进行平均,从而消除掉I。
例如,对于月度数据,假定 y1是1月份的数据,
y2是1月份的数据,
y3是1月份的数据, 则 y4是1月份的数据,总共4年数据。
1 z1 ( z1 z13 z 25 z37 ) 4 1 z 2 ( z 2 z14 z 26 z38 ) 4
五、混合自回归-移动平均(ARMA)模型
ARMA (p , q):
yt 1 yt 1 p yt p t 1 t 1 q t q
ARMA(1 , 1):
yt 1 yt 1 t 1 t 1
美国商业部:1986年1月至1995年12月百货公司 的月零售额(亿元)
计量经济学阈值模型
计量经济学阈值模型计量经济学阈值模型也被称为门槛模型或阈值回归模型,是在计量经济学领域中应用广泛的一种统计方法。
该模型的核心理念是变量之间的关系在不同的阈值条件下可能会发生改变。
阈值模型的出现是为了解决传统线性回归模型对于非线性关系无法很好解释的问题。
在传统的线性回归模型中,假设自变量与因变量之间的关系是线性的,即变量间的关系可以用一条直线来表示。
然而,在实际问题中,经济变量之间往往存在非线性的关系,例如经济增长和金融深化之间的关系可能在某个特定的经济增长水平上发生变化。
阈值模型的基本形式可以表示为:Y = β0 + β1X + β2D + ε其中,Y为因变量,X为自变量,D为阈值变量,β0是截距项,β1、β2是系数,ε是误差项。
阈值模型的关键是确定阈值的位置和具体值。
通常有两种方法来确定阈值。
第一种方法是基于经验,即根据经济理论或实践经验来确定阈值的位置和大小。
第二种方法是通过统计检验来确定阈值。
常用的统计方法包括似然比检验、信息准则等。
在阈值模型中,通过估计不同阈值条件下的系数可以得到不同阶段的参数估计结果。
这种方法可以更好地捕获自变量和因变量之间的非线性关系,并提供更准确的预测。
阈值模型的应用有很多,例如在经济增长和金融发展之间的关系研究中,可以通过阈值模型发现经济增长到达一定水平后,金融发展对经济增长的贡献会发生变化。
此外,在金融市场中也可以使用阈值模型来研究价格波动和交易量之间的关系,以及市场的非线性特征。
总之,计量经济学阈值模型是一种能够处理非线性关系的统计方法,能够更好地解释变量之间的关系。
阈值模型的出现丰富了计量经济学的研究方法,拓宽了经济学领域的研究范围。
近年来,随着计量经济学理论和方法的不断发展,阈值模型的应用也在不断扩大,并为经济学研究提供了新的思路和工具。
计量经济学模型名词解释
计量经济学模型名词解释计量经济学是一门运用数学、统计学和经济学理论研究经济现象的学科。
在计量经济学中,模型是用来描述经济关系和预测经济变量的数学表达式。
以下是一些计量经济学模型中的名词解释:1. 普通最小二乘法(OLS):是一种通过最小化误差的平方和来寻找数据最佳函数匹配的统计方法。
2. 广义最小二乘法(GLS):是一种针对原始模型进行变换,以解释误差方差的方差已知结构(异方差性)、误差中的序列相关形式或同时解释二者的估计量。
3. 加权最小二乘法(WLS):通过使用对某种已知形式的异方差进行调整的估计量,其中每个残差的平方都用一个等于误差的(估计的)方差的倒数作为权数。
4. 解释平方和(SSE):在多元回归模型中,度量拟合值的样本变异。
5. 残差平方和(SSR):实际值与估计值之差的平方的总和,即误差项平方的总和。
6. 总平方和(SST):因变量相对于其样本均值的总样本变异。
7. 高斯马尔科夫假定(横截面数据):包括MLR1-MLR5五个假设,其中MLR1-4表示无偏性,MLR1-5表示得到的估计量是BLUE(最优线性无偏估计量)。
8. 高斯马尔科夫假定(时间序列数据):包括TS.1-TS.5五个假设,涉及线性性、无序列相关等条件。
9. 标准差:一次抽样中个体分数间的离散程度,反映了个体分数对样本均值的代表性。
10. 标准误:多次抽样中样本均值间的离散程度,反映了样本均值对总体均值的代表性。
11. 回归分析:通过建立变量之间的关系模型,对计量经济学模型参数进行估计、显著性检验及分析评价的过程。
12. 异方差:误差项方差的非恒定性质,可能导致参数估计量失效。
13. 多重共线性:自变量之间存在较高线性相关性的情况,可能导致参数估计量失效或经济含义不合理。
14. 随机解释变量:在总体回归函数中引入随机干扰项,用以代表未知的影响因素、残缺证据、众多细小影响因素、数据观测误差和模型设定误差等。
15. 一元线性回归模型:包含一个解释变量和一个被解释变量的简单线性关系模型,其基本假设包括回归模型正确设定、解释变量与误差项相互独立等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 计量经济学应用
§7.1 计量经济学模型的设定
计量经济学模型设定的主要根据:
1) 研究目的;
2) 已有理论模型。
通常是根据研究目的所涉及的范围,决定需要分析哪些经济变量之间的关系。
再设定这些变量之间的关系式。
设定变量关系式可以根据已有的理论模型、经济恒等式、经济关系式来确定(可能需要进行一定的修改)。
若没有已知的关系式可用,可以根据研究目的,人为设定。
变量间具体表达式的选择
若经济理论已给出具体表达式,就直接套用。
否则,可以直接假设为线性函数。
其原因是经济中的所使用函数大多数都认为是连续可微的函数,因而可以用线性函数近似。
§7.2 数据调整
由于统计指标与经济变量的含义、口径一般不会一致。
在模型估计之前,如有可能,应先进行调整,使统计指标的口径尽可能的接近经济变量的含义。
§7.3 变量的选择
基于上述同样的原因,及统计指标间的相关性,在设计模型结构时,需要筛选变量。
假设模型已转化为简化型,即设模型为
⎪⎪⎩
⎪⎪⎨⎧++++=++++=++++=k p kp k k k p p p p x x x y x x x y x x x y εαααεαααεαααΛΛΛΛ2211222221212112121111
变量筛选有两层含义:
1) 对内生变量T k y y y ),,,,(21Λ有重要影响的外生变量是否都选入模型了?
2) 模型内的外生变量T p x x x ),,,(21Λ对内生变量T k y y y ),,,,(21Λ是否都有重要影
响?
判别准则
1) 复相关系数R (一般要求R>0.8),或方程的F -统计量;
一般来说,若R>0.9或经F-检验是显著的,则从整体上说,方程几乎包含了对响应变量有重要影响所有外生变量,外生变量对内生变量有较强的解释能力,否则,表明方程遗漏了一些对内生变量有重要影响的变量,需要增加外生变量。
当模型用于结构分析时,R 值可以低一些,用于预测时,R 值应比较大。
2) 系数显著性检验t -统计量。
下面介绍几种常用的变量筛选算法。
这些算法都是一对多回归模型的搜索算法。
记in Ω是在回归模型内的预测变量集,out Ω是在回归模型外待检的预测变量集,del Ω是。