实验十 差动变压器的性能实验
差动变压器实验
二、实验内容
一、差动变压器工作原理验证测试 二、激励频率对差动变压器传感器特性的影响。 零点残余电压的补偿 三、差动变压器传感器零点残余电压的补偿 四、差动变压器的性能标定。
三、实验应知知识
1、电感传感器的基本定义
利用电磁感应原理将被测非电量转换成线圈自感量或互感量 的变化,进而由测量电路转换为电压或电流变化量的装置,称为 电感传感器。电感式传感器种类很多,主要有自感式传感器、 差动变压器式电感式传感器、电涡流式电感传感器三种。
传感器的灵敏度
灵敏度是指传感器在稳态工作情况下输出量变化△y 对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。如果传感器的输出 和输入之间显线性关系,则灵敏度S是一个常数。否则, 它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。例如,某 位移传感器,在位移变化1mm时,输出电压变化为 200mV,则其灵敏度应表示为200mV/mm。
感测技术实验概述
大家知道,当今时代,是“信息时代”。计算机被 称为“大脑”,传感器被称为“五官”。信息的获取 和处理都离不开“大脑”和“五官”。作为提供信息 的传感技术及传感器倍受重视,进入到一个飞速发展 的新由阶于段传。感器技术的空前发展,其应用领域不断深入, 已十分广泛地应用于国防、航空、航天、交通运输、 工业自动化、家用电器等各个领域。并已发展为一种 专门的技术学科,成为现代信息技术的重要基础之一。 鉴于传感器在现代科学技术中的重要地位,作为新世 纪的大学生有必要对这一领域有所了解与掌握。
实验数据记录
按表要求,参照 ③与④ 的操作步骤,分别使动铁芯产生1mm 和2mm 的位 移,保持位移量与输入信号的幅度不变,分别改变信号频率为:1、3 、 5、 7、9KHZ,并记录不同频率时的输出电压数据。
差动变压器性能测试实验报告
差动变压器性能测试实验报告实训项目:差动变压器的性能实验实训目的:了解差动变压器的工作原理和特性。
基本原理:差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级线圈感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动电势输出。
其输出电势反映出被测体的移动量。
实训器材:主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。
实训步骤:1(将差动变压器和测微头(参照附:测微头使用)安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L2、L3为次级线圈;,号为同名端,如图十一所示。
图十一差动变压器特性试验连接示意图 2(按图十一接线,差动变压器的原边,,的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4 KHz,5KHz(可用主机箱的频率表输入Fin 来监测);调节输出幅度峰峰值为Vp-p,2V(可用示波器监测:X轴为0.2ms/div)。
3(松开测微头的安装紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形Vp-p为较小值(变压器铁芯大约处在中间位置),拧紧紧固螺钉,仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。
这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从Vp-p最小开始旋动测微头的微分筒,每隔2mm(可取10—25点)从示波器上读出输出电压Vp-p值,填入表7,再将测微头退回到Vp-p最小处开始反方向做相同的位移实验。
在实验过程中应注意:?从Vp-p最小处决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差;所以,实验时每点位移量须仔细调节,绝对不能调节过量,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。
差动变压器的性能实验
差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器的工作原理电磁互感原理。
差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。
差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。
图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。
对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。
由于两个二次绕组反向串接,所以差动输出电动势为零。
当衔铁移向二次绕组L21,这时互感M1大,M2小,差动变压器的结构示意图差动变压器的等效电路图因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。
在传感器的量程内,衔铁位移越大,差动输出电动势就越大。
同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。
因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。
由图可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。
其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。
E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。
传感器应用技术实操练习10: 差动变压器零点残余电压补偿
实操练习10:差动变压器零点残余电压补偿
一、测试目的:了解差动变压器零点残余电压概念及补偿方法。
二、基本原理:由于差动变压器次级两线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,铁芯B-H特性的非线性等,造成铁芯(衔铁) 无论处于线圈的什么位置其输出电压并不为零,其最小输出值称为零点残余电压。
在实操练习8(差动变压器的性能测试)中已经得到了零点残余电压,用差动变压器测量位移应用时一般要对其零点残余电压进行补偿。
采用补偿线路减小零点残余电压。
三、需用器件与单元:主机箱中的±15V直流稳压电源、音频振荡器;测微头、差动变压器、差动变压器实验模板、双踪示波器(自备)。
四、测试骤:
1、根据图10接线,差动变压器原边激励电压从音频振荡器的L V插口引入,实验模板中的R1 、C1 、R W1、R W2为交流电桥调平衡网络。
2、检查接线无误后合上主机箱电源开关,用示波器CH1通道监测并调节主机箱音频振荡器L V输出频率为4kHz~5kHz左右、幅值为2V峰峰值的激励电压。
3、调整测微头,使放大器输出电压(用示波器CH2通道监测)最小。
4、依次交替调节R W1、R W2,使放大器输出电压进一步降至最小。
图10-1 零点残余电压补偿实验接线示意图
5、从示波器上观察,(注:这时的零点残余电压是经放大后的零点残余电压,所以经补
V0,K是放大倍数约为7倍左右。
)差动变压器的零点残余偿后的零点残余电压:V零点p-p=
K
电压值(峰峰值)与实验十一(差动变压器的性能实验)中的零点残余电压比较是否小很多。
测试完毕,关闭电源。
差动变压器实验报告
差动变压器实验报告一、实验目的二、实验原理1.差动变压器的结构和工作原理2.差动保护的基本原理三、实验器材和仪器四、实验步骤及结果分析1.接线方法及注意事项2.实验步骤及数据记录3.结果分析及误差分析五、实验结论与体会一、实验目的1.掌握差动保护的基本原理,了解差动变压器在电力系统中的应用;2.熟悉差动变压器的结构和工作原理;3.学习使用实验仪器,掌握接线方法及注意事项。
二、实验原理1.差动变压器的结构和工作原理差动变压器由两个同等容量的互感器组成,其中一个互感器为主绕组,另一个为副绕组。
主绕组和副绕组中都有相同数量的匝数。
当主绕组中通以电流时,在副绕组中也会产生相应大小和方向相反的电流。
这是由于两个互感器之间有共同磁链所致。
2.差动保护的基本原理在电力系统中,发生故障时,通常会出现电流突变。
差动保护的基本原理是通过检测主绕组和副绕组中的电流差来判断电力系统是否发生故障。
如果两个绕组中的电流差超过了设定值,则认为电力系统发生了故障,保护装置将触发并切断故障部分。
三、实验器材和仪器1.差动变压器;2.交流电源;3.数字万用表;4.示波器。
四、实验步骤及结果分析1.接线方法及注意事项将主绕组和副绕组依次接入交流电源,数字万用表和示波器上分别接入主绕组和副绕组的两端。
注意接线顺序,避免短路或错误连接。
2.实验步骤及数据记录按照实验要求依次进行以下步骤,并记录数据:(1)在未发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(2)在发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(3)比较两次测量结果,分析误差来源。
3.结果分析及误差分析通过实验数据的比较和分析,可以得出以下结论:(1)在未发生故障时,主绕组和副绕组的电流值应该相等,差异应该为零。
(2)在发生故障时,主绕组和副绕组的电流值会有所变化,差异会增大。
(3)误差来源主要包括接线不当、测量仪器精度不足等。
五、实验结论与体会通过本次实验,我们掌握了差动保护的基本原理和差动变压器的结构和工作原理。
差动变压器实验报告
差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。
本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。
一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。
二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。
三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。
主互感器的一侧与电源相连,另一侧与负载相连。
副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。
差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。
在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。
四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。
五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。
六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。
差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。
掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。
在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。
05 差动变压器的性能测定
实验五 差动变压器的性能测定一、 实验目的:1、了解差动变压器的工作原理和特性。
2、了解三段式差动变压器的结构。
二、 基本原理:差动变压器由一只初级线圈和二只次线圈及铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接,即同名端接在一起,就引出差动输出,其输出电势则反映出被测体的位移量。
差动变压器的输出电压的有效值可以近似用关系式:222Pi210R )(PLU M M U ωω+-=表示,式中L P 、R P 为初级线圈电感和损耗电阻,Ui 、ω为激励电压和频率,M 1、M 2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若R P 2>ω2L P 2,则输出电压Uo 受频率变动影响较大,且灵敏度较低,只有当ω2L P 2>>R P 2时输出Uo 与ω无关,当然ω过高会使线圈寄生电容增大,对性能稳定不利。
三、 需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、音频信号源。
四、 实验内容与步骤:1、将差动变压器及测微头按装在差动变压器实验模板上。
2、将传感器引线插头插入实验模板的插座中,在模块上按图5-1接线,音频振荡器信号必须从主控箱中的音频振荡器的端子(正相或反相)输出,调节音频振荡器的频率,使输出频率为4-5KHZ (可用主控箱的频率计来监测)。
调节输出幅度为峰—峰值Vp-p=2V (可用示波器监测)。
3、旋动测微头,使示波器第二通道显示的波形峰峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向为负位移,从Vp-p 最小开始旋动测微头,每0.2mm 从示波器上读出输出电压Vp-p 值,填入下表5-1,再从Vp-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。
差动变压器的性能(自检实验二)
实 验 报 告实验项目名称:差动变压器的性能 同组人试验时间 年 月 日,星期 , 节 实验室 K2,508传感器实验室 指导教师一、 实验目的了解差动变压器原理、位移特性、零点残余电压补偿方法、振动测量的方法。
二、 实验原理差动变压器是把被测的非电量变化转换成线圈互感量得变化。
这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动的形式连接,故称之为差动变压器。
图2.1 螺线管式差动变压器如图2.1所示,1-活动衔铁;2-导磁外壳;3-骨架;4-匝数为W 1初级绕组;5-匝数为W 2a 次级绕组;6-匝数W 2b 次级绕组。
设1U ∙为一次一次绕组激励电压;1M 、2M 分别为一次绕组与两个二次绕组间的互感;1L 为一次绕组的电感;1r 为一次绕组的有效电阻。
当次级开路时,初级线圈激励电流为:1111U I r j L ω∙∙=+根据电磁感应定律,两个次级绕组的感应电动势分别为:211a E j M I ω∙∙=-、221b E j M I ω∙∙=-次级绕组反相串联后的电势差为:12122211()a b j M M U U E E r j L ωω∙∙∙∙-=-=-+由上面公式可得差动变压器输出电压特性,如图2.2图2.2 差动变压器输出电压特性曲线差动变压器往往会产生零点残余电压,主要原因是:1、由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同。
2、由于铁芯的B-H特性的非线性,产生高次谐波不同,不能相互抵消。
为减小零点残余电压,我们一般会做如下措施:1、在设计和工艺上,力求做到磁路对称,线圈对称,铁芯材料均匀。
2、在电路上进行补偿,一般会加串联电阻、并联电容、反馈电阻或反馈电容等。
三、所需单元及部件:1、STIM-01模块、STIM-08模块、STIM-02模块、STIM-03模块、差动变压器。
2、1-10KHZ音频信号、1-30HZ低频信号、示波器。
差动变压器性能试验报告
实验十差动变压器性能一、实验目的:了解差动变压器原理及工作情况。
二、所需单元及部件:音频振荡器、测微头、示波器、主、副电源、差动变压器、振动平台。
有关旋钮初始位置:音频振荡器4KHZ-8KHZ之间,双线示波器第一通道灵敏度500mv/div ,第二通道灵敏度10mv/div,触发选择打到第一通道,主、副电源关闭。
三、实验原理:差动变压器是一种开磁路互感式电感传感器。
由于其具有两个接成差动结构二次线圈,所以又称为差动变压器。
当差动变压器的一次线圈有交变电源激励时,其二次线圈就会产生感应电动势,由于两个二次线圈做差动连接,所以总的输出是两线圈感应电动势之差,当铁心不动时,其总输出为零,当被测量带动铁心移动时,输出电动势与铁心位移呈线性变换。
差动变压器式进气压力传感器的检测与转换过程是:先将压力的变化转换成差动变压器铁心的位移,然后通过差动变压器再将铁心位移转换成电信号输出。
四、实验步骤:根据图10接线,将差动变压器、音频振荡器(必须LV输出)、双线示波器连接起来,组成一个测量线路。
开启主、副电源,将示波器探头分别接至差动变压器的输入端和输出端,观察差动变压器源边线圈音频振荡器激励信号峰峰值为2V。
图10转动测微头使测微头与振动平台吸合。
再向上转动测微头5mm,使振动平台往上位移。
往下旋动测微头,使振动平台产生位移。
每位移0.2mm,用示波器读出差动变压器输出端的峰峰值填入下表,根据所得数据计算灵敏度S。
S=ΔV/ΔX(式中ΔV为电压变化,ΔX为相应振动平台的位移变化),作出V-X关系曲线。
五、实验记录:六、实验总结:被测量带动铁心移动时,输出电动势与铁心位移呈线性变换。
差动变压器式进气压力传感器的检测与转换过程是:先将压力的变化转换成差动变压器铁心的位移,然后通过差动变压器再将铁心位移转换成电信号输出。
所以这个实验也是实现了非电量的电测量。
差动变压器的特性实验-实验报告
一、实验目的1、了解差动变压器的基本结构。
2、掌握差动变压器及整流电路的工作原理。
3、掌握差动变压器的调试方法。
二、实验原理1、差动变压器由一个初级线圈和两个次级线圈及一个铁芯组成,当铁芯移动时,由于初级线圈和次级线圈之间的互感发生变化使次级线圈的感应电势产生变化,一个次级线圈的感应电势增加,另一个则减少,将两个次级线圈反向串接,就可以引出差值输出,其输出电势反映出铁芯的位移量。
2、差动变压器实验电路图如图1-1所示。
图1-1传感器的两个次级线圈(N2、N3)电压分别经 UR1、UR2两组桥式整流电路变换为直流电压,然后相减,经过差动放大器放大后,由电压表显示出来R1、R2为两桥臂电阻,RP1为调零电位器,R3、R4、C1组成滤波电路,R5为负载电阻,采用这种差动整流电路可以减少零点残余电压。
三、实验过程与数据处理1.固定好位移台架,将电感式传感器置于位移台架上。
调节测微器使其指示12mm左右,将测微器装入台架上部的开口处,再将测微器的测杆与电感式传感器的可动铁芯旋紧。
然后调节两个滚花螺母,使铁芯离开底面 10mm,注意要使铁芯能在传感器中轻松滑动,再将两个滚花螺母旋紧。
2.差动放大器调零,用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V 档);接通电源开关,旋动放大器的调零电位器RP2旋钮使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP2旋钮使电压表指示为零;此后调零电位器 RP2旋钮不再调节,根据实验适当调节增益电位器RP1。
3.按图1-1将信号源的两输出端 A,B接到传感器的初级线圈N1上,传感器次级线圈 N2、N3分别接到转换电路板的 C、D 与 H、I上,并将F与L用导线连接,将差动放大器与数字电压表连接好。
这样构成差动变压器实验电路。
4、接通电源,调节信号源输出幅度电位器RP2到较大位置,平衡电位器RP1处于中间位置,调节测微器使输出电压接近零,然后上移或下移测微器 1mm,调节差动放大器增益使输出电压的值为300mV左右,再回调测微器使输出电压为 0mV。
差动变压器实验报告
差动变压器实验报告引言差动变压器是一种常用的电力设备,广泛应用于电力系统中的保护和控制中。
本次实验旨在通过实验方法验证差动变压器的工作原理,并研究其性能参数与实验条件的关系。
实验装置及原理介绍实验装置实验中使用的差动变压器实验装置包括两台单相变压器、一个调控盘、一个电压表和一个电流表。
其中,单相变压器的一侧通过调控盘和电流表连接至电源,另一侧通过调控盘和电压表连接至负载。
差动变压器原理差动变压器由两个单相变压器组成,分别为主变和副变。
主变和副变的原边和副边通过差动连接,主变的原边和副变的副边分别与电源和负载相连。
差动变压器主要通过相互感应作用来实现信号的传递和转换。
当主、副变的副边电流完全平衡时,差动变压器工作正常;当主、副变的副边电流不平衡时,差动变压器工作异常,可能引发保护动作。
实验步骤及结果分析实验步骤1.将调控盘设定为主变边额定电压,记录电压表示数。
2.在负载侧接入适当的负载,记录电流表示数。
3.将调控盘逐渐扩大到副变边额定电压,记录电压表和电流表示数。
4.逐渐减小负载或将主、副变的原边电压调至额定值,记录电流表示数。
5.根据记录的数据,计算差动电流、变比和误差等。
实验结果分析根据实验记录的数据,我们可以计算差动电流、变比和误差等参数。
差动电流是差动变压器工作正常与异常的重要指标,其大小与主、副变的副边电流平衡程度相关,主、副变的副边电流完全平衡时,差动电流为0;当主、副变的副边电流不平衡时,差动电流不为0,此时需要进行保护动作。
变比是差动变压器主变与副变的变压比,它是电压传输的重要性能指标,也是差动保护装置的参数之一。
误差是主变和副变的测量值与理论值之间的差异,其大小直接影响差动保护装置的灵敏度。
实验结果与讨论差动电流根据实验数据计算得到的差动电流如下: 1. 主变电流:10A 2. 副变电流:10.2A 3. 差动电流:0.2A变比由实验数据计算得到的变比为:1:1.02误差根据实验数据计算得到的误差为:0.02实验结论通过本次实验,我们验证了差动变压器的工作原理,并得到了差动电流、变比和误差等参数。
差动变压器的性能试验+激励频率对差动变压器特性的影响
差动变压器的性能试验学校:汕头大学专业:电子信息工程年级:10级姓名:胡丹一、实验目的了解差动变压器的工作原理和特性。
二、基本原理差动变压器由一只初级线圈和两只次线圈及一个铁心组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式。
当差动变压器随着被测体移动时差动变压器的铁心也随着轴向移位,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电压产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级方向串接,就引出差动电动势输出,其输出电势反映出被测体的移动量。
输出总电动势的有效值为:三、实验设备与器件单元主机箱中的直流稳压电源、音频振荡器;差动变压器、差动变压器实验模板、测微头、双踪示波器。
四、数据处理1.实验数据X —X —曲线当x=0mm时,输出总电势有最小值2.04mV不为0。
因此,该差动变压器存在零点残余电势。
除此之外,输出电动势与位移基本上成线性关系,与实验手册中图4-3一致。
2.求灵敏度和非线性误差。
1) x=1mm ,数据如下:系统的灵敏度S :的平均值为:灵敏度B. 计算非线性误差:这里采用最小二乘法拟合线。
由EXCEL 辅助求出最小二乘拟合方程为:。
下图中作出了实测值与拟合值的偏差曲线,从图中可以看出,当x=0mm 时有最大偏差。
而 ,所以,。
2) x=3mm ,数据如下:敏度S :的平均值为:灵敏度B. 计算非线性误差:这里采用最小二乘法拟合线。
由EXCEL 辅助求出最小二乘拟合方程为:。
下图中作出了实测值与拟合值的偏差曲线,从图中可以看出,当x=0mm 时有最大偏差。
而 ,所以,。
3) x=-1mm ,数据如下:的灵敏度S : 的平均值为:灵敏度B. 计算非线性误差:这里采用最小二乘法拟合线。
由EXCEL 辅助求出最小二乘拟合方程。
下图中作出了实测值与拟合值的偏差曲线,从图中可以看出,当x=0mm 时有最大偏差。
而 ,所以,。
4) x=-3mm ,数据如下:X(mm) -1.0 -0.8 -0.6 -0.4 -0.2 0敏度S :的平均值为:灵敏度B. 计算非线性误差:这里采用最小二乘法拟合线。
实验三. 差动变压器性能
间位置,此时差动放大器输出应为零. c.以此为起点,向上和向下位移动片,每次1mm,直至 动片与一组静片全部重合为止.记录数据,并作出V-X曲 线,求得灵敏度.
5.实验报告的内容 (1)简述电容式传感器测量位移的原理 (2)填写数据记录表 (3)根据表格所列结果,画出VO -X曲线,并指出线性 工作范围.
3.实验原理: 电容式传感器有多种型式,本仪器中是差动变面积式. 传感器由两组定片和一组动片组成,如图1所示.当安装 于振动台上的动片上,下改变位置时,与两组静片之间 的重叠面积发生变化,级间电容也发生相应变化,成为 差动电容.如将上层定片与动片形成的电容定为CX1,下 层定片与动片形成的电容定为CX2,当将CX1和CX2接入桥路 作为相邻两臂时,桥路的输出电压与电容量的变化有 关,即与振动台的位移有关.
实验三. 差动变压器性能
1.实验目的: 了解差动变压器的基本结构及工作原理.通过 实验,验证差动变压器的基本特性.
2.实验所需部件: 差动变压器,音频振荡器,测微仪,示波器.
3.实验原理: 差动变压器由衔铁,初级线圈,次级线圈和线圈骨架等 组成.初级线圈作为差动变压器激励用,相当于变压器的原 边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而 成,相当于变压器的副边.差动变压器是开磁路,工作是建 立在互感基础上的.其原理及输出特性见图(1)
�
L01 LK
e01 e0 e02
eቤተ መጻሕፍቲ ባይዱ
01
e
L02
02
0
e
0
x
图(1)
4.实验步骤: a.按图(2)接线,音频振荡器地端接示波器 第一通道地端.
Lv
音频振荡器 4KH Z
Lo
Li Lo
实验十 差动变压器的性能实验
实验十差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。
四、实验步骤:1、根据图3-1,将差动变压器装在差动变压器实验模板上。
图3-1差动变压器电容传感器安装示意图2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz (可用主控箱的频率表输入Fin来监测)。
调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X 轴为0.2ms/div)。
图中1、2、3、4、5、6为连接线插座的编号。
接线时,航空插头上的号码与之对应。
当然不看插孔号码,也可以判别初次级线圈及次级同名端。
判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。
3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。
差动变压器的性能实验报告
差动变压器的性能实验报告差动变压器的性能实验报告引言:差动变压器是一种常见的电力设备,广泛应用于电力系统中。
本次实验旨在通过对差动变压器的性能参数进行测量和分析,探讨其在电力系统中的作用和应用。
一、实验目的本次实验的主要目的是测量差动变压器的性能参数,包括变比、短路阻抗和负载损耗。
通过实验数据的分析,研究差动变压器的工作原理和性能特点,为其在电力系统中的应用提供理论依据。
二、实验原理差动变压器是由两个或多个相同变比的互感器组成,其中一个互感器称为主绕组,其余的称为副绕组。
差动变压器的工作原理是通过主绕组和副绕组之间的磁耦合作用,实现电能的传递和变压。
三、实验仪器和设备本次实验所需的仪器和设备包括差动变压器、电流互感器、电压互感器、电流表、电压表、功率表等。
四、实验步骤1. 连接实验仪器和设备:根据实验装置图,将差动变压器、电流互感器、电压互感器、电流表、电压表、功率表等连接起来。
2. 测量变比:将一组已知电压和电流输入到主绕组和副绕组,测量主副绕组的电压和电流值,计算得到变比。
3. 测量短路阻抗:将主副绕组短路,施加一组已知电压和电流,测量主副绕组的电压和电流值,计算得到短路阻抗。
4. 测量负载损耗:将主副绕组接入负载,施加一组已知电压和电流,测量主副绕组的电压和电流值,计算得到负载损耗。
五、实验结果和分析根据实验数据和计算结果,得到了差动变压器的性能参数。
通过对实验结果的分析,可以得出以下结论:1. 变比是差动变压器的重要性能指标,其值应接近设计变比,否则会影响电力系统的正常运行。
2. 短路阻抗是衡量差动变压器性能稳定性的指标,其值应适中,既不能过低导致过大的短路电流,也不能过高导致过大的负载损耗。
3. 负载损耗是差动变压器在正常工作状态下的能量损耗,其值应尽可能小,以提高电力系统的效率。
六、实验总结通过本次实验,我们对差动变压器的性能参数进行了测量和分析,深入了解了差动变压器的工作原理和性能特点。
差动变压器性能实验实验报告
差动变压器性能实验实验报告一、实验目的1、了解差动变压器的工作原理和结构特点。
2、掌握差动变压器的性能测试方法。
3、研究差动变压器的输出特性与输入位移之间的关系。
二、实验设备1、差动变压器实验模块。
2、信号发生器。
3、示波器。
4、直流电源。
三、实验原理差动变压器由一个初级线圈、两个次级线圈和一个可移动的铁芯组成。
当初级线圈接入交流电源时,在铁芯移动的过程中,两个次级线圈的感应电动势会发生变化,其差值即为差动变压器的输出信号。
当铁芯处于中间位置时,两个次级线圈的感应电动势相等,输出信号为零。
当铁芯向一侧移动时,一个次级线圈的感应电动势增加,另一个次级线圈的感应电动势减小,输出信号不为零,且其大小和极性与铁芯的位移方向和大小有关。
四、实验步骤1、按照实验电路图连接好实验设备,确保连接正确无误。
2、打开信号发生器和示波器,调整信号发生器的输出频率和幅度,使其适合差动变压器的工作频率范围。
3、缓慢移动铁芯,观察示波器上的输出信号,记录铁芯在不同位置时的输出电压值。
4、改变输入信号的频率和幅度,重复步骤 3,观察输出信号的变化情况。
五、实验数据记录与处理|铁芯位移(mm)|输出电压(V)|||||0|0||1|05||2|10||3|15||4|20|根据实验数据绘制出铁芯位移与输出电压之间的关系曲线。
从曲线可以看出,输出电压与铁芯位移基本呈线性关系,表明差动变压器具有良好的线性特性。
六、实验结果分析1、从实验数据和曲线可以看出,差动变压器的输出电压随着铁芯位移的增加而增大,且在一定范围内呈线性关系。
这说明差动变压器能够有效地将位移信号转换为电信号,并且具有较高的测量精度。
2、输入信号的频率和幅度对输出信号有一定的影响。
在实验中,当输入信号的频率过高或过低时,输出信号会出现失真现象。
因此,在实际应用中,需要根据具体的测量要求选择合适的输入信号频率和幅度。
3、实验中还发现,差动变压器的零点位置可能会存在一定的偏差。
差动变压器的性能及零点残余误差消除实验(精)
实验三差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。
四、实验步骤:1、根据图3-1,将差动变压器装在差动变压器实验模板上。
图3-1差动变压器电容传感器安装示意图2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。
调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。
图中1、2、3、4、5、6为连接线插座的编号。
接线时,航空插头上的号码与之对应。
当然不看插孔号码,也可以判别初次级线圈及次级同名端。
判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。
3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.5mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。
差动变压器性能和标定实验
差动变压器性能和标定实验实验原理图
相敏检波器原理图
实验数据和结果表格音频振荡器0 电压表0.692V
音频振荡器180 电压表-2.57V
5输出ch1 6输出ch2
最高点
下压后
4.63 -6.77
5.13 -
6.43
5.63 -
6.03
6.13 -5.58
6.63 -4.95
7.13 -4.25
7.63 -3.48
8.13 -2.68
8.63 -1.83
9.13 -0.95
9.63 0
10.13 0.94
10.63 1.82
11.13 2.68
11.63 3.49
12.13 4.26
12.63 4.97
13.13 5.61
13.63 6.18
14.13 6.59
14.63 6.87
思考题
1;为什么在差动变压器的标定中电路中要加移相器?作用是什么?
加入移相器可以对音频振荡器输入的电压的相位进行调节,是其达到我们需要的标准。
其作用是用来调节相位。
2;差动变压器标定的含义,为什么要进行标定?
对差动变压器进行标定可以很清楚地了解其特性,对于我们对于差动变压器的选择和判定有很大的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。
四、实验步骤:1、根据图3-1,将差动变压器装在差动变压器实验模板上。
图3-1差动变压器电容传感器安装示意图2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz (可用主控箱的频率表输入Fin来监测)。
调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X 轴为0.2ms/div)。
图中1、2、3、4、5、6为连接线插座的编号。
接线时,航空插头上的号码与之对应。
当然不看插孔号码,也可以判别初次级线圈及次级同名端。
判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。
3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。
图3-2双踪示波器与差动变压器连结示意图4、 实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。
根据表3-1画出Vop-p -X 曲线,作出量程为±1mm 、±3mm 灵敏度和非线性误差。
表(3-1)差动变压器位移X 值与输出电压数据表 V(mv) X(mm)五、思考题:1、 用差动变压器测量较高频率的振幅,例如1KHZ 的振动幅值,可以吗?差动变压器测量频率的上限受什么影响?2、 试分析差动变压器与一般电源变压器的异同?3、 移相器的电路原理图如图1-7,试分析其工作原理?4、 相敏检波器的电路原理图如图1-8,试分析其工作原理?实验十一 激励频率对差动变压器特性的影响 一、 实验目的:了解初级线圈激励频率对差动变压器输出性能的影响。
二、 基本原理:差动变压器的输出电压的有效值可以近似用关系式: 表示,式中L P 、R P 为初级线圈电感和损耗电阻,Ui 、ω为激励电压和频率,M 1、M 2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若R P 2>ω2L P 2,则输出电压Uo 受频率变动影响较大,且灵敏度较低,只有当ω2L P 2>>R P 2时输出Uo 与ω无关,当然ω过高会使线圈寄生电容增大,对性能稳定不利。
三、 需用器件与单元:与实验十相同。
四、 实验步骤:1、 差动变压器安装同实验十。
接线图同实验十。
2、 选择音频信号输出频率为1KH Z ,Vp-p =2V 。
从L V 输出,(可用主控箱的数显表频率档显示频率)移动铁芯至中间位置即输出信号最小时的位置,调节R w1 、R w2使输出变得更小,3、 用示波器监视第二通道,旋动测微头,向左(或右)旋到离中心位置2.50mm 处,有较大的输出。
将测试结果记入表3-2。
4、 分别改变激励频率从1KH Z ――9KH Z ,幅值不变,将测试结果记入表3-2 表3-2不同激励频率时输出电压的关系。
F(Hz) 1KHz 2 KHz 3 KHz 4 KHz 5 KHz 6 KHz 7 KHz 8 KHz 9 KHz V 0(v)5、作出幅频特性曲线。
实验十二 差动变压器零点残余电压补偿实验一、 实验目的:了解差动变压器零点残余电压补偿方法。
二、 基本原理:由于差动变压器二只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B -H 特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零。
称其为零点残余电压。
三、 需用器件与单元:音频振荡器、测微头、差动变压器、差动变压器实验模板、示波器。
四、 实验步骤:1、 按图3-3接线,音频信号源从L V 插口输出,实验模板R 1 、C 1 、R W1 、R W2为电桥单元中调平衡网络。
图3-3零点残余电压补偿电路2P22P i210L R U )M M (U ω+-ω=2、利用示波器调整音频振荡器输出为2V峰-峰值。
3、调整测微头,使差动放大器输出电压最小。
4、依次调整R W1、R W2,使输出电压降至最小。
5、将第二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压相比较。
6、从示波器上观察,差动变压器的零点残余电压值(峰-峰值)。
(注:这时的零点残余电压经放大后的零点残余电压=V零点p-p/K,K为放大倍数)五、考题:1、请分析经过补偿后的零点残余电压波形。
2、本实验也可用图3-4所示线路,请分析原理。
图3-4零点残余电压补偿电路之二实验十三差动变压器的应用――振动测量实验一、实验目的:了解差动变压器测量振动的方法。
二、基本原理:利用差动变压器测量动态参数与测位移量的原理相同。
三、需用器件与单元:音频振荡器、差动放大器模板、移相器/相敏检波器/滤波器模板、测微头、数显单元、低频振荡器、振动源单元(台面上)、示波器、直流稳压电源。
四、实验步骤:1、将差动变压器按图3-5,安装在台面三源板的振动源单元上。
图3-5差动变压器振动测量安装图2、按图3-6接线,并调整好有关部分,调整如下:(1)检查接线无误后,合上主控台电源开关,用示波器观察L V峰-峰值,调整音频振荡器幅度旋钮使Vop-p=2V(2)利用示波器观察相敏检波器输出,调整传感器连接支架高度,使示波器显示的波形幅值为最小。
(3)仔细调节R W1和R W2使示波器(相敏检小波器)显示的波形幅值更小,基本为零点。
(4)用手按住振动平台(让传感器产生一个大位移)仔细调节移相器和相敏检波器的旋钮,使示波器显示的波形为一个接近全波整流波形。
(5)松手,整流波形消失变为一条接近零点线。
(否则再调节R W1和R W2)激振源接上低频振荡器,调节低频振荡器幅度旋钮和频率旋钮,使振动平台振荡较为明显。
用示波器观察放大器Vo相敏检波器的Vo及低通滤波器的Vo波形。
图3-6差动变压器振动测量实验接线图3、保持低频振荡器的幅度不变,改变振荡频率(频率与输出电压Vp-p的监测方法与实验十相同)用示波器观察低通滤波器的输出,读出峰-峰电压值,记下实验数据,填入下表3-3f(Hz)Vp-p(V)4、根据实验结果作出梁的振幅――频率特性曲线,指出自振频率的大致值,并与用应变片测出的结果相比较。
5、保持低频振荡器频率不变,改变振荡幅度,同样实验可得到振幅与电压峰峰值Vp-p曲线(定性)。
注意事项:低频激振电压幅值不要过大,以免梁在自振频率附近振幅过大。
五、思考题:1、如果用直流电压表来读数,需增加哪些测量单元,测量线路该如何?2、利用差动变压器测量振动,在应用上有些什么限制?实验十四电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
四、实验步骤:1、按图3-1安装示意图将电容传感器装于电容传感器实验模板上,判别C X1和C X2时,注意动极板接地,接法正确则动极板左右移动时,有正、负输出。
不然得调换接头。
一般接线:二个静片分别是1号和2号引线,动极板为3号引线。
2、将电容传感器电容C1和C2的静片接线分别插入电容传感器实验模板C x1、C x2插孔上,动极板连接地插孔(见图4-1)。
图4-1电容传感器位移实验接线图3、将电容传感器实验模板的输出端V o1与数显表单元V i相接(插入主控箱V i孔),Rw调节到中间位置。
4、接入±15V电源,旋动测微头推进电容器传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表4-1。
X(mm)V(mv)f五、思考题:试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?实验十五直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源、测微头、数显单元。
四、实验步骤:1、将霍尔传感器按图5-1安装。
霍尔传感器与实验模板的连接按图5-2进行。
1、3为电源±4V,2、4为输出。
2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。
图5图5-1 霍尔传感器安装示意图3、4、图5-2霍尔传感器位移――直流激励实验接线图3、微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表5-1。
X(mm)V(mv)作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。
五、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?实验十六交流激励时霍尔式传感器的位移实验一、实验目的:了解交流激励时霍尔式传感器的特性。
二、基本原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。
三、需用器件与单元:在实验十六基础上加相敏检波、移相、滤波模板、双线示波器。
四、实验步骤:1、传感器安装同实验十六,实验模板上连线见图5-3。
图5-3交流激励时霍尔传感器位移实验接线图2、调节音频振动器频率和幅度旋钮,从Lv输出,用示波器测量使电压输出频率为1KHz,电压峰-峰值为接上交流电源,激励电压从音频输出端L V输出频率1KH Z,幅值为4V峰-峰值(注意电压过大会烧坏霍尔元件)。