2013年广西百色市中考数学试卷

合集下载

2013年广西百色市中考数学试卷(解析版)

2013年广西百色市中考数学试卷(解析版)

2013年广西百色市中考数学试卷一.选择题(本大题共12小题,每小题3分,共36分.)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(2013百色)﹣2013的相反数是()A.﹣2013 B.2013 C.D.﹣考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣2013的相反数是﹣(﹣2013)=2013.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2013百色)已知∠A=65°,则∠A的补角的度数是()A.15°B.35°C.115°D.135°考点:余角和补角.分析:根据互补两角之和为180°求解.解答:解:∵∠A=65°,∴∠A的补角=180°﹣∠A=180°﹣65°=115°.故选C.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补两角之和为180°.3.(2013百色)百色市人民政府在2013年工作报告中提出,今年将继续实施十项为民办实事工程.其中教育惠民工程将投资2.82亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目.那么数据282 000 000用科学记数法(保留两个有效数字)表示为()A.2.82×108B.2.8×108C.2.82×109D.2.8×109考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于282 000 000有9位,所以可以确定n=9﹣1=8.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:282 000 000=2.82×108≈2.8×108.故选:B.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4.(2013百色)下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1 C.(2a2)3=6a6D.5x3÷x2=5x考点:整式的除法;合并同类项;幂的乘方与积的乘方.分析:根据整式的除法,幂的乘方与积的乘方,合并同类项分别进行计算,即可得出答案.解答:解:A.不是同类项,不能相加,故本选项错误;B.3x2y﹣2x2y=x2y,故本选项错误;C.(2a2)3=8a6,故本选项错误;D.5x3÷x2=5x,故本选项正确.故选D.点评:此题考查了整式的除法,幂的乘方与积的乘方,合并同类项,掌握运算法则是本题的关键.5.(2013百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A.6cm2 B.4πcm2C.6πcm2D.9πcm2考点:由三视图判断几何体;几何体的表面积.分析:易得此几何体为圆柱,底面直径为2cm,高为3cm.圆柱侧面积=底面周长×高,代入相应数值求解即可.解答:解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×2×3=6πcm2.故选:C.点评:主要考查了由三视图判断几何体及几何体的展开图的知识;本题的易错点是得到相应几何体的底面直径和高.6.(2013百色)在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx的图象大致是图中的()A.B.C.D.考点:二次函数图象与系数的关系;反比例函数的性质.分析:根据反比例函数图象的性质确定出m<0,则二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴,即可得出答案.解答:解:∵反比例函数y=,中,当x>0时,y随x的增大而增大,∴根据反比例函数的性质可得m<0;该反比例函数图象经过第二、四象限,∴二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴.∴只有A选项符合.故选A.点评:本题考查了二次函数图象、反比例函数图象.利用反比例函数的性质,推知m<0是解题的关键,体现了数形结合的思想.7.(2013百色)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是()A.33℃,33℃B.33℃,32℃C.34℃,33℃D.35℃,33℃考点:众数;折线统计图;中位数.分析:将数据从小到大排列,由中位数及众数的定义,可得出答案.解答:解:31,32,32,33,33,33,34,34,35,35,这组数据的中位数是:33,众数是:33.故选A.点评:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的10个数据.8.(2013百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是()A.25°B.30°C.40°D.50°考点:圆周角定理;垂径定理.分析:由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C=50°;则在直角△BOE中,利用“直角三角形的两个锐角互余”的性质解题.解答:解:如图,∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.∴∠ABO=90°﹣∠DOB=40°.故选C.点评:本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(2013百色)如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.其中正确的有()A.①②③B.①③④C.②④ D.①③考点:平行四边形的性质;作图—复杂作图.分析:根据作图过程可得得AG平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,从而得到△ADH是等腰三角形.解答:解:根据作图的方法可得AG平分∠DAB,故①正确;∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;故选:D.点评:此题主要考查了平行四边形的性质,以及角平分线的做法,关键是掌握平行四边形对边平行.10.(2013百色)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别计算出两个不等式的解集,再求其公共部分.解答:解:由①得,x≤1;由②得,x>﹣2;∴不等式组的解集为﹣2<x≤1.在数轴上表示为:,故选B.点评:本题考查了解一元一次不等式组,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.11.(2013百色)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A 落在点A′处,折痕为DE,则A′E的长是()A.1 B.C.D.2考点:翻折变换(折叠问题);矩形的性质;勾股定理.分析:由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′E=x,由勾股定理即可得:x2+4=(4﹣x)2,解此方程即可求得答案.解答:解:∵四边形ABCD是矩形,∴∠A=90°,∴BD==5,由折叠的性质,可得:A′D=AD=3,A′E=AE,∠DA′E=90°,∴A′B=BD﹣A′D=5﹣3=2,设A′E=x,则AE=x,BG=AB﹣AE=4﹣x,在Rt△A′BE中,A′E2+A′B2=BE2,∴x2+4=(4﹣x)2,解得:x=.∴A′E=.故选C.点评:此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.12.(2013百色)如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24B.48C.96D.192考点:一次函数综合题;规律型;等边三角形的性质.分析:首先求得点A与B的坐标,即可求得∠OAB的度数,又由△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,易求得OB1=OC=,A1B1=A1C,A2B2=A2C,则可得规律:OA n=(2n﹣1).根据A5A6=OA6﹣OA5求得△A5B6A6的边长,进而求得周长.解答:解:∴点A(﹣,0),点B(0,1),∴OC=,OD=1,∴tan∠OCD==,∴∠OCD=30°,∵△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1C=∠A1B2C=∠A2B3C=∠OCD=30°,∴OB1=OC=,A1B2=A1C,A2B3=A2C,∴OA1=OB1=,OA2=OA1+A1A2=OA1+A1B1=+2=3,同理:OA3=7,OA4=15,OA5=31,OA6=63,则A5A6=OA6﹣OA5=32.则△A5B6A6的周长是96,故选C.点评:此题考查了一次函数的性质、等边三角形的性质、等腰三角形的判定与性质以及三角函数的知识.此题难度较大,注意掌握数形结合思想的应用.二.填空题(本大题共6小题,每小题3分,共18分.)请把答案填在答题卷指定的位置上.13.(2013百色)4的算术平方根是.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.14.(2013百色)若函数y=有意义,则自变量x的取值范围是.考点:函数自变量的取值范围.分析:根据分式有意义的条件是:分母不等于0即可求解.解答:解:根据题意得:x﹣2≠0,解得:x≠2.故答案是:x≠2.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.(2013百色)如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长是cm.考点:菱形的性质;线段垂直平分线的性质;等边三角形的判定与性质.分析:首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=3,然后由勾股定理,求得OB的长,继而求得答案.解答:解:连接AC,∵菱形ABCD的周长为12cm,∴AB=6,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=3,∴OA=AC=,∴OB==,∴BD=2OB=3.故答案为:3.点评:此题考查了菱形的性质、勾股定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(2013百色)某校对去年毕业的350名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有人.考点:扇形统计图.分析:首先求得在家待业的百分比,然后乘以毕业的总人数即可.解答:解:在家待业的毕业生所占百分比为:1﹣24%﹣68%=8%,故该校去年毕业生在家待业人数有350×8%=28人,故答案为:28.点评:此题考查了扇形统计图的知识,解题的关键是了解扇形统计图的作用.17.(2013百色)如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是cm.(结果保留π)考点:旋转的性质;弧长的计算;网格型.分析:让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.解答:解:如图所示:点B在旋转过程中所经过的路线的长是:=π(cm).故答案为:π.点评:本题主要考查了旋转变换图形的方法及利用直角坐标系解决问题的能力.18.(2013百色)如图,在边长为10cm的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为cm.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质;最值问题.分析:设AP=x,BE=y.通过△ABP∽△PCQ的对应边成比例得到=,所以=,即y=﹣x2+x.利用“配方法”求该函数的最大值.解答:解:设AP=x,BE=y.如图,∵四边形ABCD是正方形,∴∠A=∠B=90°∵PE⊥DP,∴∠2+∠3=90°,∠1+∠2=90°∴∠1=∠3,∴△ADP∽△BPE,∴=,即=,∴y=﹣x2+x=﹣(x﹣5)2+(0<y<10);∴当x=5时,y有最大值.故答案是:.点评:本题主要考查正方形的性质和二次函数的应用,关键在于理解题意运用三角形的相似性质求出y与x之间的函数关系,求最大值时,运用到“配方法”.三.解答题(本大题共8小题,共66分)请在答题卷指定的位置上写出解答过程.19.(2013百色)计算:(3﹣π)0+2sin60°+()﹣2﹣|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+2×+4﹣=1++4﹣=5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.20.(2013百色)先化简,再求值:+,其中a=﹣1,b=.考点:分式的化简求值.分析:首先把分式的分子分母分解因式,再约分,进行加法计算,然后再代入a、b的值即可得到答案.解答:解:原式=+=+=.当a=﹣1,b=时,原式==﹣3.点评:此题主要考查了分式的化简求值,关键是先把分式化简后,再把分式中未知数对应的值代入求出分式的值.21.(2013百色)如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.(1)求证:△ABF∽△ECF;(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.考点:相似三角形的判定与性质;等腰梯形的性质.分析:(1)由“两直线平行,内错角相等”推知∠B=∠ECF,∠BAF=∠E.则由“两角法”证得结论;(2)利用(1)中的相似三角形的对应边成比例得到=,即=.所以CE=(cm).解答:(1)证明:∵DC∥AB,∴∠B=∠ECF,∠BAF=∠E,∴△ABF∽△ECF.(2)解:∵在等腰梯形ABCD中,AD=BC,AD=5cm,AB=8cm,CF=2cm,∴BF=3cm.∵由(1)知,△ABF∽△ECF,∴=,即=.∴CE=(cm).点评:本题考查了相似三角形的判定与性质,等腰梯形的性质.等腰梯形的两腰相等.22.(2013百色)“中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗.小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧.(1)小明随机拿一个月饼,是莲蓉的概率是多少?(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?考点:列表法与树状图法;概率公式.分析:(1)由分别是2个豆沙,1个莲蓉和1个叉烧,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与没有拿到豆沙月饼的情况,再利用概率公式即可求得答案.解答:解:(1)∵共有4个月饼,莲蓉月饼有1个,∴小明随机拿一个月饼,是莲蓉的概率是.(2)画树形图如下:∵共有12种等可能结果,没有拿到豆沙月饼的情况有2种,∴没有拿到豆沙月饼的概率是:=.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意用到的知识点为:概率=所求情况数与总情况数之比.23.(2013百色)如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(﹣3,0),交y轴于点B(0,2),并与y=的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.(1)求一次函数与反比例函数的解析式;(2)若点C′是点C关于y轴的对称点,请求出△ABC′的面积.考点:反比例函数与一次函数的交点问题.分析:(1)根据直线y=k1x+b交x轴于点A(﹣3,0),交y轴于点B(0,2),代入解析式,求出k1和b 的值,从而得出一次函数的解析式;再根据OB是△ACD的中位线,得出点C的坐标,最后代入双曲线y=,即可求出反比例函数的解析式.(2)根据点C′是点C(3,4)关于y轴的对称点,求出C′的坐标,从而得出AC′⊥AO,最后根据S△ABC=S ﹣S△ABO,代入计算即可.梯形AOBC′解答:解:(1)∵直线y=k1x+b交x轴于点A(﹣3,0),交y轴于点B(0,2),∴,解得.∴一次函数的解析式为y=x+2.∵OB是△ACD的中位线,OA=3,OB=2,∴OD=3,DC=4.∴C(3,4).∵点C在双曲线y=上,∴k2=3×4=12.∴反比例函数的解析式为y=.(2)∵点C′是点C(3,4)关于y轴的对称点,∴C′(﹣3,4).∴AC′⊥AO.∴S△ABC=S梯形AOBC′﹣S△ABO=(2+4)×3﹣3×2=6.点评:此题考查了一次函数和反比例函数,用到的知识点是运用待定系数法求函数的解析式,三角形的中位线,关键是列出求三角形面积的等式.24.(2013百色)为响应区“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?,(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?考点:一元二次方程的应用;分式方程的应用.分析:(1)根据一共用20天列出分式方程求解即可;(2)根据矩形的面积为170m2列出一元二次方程求解即可.解答:解:(1)设该项绿化工作原计划每天完成xm2,则提高工作量后每天完成1.2xm2,根据题意,得,解得x=22.经检验,x=22是原方程的根.答:该项绿化工作原计划每天完成22m2.(2)设矩形宽为y m,则长为2y﹣3m,根据题意,得y(2y﹣3)=170,解得y=10或y=﹣8.5 (不合题意,舍去).2y﹣3=17.答:这块矩形场地的长为17m,宽为10m.点评:本题考查了分式方程及一元二次方程的应用,解题的关键是从题目中找到相关的等量关系并列出方程求解.25.(2013百色)如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.(1)如果∠CBD=∠E,求证:BC是⊙O的切线;(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;(3)若tanE=,BC=,求阴影部分的面积.(计算结果精确到0.1)(参考数值:π≈3.14,≈1.41,≈1.73)考点:切线的判定;全等三角形的判定;扇形面积的计算;动点型.分析:(1)欲证明BC是⊙O的切线,只需证得BC⊥AB;(2)利用圆周角定理,全等三角形的判定定理AAS证得当点E运动到DE经过点O位置时,△EDB≌△ABD;(3)如图,连接OD,过点O作OF⊥AD于点F.S阴影=S扇形OAD﹣S△AOD.由圆周角定理和正切三角函数定义易求AB的长度、圆心角∠AOD=120°.所以根据扇形面积公式和三角形的面积公式进行计算即可.解答:解:(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,即∠ABD+∠BAD=90°.又∵∠CBD=∠E,∠BAD=∠E,∴∠ABD+∠CBD=90°,即∠ADC=90°.∴BC⊥AB.∴BC是⊙O的切线.(2)当点E运动到DE经过点O位置时,△EDB≌△ABD.证明如下:当点E运动到DE经过点O位置时,∠EBD=∠ADB=90°,在△EDB与△ABD中,,∴△EDB≌△ABD(AAS).(3)如图,连接OD,过点O作OF⊥AD于点F,∵∠BAD=∠E,tanE=,∴tan∠BAD=.又∵∠ADB=90°,∴∠BAD=30°.∵∠ABC=90°,BC=,∴AB==4.∴AO=2,OF=1,AF=AOcos∠BAD=.∴AD=2.∵AO=DO,∴∠AOD=120°.∴S阴影=S扇形OAD﹣S△AOD=﹣×3=2×1=π﹣≈2.5.点评:本题考查了切线的判定、全等三角形的判定以及扇形面积的计算.求(3)题中阴影部分的面积时,采用了“分割法”.26.(2013百色)如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧).(1)求抛物线C2的解析式;(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由.考点:二次函数综合题;存在型;函数的平移;菱形的判定;平行四边形的判定与性质.分析:(1)根据二次函数平移的规律:“左加右减,上加下减”,得出平移后解析式即可;(2)首先求出A,B两点的坐标,再利用顶点坐标得出AC=CB,CE=DE,进而得出四边形ADBE是平行四边形以及四边形ADBE是菱形,再利用三角形面积公式求出即可;(3)利用分AB为平行四边形的边和对角线两种情况:①当AB为平行四边形的一边时,②当AB为平行四边形的一对角线时分别得出即可.解答:解:(1)∵将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2,∴抛物线C1的顶点(0,3)向右平移1个单位,再向下平移7个单位得到(1,﹣4).∴抛物线C2的顶点坐标为(1,﹣4).∴抛物线C2的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)证明:由x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),AB=4.∵抛物线C2的对称轴为x=1,顶点坐标D为(1,﹣4),∴CD=4.AC=CB=2.将x=1代入y=x2+3得y=4,∴E(1,4),CE=DE.∴四边形ADBE是平行四边形.∵ED⊥AB,∴四边形ADBE是菱形.S菱形ADBE=2××AB×CE=2××4×4=16.(3)存在.分AB为平行四边形的边和对角线两种情况:①当AB为平行四边形的一边时,如图1,设F(1,y),∵OB=3,∴G1(﹣2,y)或G2(4,y).∵点G在y=x2﹣2x﹣3上,∴将x=﹣2代入,得y=5;将x=4代入,得y=5.∴G1(﹣2,5),G2(4,5).②当AB为平行四边形的一对角线时,如图2,设F(1,y),OB的中点M,过点G作GH⊥OB于点H,∵OB=3,OC=1,∴OM=,CM=.∵△CFM≌△HGM(AAS),∴HM=CM=.∴OH=2.∴G3(2,﹣y).∵点G在y=x2﹣2x﹣3上,∴将(2,﹣y)代入,得﹣y=﹣3,即y=3.∴G3(2,﹣3).综上所述,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,点G的坐标为G1(﹣2,5),G2(4,5),G3(2,﹣3).点评:此题主要考查了菱形的判定以及二次函数的平移和平行四边形的判定和性质等知识,利用分类讨论思想得出是解题关键.。

广西百色市中考数学试卷

广西百色市中考数学试卷

广西百色市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.2.(3分)多边形的外角和等于()A.180°B.360°C.720° D.(n﹣2)•180°3.(3分)在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.64.(3分)下列计算正确的是()A.(﹣3x)3=﹣27x3 B.(x﹣2)2=x4C.x2÷x﹣2=x2D.x﹣1•x﹣2=x25.(3分)如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAM C.∠BAM=2∠CAM D.2∠CAM=∠BAC 6.(3分)5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×1087.(3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③C.③①②D.①③②8.(3分)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.1219.(3分)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60°C.72°D.120°10.(3分)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1) B.20(﹣1)C.200 D.30011.(3分)以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是()A.0≤b<2B.﹣2C.﹣22D.﹣2<b<2 12.(3分)关于x的不等式组的解集中至少有5个整数解,则正数a 的最小值是()A.3 B.2 C.1 D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围为.14.(3分)一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.15.(3分)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有(填序号)16.(3分)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为.17.(3分)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.18.(3分)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=.三、解答题(本大题共8小题,共66分)19.(6分)计算:+()﹣1﹣(3﹣π)0﹣|1﹣4cos30°|20.(6分)已知a=b+2018,求代数式•÷的值.21.(6分)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C 关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.22.(8分)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.23.(8分)甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是S甲2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b=;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a、b的所有可能取值,并说明理由.24.(10分)某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?25.(10分)已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.26.(12分)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y 轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.2017年广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•百色)化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.【分析】根据绝对值的定义即可解题.【解答】解:∵负数的绝对值是它的相反数,∴|﹣15|等于15,故选A.【点评】本题考查了绝对值的定义,熟练运用是解题的关键.2.(3分)(2017•百色)多边形的外角和等于()A.180°B.360°C.720° D.(n﹣2)•180°【分析】根据多边形的外角和,可得答案.【解答】解:多边形的外角和是360°,故选:B.【点评】本题考查了多边形的内角与外角,熟记多边形的外角和是解题关键.3.(3分)(2017•百色)在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.6【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.(3分)(2017•百色)下列计算正确的是()A.(﹣3x)3=﹣27x3 B.(x﹣2)2=x4C.x2÷x﹣2=x2D.x﹣1•x﹣2=x2【分析】根据积的乘方等于乘方的积,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、积的乘方等于乘方的积,故A符合题意;B、幂的乘方底数不变指数相乘,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C不符合题意;D、同底数幂的乘法底数不变指数相加,故D不符合题意;故选:A.【点评】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟记法则并根据法则计算是解题关键.5.(3分)(2017•百色)如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAM C.∠BAM=2∠CAM D.2∠CAM=∠BAC 【分析】根据角平分线定义即可求解.【解答】解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.【点评】此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.6.(3分)(2017•百色)5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:44亿这个数用科学记数法表示为4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•百色)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③C.③①②D.①③②【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:D.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.8.(3分)(2017•百色)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.121【分析】根据已知数据得出规律,再求出即可.【解答】解:0=﹣(1﹣1)2,1=(2﹣1)2,﹣4=﹣(3﹣1)2,9=(4﹣1)2,﹣16=﹣(5﹣1)2,∴第11个数是﹣(11﹣1)2=﹣100,故选B.【点评】本题考查了数字的变化类,能根据已知数据得出规律是解此题的关键.9.(3分)(2017•百色)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60°C.72°D.120°【分析】根据条形统计图可以得到第一小组在五个小组中所占的比重,然后再乘以360°,即可解答本题.【解答】解:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.【点评】本题考查扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.(3分)(2017•百色)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1) B.20(﹣1)C.200 D.300【分析】作BD⊥AC于点D,在Rt△ABD中利用三角函数求得AD的长,在Rt△BCD中,利用三角函数求得CD的长,则AC即可求得,进而求得速度.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选A.【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.11.(3分)(2017•百色)以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是()A.0≤b<2B.﹣2C.﹣22D.﹣2<b<2【分析】求出直线y=﹣x+b与圆相切,且函数经过一、二、四象限,和当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时b的值,则相交时b的值在相切时的两个b的值之间.【解答】解:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.在y=﹣x+b中,令x=0时,y=b,则与y轴的交点是(0,b),当y=0时,x=b,则A的交点是(b,0),则OA=OB,即△OAB是等腰直角三角形.连接圆心O和切点C.则OC=2.则OB=OC=2.即b=2;同理,当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时,b=﹣2.则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣2<b<2.故选D.【点评】本题考查了切线的性质,正确证得直线y=﹣x+b与圆相切时,可得△OAB 是等腰直角三角形是关键.12.(3分)(2017•百色)关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.【点评】本题考查一元一次不等式组的整数解,确定a的范围是本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•百色)若分式有意义,则x的取值范围为x≠2.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.14.(3分)(2017•百色)一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.【分析】根据一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴随机抽取一张,抽中标号为奇数的卡片的概率是.故答案是.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•百色)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有②(填序号)【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故假命题有②,故答案为:②.【点评】本题主要考查了命题与定理的运用,解题时注意:命题的“真”“假”是就命题的内容而言,任何一个命题非真即假.16.(3分)(2017•百色)如图,在正方形OABC中,O为坐标原点,点C在y 轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A 的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).【点评】本题考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.理解将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位是解题的关键.17.(3分)(2017•百色)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是y=﹣x2+x+3.【分析】根据A与B坐标特点设出抛物线解析式为y=a(x﹣2)(x﹣4),把C坐标代入求出a的值,即可确定出解析式.【解答】解:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+3,故答案为y=﹣x2+x+3.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.18.(3分)(2017•百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=(x+3)(3x﹣4).【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)【点评】本题考查了因式分解﹣十字相乘法等,解此题的关键是熟练掌握“十字相乘法”分解因式,题目比较好,难度也不大.三、解答题(本大题共8小题,共66分)19.(6分)(2017•百色)计算:+()﹣1﹣(3﹣π)0﹣|1﹣4cos30°|【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+2﹣1﹣2+1=2.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)(2017•百色)已知a=b+2018,求代数式•÷的值.【分析】先化简代数式,然后将a=b+2018代入即可求出答案.【解答】解:原式=××(a﹣b)(a+b)=2(a﹣b)∵a=b+2018,∴原式=2×2018=4036【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(6分)(2017•百色)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.【解答】解:(1)将B点坐标代入函数解析式,得=2,解得k=6,反比例函数的解析式为y=;(2)由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).S△ACD=AD•CD=[3﹣(﹣3)]×|﹣2|=6.【点评】本题考查了反比例函数系数k的意义,利用待定系数法求函数解析式,利用关于原点对称的点的坐标得出C点坐标是解题关键.22.(8分)(2017•百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF 分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.【解答】解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.【点评】本题考查了矩形的性质、平行四边形的判断和性质以及全等三角形的判断和性质,熟记矩形的各种性质是解题的关键.23.(8分)(2017•百色)甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是S甲2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b=17;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a、b的所有可能取值,并说明理由.【分析】(1)根据表中数据描点、连线即可得;(2)根据平均数的定义列出算式,整理即可得;(3)由a+b=17得b=17﹣a,将其代入到S甲2<S乙2,即[(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]>0.8,得到a2﹣17a+71>0,求出a的范围,根据a、b均为整数即可得出答案.【解答】解:(1)如图所示:(2)由题意知,=9,∴a+b=17,故答案为:17;(3)∵甲比乙的成绩较稳定,∴S甲2<S乙2,即[(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]>0.8,∵a+b=17,∴b=17﹣a,代入上式整理可得:a2﹣17a+71>0,解得:a<或a>,∵a、b均为整数,∴a=7、b=10;a=10、b=7.【点评】本题主要考查折线统计图、平均数、方差,熟练掌握平均数和方差的计算公式及解一元二次不等式是解题的关键.24.(10分)(2017•百色)某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【分析】(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据“两类节目的总数为20个、唱歌类节目数比舞蹈类节目数的2倍少4个”列方程组求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时<150”列不等式求解可得.【解答】解:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据题意,得:,解得:,答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15<150,解得:a<,由于a为整数,∴a的最大值为3,答:参与的小品类节目最多能有3个.【点评】本题主要考查二元一次方程组和一元一次不等式的应用,理解题意找到题目蕴含的相等关系和不等关系,列出方程组、不等式是解题的关键.25.(10分)(2017•百色)已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.【分析】(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解题;(2)连接OB、OC、OD、OF,易证AD=AF,BD=CF可得DF∥BC,再根据AE长度即可解题.【解答】解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵=,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴=,∵AE==4,∴AM=4×=.【点评】本题考查了全等三角形的判定和性质,考查了等腰三角形的性质,考查了圆的切线的性质,本题中求DF∥BC是解题的关键.26.(12分)(2017•百色)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.【分析】(1)先确定出OA=4,OB=2,再利用菱形的性质得出OC=4,OD=2,最后用待定系数法即可确定出直线BC解析式;(2)分两种情况,先表示出点P的坐标,利用两点间的距离公式即可得出函数关系式;(3)分两种情况,利用勾股定理的逆定理建立方程即可求出点P的坐标.【解答】解:(1)∵A(﹣4,0),B(0,﹣2),∴OA=4,OB=2,∵四边形ABCD是菱形,∴OC=OA=4,OD=OB=2,∴C(4,0),D(0,2),设直线BC的解析式为y=kx﹣2,∴4k﹣2=0,∴k=,∴直线BC的解析式为y=x﹣2;(2)由(1)知,C(4,0),D(0,2),∴直线CD的解析式为y=﹣x+2,由(1)知,直线BC的解析式为y=x﹣2,当点P在边BC上时,设P(2a+4,a)(﹣2≤a<0),∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,∵△POM是直角三角形,Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴a=2+(舍)或a=2﹣,∴P(,2﹣),即:当△OPM为直角三角形时,点P的坐标为(,2﹣),(4,0).【点评】此题是四边形综合题,主要考查了菱形的性质,勾股定理逆定理,两点间的距离公式,待定系数法,解(1)的关键是掌握待定系数法,解(2)的关键是分类讨论的思想,解(3)的关键是分两种情况,利用勾股定理逆定理建立方程求解,是一道中等难度的题目.参与本试卷答题和审题的老师有:499807835;2300680618;HLing;HJJ;zjx111;zgm666;zhjh;守拙;szl;sks;神龙杉;wd1899;三界无我;星月相随(排名不分先后)菁优网2017年8月15日。

2013年广西自治区百色市中考数学试卷含答案.docx

2013年广西自治区百色市中考数学试卷含答案.docx

2013 年中考真題2013 年广西百色中考数学试题(本试卷满分120 分,考试时间120 分钟)第Ⅰ卷(选择题,共36 分)一、选择题(本大题共12 小题,每小题 3 分,共 36 分。

)每小题都给出代号为 A 、 B、 C、D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷上将选定的答案代号涂黑。

1.(2013年广西百色3分)- 2013 的相反数是【】A.- 2013 B .2013C.11D.2013 2013【答案】 B 。

2.(2013年广西百色3分)已知∠ A = 65°,则∠ A 的补角的度数是【】A. 15° B . 35°C. 115 ° D .135 °【答案】 C。

3.(2013年广西百色3分)百色市人民政府在 2013 年工作报告中提出,今年将继续实施十项为民办实事工程。

其中教育惠民工程将投资 2.82 亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目。

那么数据282 000 000 用科学记数法(保留两个有效数字)表示为【】A. 2.82 ×108B.2.8 ×108C. 2.82 ×109 D . 2.8 ×109【答案】 B 。

4.(2013年广西百色3分)下列运算正确的是【】A. 2a+ 3b= 5ab B. 3x2y- 2x2y= 1C. (2 a2)3=6a6D. 5x 3÷x2= 5x【答案】 D。

5.(2013年广西百色3分)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为【】A. 6cm2B. 4πcm2C. 6πcm2 D .9πcm2【答案】 B 。

6.(2013年广西百色3 分)在反比例函数y m中,当x>0时,y随x的增大而增大,则二次函数y= m x 2+m xx的图象大致是下图中的【】[来 A . B .C. D .【答案】 A 。

2013年广西中考数学真题卷含答案解析

2013年广西中考数学真题卷含答案解析

2013年南宁市初中毕业升学考试试卷数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.在-2,1,5,0这四个数中,最大的数是()A.-2B.1C.5D.02.如图所示,将平面图形绕轴旋转一周,得到的几何体是()3.2013年6月11日,神舟十号飞船发射成功.神舟十号飞船身高约9米,重约8吨,飞行速度约每秒7900米.将数7900用科学记数法表示,正确的是()A.0.79×104B.7.9×104C.7.9×103D.79×1024.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能...出现的投影是()A.三角形B.线段C.矩形D.正方形5.甲、乙、丙、丁四名选手将参加100米决赛.赛场共设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.13D.146.若分式x-2x+1的值为0,则x的值为()A.-1B.0C.2D.-1或27.如图,圆锥形的烟囱帽底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150cm28.下列各式计算正确的是()A.3a3+2a3=5a6B.2√a+√a=3√aC.a4·a2=a8D.(ab2)3=ab69.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15的是()10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误..A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,AB 是☉O 的直径,弦CD 交AB 于点E,且AE=CD=8,∠BAC=12∠BOD,则☉O 的半径为( )A.4√2B.5C.4D.312.如图,直线y=12x 与双曲线y=k x (k>0,x>0)交于点A,将直线y=12x 向上平移4个单位长度后,与y 轴交于点C,与双曲线y=kx (k>0,x>0)交于点B.若OA=3BC,则k 的值为( )A.3B.6C.94D.92第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.要使二次根式√x -2有意义,则x 的取值范围是 . 14.一副三角板如图所示放置,则∠AOB= °.15.因式分解:x 2-25= .16.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末体育成绩(百分制)分别是80分,90分,则小海这个学期的体育综合成绩是 分.17.有这样一组数据a1,a2,a3,…,a n,满足以下规律:a1=12,a2=11-a1,a3=11-a2,…,a n=11-a n-1(n≥2且n为正整数),则a2013的值为.(结果用数字作答)18.如图,在边长为2的正三角形中,将其内切圆和三个角切圆...(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为.三、(本大题共2小题,每小题满分6分,共12分)19.计算:20130-√27+2cos60°+(-2).20.先化简,再求值:(x x-1+1x-1)÷x+1x2-2x+1,其中x=-2.四、(本大题共2小题,每小题满分8分,共16分)21.如图,△ABC三个顶点坐标分别为A(-1,3),B(-1,1),C(-3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2.请在第三象限内画出△A2B2C2,并求出S△A1B1C1∶S△A2B2C2的值.22.2013年6月,某中学结合广西中小学生阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②所提供的信息,解答下列问题:(1)在这次抽样调查中,一共抽查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.五、(本大题满分8分)23.如图,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.六、(本大题满分10分)24.在一条笔直的公路上有A、B两地.甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离.B.地的距离....y(km)与行驶时间x(h)之间的函数图象.根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;甲、乙两人能(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,请直接写出....够用无线对讲机保持联系时x的取值范围.七、(本大题满分10分)25.如图,在△ABC中,∠BAC=90°,AB=AC,AB是☉O的直径,☉O交BC于点D,DE⊥AC于点E,BE交☉O于点F,连结AF,AF的延长线交DE于点P.(1)求证:DE是☉O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.八、(本大题满分10分)26.如图,抛物线y=ax2+c(a≠0)经过C(2,0)、D(0,-1)两点,并与直线y=kx交于A、B两点,直线l 过点E(0,-2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM; (3)探究:①当k=0时,直线y=kx 与x 轴重合,求出此时1AM +1BN 的值;②试说明无论k 取何值,1AM +1BN 的值都等于同一个常数.答案全解全析:1.C 因为-2<0<1<5,所以最大的数为5,故选C.2.A 半圆绕直径所在的直线旋转一周所得的几何体为球,故选A.3.C 7 900=7.9×103,故选C.4.A 在平行光线下,矩形的投影可能是线段或矩形或正方形,矩形的平行投影不可能是三角形,故选A.5.D 甲抽到每个跑道的可能性相等,共4个跑道,则甲抽到每个跑道的可能性都是14,抽到1号道的概率为14,故选D.6.C 由x -2x+1=0解得x=2,当x=2时,x+1≠0,故x=2是原分式方程的解,故选C. 7.B S 圆锥侧=πrl=15×20π=300π cm 2,故选B.8.B 因为3a 3+2a 3=5a 3,a 4·a 2=a 6,(ab 2)3=a 3b 6,所以选项A 、C 、D 错误,故选B. 9.C 设笑脸气球x 元/个,爱心气球y 元/个. 则{3x +y =14,①x +3y =18,②由①+②得2(x+y)=16,故选C.评析 本题考查二元一次方程组的应用,确定等量关系列方程组是关键,应根据题意灵活解方程组.10.D 由题中图象可知抛物线的对称轴为x=1,顶点坐标为(1,-4),开口向上,点(-1,0)关于直线x=1的对称点为(3,0),故选项A 、B 、C 正确,故选D.11.B 连结AD,则∠BAD =12∠BOD=∠BAC,∴BC ⏜=BD ⏜,又AB 为直径,∴CD⊥AB,DE=12CD=4,设☉O 的半径为r,则OE=8-r,在Rt△DEO 中,OE 2+DE 2=OD 2,(8-r)2+42=r 2,解得r=5,故选B. 12.D 作AE⊥y 轴于点E,BF⊥y 轴于点F,易证△BFC∽△AEO,所以BF AE =BC AO =13,设x B =m,则x A =3m,所以有B (m ,12m +4),A (3m ,32m).因点A,B 在y=kx 上,所以k=m (12m +4)=3m·32m,解得m=0(舍去)或m=1.所以k=92,故选D.评析 本题考查一次函数、反比例函数、图形的相似等知识,关键是根据相似比确定A 、B 两点的坐标,求出k 值.属中等难度题. 13.答案 x≥2解析 x-2≥0时二次根式有意义,∴x≥2. 14.答案 105解析 由题意得∠AOB=45°+60°=105°. 15.答案 (x+5)(x-5)解析 由平方差公式得x 2-25=(x+5)(x-5). 16.答案 86解析 设综合成绩为x ,则x =80×40%+90×60%=86(分). 17.答案 -1 解析 a 1=12,a 2=11-a 1=11-12=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,…,即每3个循环一次,而2 013÷3=671,所以a 2 013=-1.18.答案 √3-4π9解析 设内切圆的半径为R,角切圆的半径为r,可求得R=√33,r=√39,S 阴影=√34×22-πR 2-3πr 2=√3-π3-π9=√3-4π9.19.解析 原式=1-3√3+2×12-2(4分)=1-3√3+1-2(5分) =-3√3.(6分) 20.解析 原式=x+1x -1÷x+1(x -1)2(2分)=x+1x -1·(x -1)2x+1(3分)=x-1.(4分)当x=-2时,原式=-2-1(5分) =-3.(6分)21.解析 (1)轴对称图形如图所示.(3分) (2)位似图形如图所示.(6分)∵△A 1B 1C 1∽△A 2B 2C 2,A 1B 1A 2B 2=12,(7分)∴S △A 1B 1C 1∶S △A 2B 2C 2=(12)2=14.(8分) 22.解析 (1)90÷30%=300(名).(2分) (2)如图所示. (4分)×360°=48°.(6分)(3)40300×1 800=480(名).(8分)(4)8030023.解析(1)证明:在菱形ABCD中,AB=BC=CD=DA,(1分)∠B=∠D.(2分)∵点E、F分别是边BC、AD的中点,∴BE=DF,(3分)∴△ABE≌△CDF.(4分)(2)解法一:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分) ∵点E是BC边的中点,∴AE⊥BC.(6分)在Rt△ABE中,sin∠B=AE,(7分)AB=2√3.(8分)∴AE=AB·sin∠B=4×√32解法二:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分)∵点E是BC边的中点,∴AE⊥BC.(6分)∴∠BAE=30°.AB=2,(7分)在Rt△ABE中,BE=12∴AE=√AB2-BE2=√42-22=2√3.(8分)评析 本题考查菱形的性质、三角形全等的判定、等边三角形的性质、勾股定理等知识,属基础题.24.解析 (1)30千米.(2分)(2)解法一:当0≤x≤2时,设y甲=kx+b,将点(0,30),(2,0)代入得{b =30,2k +b =0,解得{k =-15,b =30,∴y 甲=-15x+30(0≤x≤2).(3分)当0≤x≤1时,设y 乙=mx,将点(1,30)代入得m=30,∴y 乙=30x(0≤x≤1),(4分)当y 甲=y 乙时,-15x+30=30x,(5分)解得x=23,此时y 甲=y 乙=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)解法二:由题图可知,甲的速度为15千米/时,(3分)乙的速度为30千米/时.(4分)设经过x 小时后甲、乙两人第一次相遇,则15x+30x=30,(5分)解得x=23,∴30x=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)(3)35≤x≤23(8分)或23<x≤1115(9分)或95≤x≤2.(10分)评析本题是以行程问题为背景的一次函数应用型问题,考查了待定系数法求函数解析式,一次函数图象及其性质,数形结合是常用的解题方法.25.解析(1)证法一:连结OD.∵∠BAC=90°,AB=AC,∴∠C=∠ABC=45°.∵DE⊥AC,∴∠CDE=45°.(1分)∵OB=OD,∴∠ODB=∠ABC=45°.(2分)∵∠CDE+∠ODE+∠ODB=180°,∴∠ODE=90°,∴DE是☉O的切线.(3分)证法二:连结OD.∵∠BAC=90°,AB=AC,∴∠ABC=45°.∵OB=OD,∴∠ODB=∠ABC=45°,(1分)∴∠DOB=90°.(2分)∵DE⊥AC,BA⊥AC,∴DE∥BA,∴∠ODE=∠DOB=90°,∴DE是☉O的切线.(3分)(2)∵∠BAC=∠DEA=∠ODE=90°,OA=OD,∴四边形AODE是正方形.(4分)∴AE=OA=12AB,(5分)∴tan∠ABE=AEAB =12.(6分)(3)∵AB是☉O的直径, ∴∠AFB=90°.(7分)∵∠EAP+∠PAB=90°,∠PAB+∠ABE=90°,∴∠EAP=∠ABE,(8分)∴tan∠ABE=tan∠EAP=PE AE =12.∵AE=OA=2,∴PE=1.(9分)在Rt△AEP 中,AP=√AE 2+PE 2=√5.(10分)评析 本题考查圆的性质、切线的判定、平行四边形的性质以及解直角三角形,构造相应的直角三角形是解题关键.26.解析 (1)将点C(2,0),D(0,-1)代入y=ax 2+c得{c =-1,4a +c =0,(1分) 解得{a =14,c =-1,∴此抛物线的解析式为y=14x 2-1.(2分) (2)证明:过点A 作AG 垂直于y 轴,垂足为点G.设点A 的坐标为(x 1,14x 12-1),则AO 2=AG 2+GO 2 =x 12+(14x 12-1)2=116x 14+12x 12+1.(3分)AM 2=(14x 12-1+2)2 =116x 14+12x 12+1.(4分) ∴AO 2=AM 2.∵AO、AM 的值均为正数,∴AO=AM.(5分)(3)①当k=0时,直线AB 与x 轴重合,且AB∥MN,则AM=2,BN=2,∴1AM +1BN =1.(6分) ②当k>0时,延长AG,交BN 于点H,由(2)可知AO=AM,同理可证:BO=BN.(7分)设AO=AM=m,BN=BO=n.易知BN∥OE,∴△AGO∽△AHB,∴AOOG =ABBH,即m2-m=m+nn-m,(8分)整理得m+n=mn.∵m≠0,n≠0,∴两边同除以mn得1m +1n=1,即1AM +1BN=1.(9分)当k<0时,同理可证:1AM +1BN=1,综上所述,无论k取何值,1AM +1BN的值都等于同一个常数.(10分)评析本题属二次函数的综合题,考查了待定系数法求函数解析式、勾股定理、三角形相似的判定与性质,本题难点在相似三角形的构造,依据条件作垂线是构造相似三角形的途径.本题对学生的计算能力要求较高,属难题.。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

2013年中考数学真题

2013年中考数学真题

2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案(时间:120分钟 满分:120分)注意事项:1.本试卷分选择题和非选择题两部分,在本试卷上作答无效.2.考题结束后,将本试卷和答题卷一并交回.3.答题前,请认真阅读答题卷上的注意事项.一、选择题(本大题共14题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卷...上对应题目的答案标号涂黑) 1.计算:2-3= ( ) A .-1 B .1 C .5 D .9 答案:A2.计算(a 4)3的结果是 ( )A .a 7B .a 12C .a 16D .a 64答案:B3.已知∠A=37°,则∠A 的余角等于 ( )A .37°B .53°C .63°D .143° 答案:B 4.函数y=23x 中自变量x 的取值范围是 ( ) A .x ≠-3 B .x <-3 C .x >-3 D .x ≥-3答案:A5. (2010广西百色,5,3分)以百色汽车总站为坐标原点,向阳路为y 轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是( )A .(-5,3)B . (4,3)C .(5,-3)D .(-5,-3)(第5题) 答案:C6. (2010广西百色,6,3分)不等式2-x ≤1的解集在数轴上表示正确的是 ( )答案:D7. (2010广西百色,7,3分)如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是( )(第7题)A .B .C .D . 答案:C8. (2010广西百色,8,3分)如图,已知a ∥b ,l 分别与a 、b 相交,下列结论中错误..的是( ) A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠2=∠5(第8题) 答案:D9. (2010广西百色,9,3分)二元一次方程组34,231x y x y +=⎧⎨-=-⎩.的解是( )A .11.x y =⎧⎨=⎩,B .11.x y =-⎧⎨=-⎩,C .22.x y =-⎧⎨=⎩,D .21.x y =-⎧⎨=-⎩,答案:A10. (2010广西百色,10,3分)下列命题中,是假命题的是( )A .全等三角形的对应边相等B .两角和一边分别对应相等的两个三角形全等C .对应角相等的两个三角形全等D .相似三角形的面积比等于相似比的平方 答案:C11. (2010广西百色,11,3分)在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学捐款情况绘制成如图的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是( )A..20元 B .15元 C .12元 D .10元(第11题)答案:D捐款人数42105 25 金额(元)12. (2010广西百色,12,3分)如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE ,CF 为AB 边上的中线,若AD =5,CD =3,DE =4,则BF 的长为( )A .332B .316 C .310 D .38(第12题)答案:B13. (2010广西百色,13,3分)二次函数y=-x2+bx +c的图象如图所示,下列几个结论:)F EDCBA x20415. (2010广西百色,14,3分) 15的倒数是 .答案:516. (2010广西百色,16,3分)截止6月9日,上海世博园入园游览人数累计已达到1080万人次,1080万用科学记数法表示为万.答案:31008.1⨯17. (2010广西百色,17,3分)为了解某班学生的视力情况,从中抽取7名学生进行检查,视力如下:1.21.5 0.9 1.0 1.2 1.2 0.8,则这组数据的中位数是 .答案:1.218. (2010广西百色,18,3分)方程x2=2x-1的两根之和等于 .答案:219. (2010广西百色,19,3分)如图,⊙O的直径为20cm,弦AB=16cm,OD⊥AB,垂足为D.则AB沿射线OD方向平移cm时可与⊙D相切.(第19题)答案:420. (2010广西百色,20,3分)如图,将边长为33+的等边△ABC折叠,折痕为DE,点B与点F重合,EF 和DF分别交AC于点M、N,DF⊥AB,垂足为D,AD=1.设△DBE的面积为S,则重叠部分的面积为 .(用含S的式子表示)(第20题)答案:S三.解答题(本大题共7题,共60分.请将解答过程写在答题卷...上)21. (2010广西百色,21,6分)将下面的代数式化简,再选择你喜欢且有意义的数代入求值.(1a b-+1a b+)÷22aba b-+a-1 答案:_E_C_B解:原式=()()a b a b a b a b ++-+-×()()a b a b ab+-+a-1=2b+a-1 取a =1,b=2(取a=b,a=-b均不得分)原式=22+1-1=1(答案不唯一,只要符合题意即可) 22. (2010广西百色,22,8分)已知矩形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线BD 上的两点,且BF =DE .(1)按边分类,△AOB 是 三角形;(2)猜想线段AE 、CF 的大小关系,并证明你的猜想.(第22题) 答案:(1)等腰(2)猜想:AE =CF证法一:∵四边形是ABCD 矩形∴AD ∥BC 且AD =BC ∴∠ADB =∠CBD ∵DE =BF∴△ADE ≌△CBF (SAS )∴AE =CF 证法二:∵四边形ABCD 是矩形 ∴OA =OC ,OB =OD∵DE =BF ∴OE =OF 又∠AOE =∠COF∴△AOE ≌△COF (SAS ) ∴AE =CF证法三:如图,连结AF 、CE由四边形ABCD 是矩形得OA =OC ,OB =OD ∵DE =BF ∴OE =OF∴四边形AECF 是平行四边形. ∴AE =CF 23. (2010广西百色,23,8分)今年4月14日,青海玉树发生了里氏7.1级大地震,为支援玉树抗震救灾,我市从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队. (1)用树状图表示任意抽取2人所有的可能结果,请你补全这个树状图:乙 甲 丙 丁 O FE D C BA OF ED CB A(2)求任意抽取的2人恰好是一名医生和一名护士的概率. 答案:(1)如图所示:′ (2)解:恰好是一名医生和一名护士的概率是:P=812=2324. (2010广西百色,24,8分)如图,反比例函数y=1k x(x>0)与正比例函数y=k2x 的图象分别交矩形OABC 的BC 边于M (4,1),B (4,5)两点. (1)求反比例函数和正比例函数的解析式;BMN (不含边界)∴k1=4∴反比例函数的解析式为y=4x∵y=k2x 的图象经过点B (4,5) ∴4k 2=5∴k 2=54∴正比例函数的解析式为y=54x(2) 阴影区域BMN (不含边界)内的格点:(3,3)(3,2)所求点的坐标为:(-3,3)、(-3,2)25. (2010广西百色,25,8分)秋季至今年5月,我市出现了严重的旱情,今年4月15日至21日,甲、乙两所中学均告断水,上级立刻组织送水活动,每次送往甲中学7600升、乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.乙甲丙丁乙丙 丁 丙 丙丁 丁甲 甲乙 甲 乙(1)求这两所中学师生人数分别是多少人?(2)若送瓶装水,价格为1元/升;若用消防车送饮用泉水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个.其它费用忽略不记.请你计算第一次给乙中学全部送瓶装水或全部用消防车送饮用泉水的费用各是多少?答案:解:(1)设乙中学有师生x 人,则甲中学有师生(2x -20)人.依题意得7600220x -=4000x解这个方程得x=200经检验x=200是原方程的解,∴2x -20=380 答:甲中学有师生380人,乙中学有师生200人. (2)送瓶装水的费用为:4000×1=4000(元)送饮用泉水的费用为:4000÷500×520=4160(元)26. (2010广西百色,26,10分)如图1,AB 是⊙O 的直径,BC ⊥AB ,垂足为B ,AC 交⊙O 于点D . (1)用尺规作图:过点D 作DE ⊥BC ,垂足为E (保留作图痕迹,不写作法和证明); (2)在(1)的条件下,求证:△BED ∽△DEC ; (3)若点D 是AC 的中点(如图2),求sin∠OCB 的值.图1 图2【解析】(1)要证△BED ∽△DEC ,有一公共角,故只要证明∠C =∠EDB 即可. (2)在Rt△OBC 中,只要找到OB 与OC 的关系即可.由于∠ADB = 90, D是AC 的中点,所以BD 垂直平分AC ,所以△ABC 是等腰直角三角形.答案:(1)如图(2)证明:∵AB 是⊙O 的直径∴∠ADB =∠CDB = 90∴∠CDE +∠EDB = 90 又∵DE ⊥BC ∴∠CED =∠DEB = 90 ∴∠CDE +∠C = 90 ∴∠C =∠EDB ∴△BED ∽△DEC (3)解:∵∠ADB =90, D 是AC 的中点 ∴BD 垂直平分AC∴BC =AB =2OB 设OB =k 则BC =2k∴OC∴sin∠OCB =OB OC =55A B C DOCBC A27. (2010广西百色,27,12分)已知抛物线y =x 2+bx +c的图象过A (0,1)、B (-1,0)两点,直线l :x =-2与抛物线相交于点C ,抛物线上一点M 从B 点出发,沿抛物线向左侧运动.直线MA 分别交对称轴和直线l 于D 、P 两点.设直线PA 为y =kx +m .用S 表示以P 、B 、C 、D 为顶点的多边形的面积. (1)求抛物线的解析式,并用k 表示P 、D 两点的坐标; (2)当0<k ≤1时, 求S 与k 之间的关系式;(3)当k <0时, 求S 与k 之间的关系式.是否存在k 的值,使得以P 、B 、C 、D 为顶点的多边形为平行四(4)若规定k =0时,y=m是一条过点(0,m)且平行于x轴的直线.当k ≤1时,请在下面给出的直角坐标系中画出S 与k 之间的函数图象.求S 的最小值,并说明此时对应的以P 、B 、C 、D 为顶点的多边形的形状.(第27题)答案:解:(1)由题意得1,.10c b c =⎧⎨-+=⎩解之得c =1,b =2所以二次函数的解析式为:y =x 2+2x +1直线y =kx +m .经过点A (0,1) ∴m =1,∴y =kx +1 当x=-2时y =-2k +1 当x=-1时y =-k +1∴P (-2, -2k +1) D (-1, -k +1)(2) 在y =x 2+2x +1中,当x=-2时,y =4-4+1=1 ∴点C 坐标为(-2,1)当0<k ≤1时,CP =1-(-2k +1)=2k , BD =-k +1∴S=212k k -+=12k +12(3)当k <0时, CP =-2k +1-1=-2k , BD =-k +1∴S=212k k --+=32-k +12存在k 当PC ∴当k (4) k⎪⎪⎪⎩⎪⎪⎪⎨⎧-=23(2121k k k S 2112342246M Dx=-2P C B A 1-1O xy MD Px=-2lC BA O x y图象如图所示.由图象可知,S的最小值为S=12.此时对应的多边形是一个等腰直角三角形.。

广西南宁2013年中考数学试题(图片版)

广西南宁2013年中考数学试题(图片版)
()中考频道于中考结束第一时间为考生提供了“广西南2013年中考数学试题(图片版)”,广西南宁2013年中考数学试题形式为图片版,随后我们会为大家提供2013广西南宁中考数学试卷WORD下载版,请大家关注。
广西南宁2013年中考数学试题预览:
接下来()会在第一时间内为考生提供广西南宁2013年中考数学试题答案,请关注。
中考频道于中考结束第一时间为考生提供了广西南宁2013年中考数学试题图片版广西南宁2013年中考数学试题形式为图片版随后我们会为大家提供2013广西南宁中考数学试卷word下载版请大家关注
广西南宁2013年中考数学试题(图片版)
中考网为您提供中考试题及答案:《2014年中考真题》《2014年中考试题答案》

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案(考题时间:120分钟;满分120分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷非选择题两部分。

答第[卷时,用2B 铅笔把答题卡上对应的答案题号涂黑;打第Ⅱ卷时,用黑色水笔将答案写在答题卡上,在本试卷上作答无效; 2. 考题结束后,将本试卷和答题卡一并收回;3. 答题前,请认真阅读试卷和答题卡上的注意事项。

第Ⅰ卷(选择题)一、选择题(本大题共14题,每小题3分,共42分。

在每小题给出的四个选项中只有一项是符合要求的) 1.2011的相反数是A.-2011B.2011C.12011D. ±2011 答案:A2.五边形的外角和等于A.180°B. 360 °C.540°D.720° 答案:C3下列四个立体图中,它的几何体的左视图是圆的是答案:A4.甲,乙,丙,丁四位同学在四次数学测验中,他们成绩的平均数相同,方差分别为2S 甲=5,5,2S 乙=7.3,2S 丙=8.6,2S 丁=4.5,则成绩最稳定的是A .甲同学 B. 乙同学 C. 丙同学 D. 丁同学 答案:D 5.计算(π-12)0-sin30°= A.12. B. π-1 C. 32D. 13答案:A6两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),侧方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是A ⎩⎨⎧==32y x B ⎩⎨⎧=-=32y x C ⎩⎨⎧-==23y x D ⎩⎨⎧==23y x答案: B7下列命题中是真命题的是A .如果a ²=b ² ,那么a=bB.对角线互相垂直的四边形是菱形C.线段垂直平分线上的点到这条线段的两个端点的距离相等D.对应角相等的两个三角形全等 答案:C8如图,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点 E.某同学解析图形后得出以下结论:①∆BCD ≌∆CBE;②∆BAD ≌∆BCD;③∆BDA ≌∆CEA;④∆BOE ≌∆COD;⑤ ∆ACE ≌∆BCE;上述结论一定正确的是DEOBCAA. ①②③B. ②③④C. ①③⑤D. ①③④ 答案:D 9.我们知道:一个正整数p(P>1)的正因数有两个:1和p ,除此之外没有别的正因数,这样的数p 称为素数,也称质数。

2013年历年百色市初三数学中考模拟试题及答案

2013年历年百色市初三数学中考模拟试题及答案

B Aa b 10 1-2013年中考模拟数学试题卷考生须知:1. 本试卷分试题卷和答题卡两部分。

满分120分,考试时间120分钟。

2. 答题时,必须在答题卡密封区内写明校区、考场、座位号、姓名、班级等内容。

答题必须书写在答题卡各规定区域之内,超出答题区域的答案将被视为无效。

一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合要求的)1.-6的倒数是…………………………………………………………………( )A .-6B .6C .61-D .612.下列运算正确的是……………………………………………………………( )A .624a a a =⋅B .23522=-b a b aC .()523a a =- D .()633293b a ab =3.估算224+的值………………………………………………………………( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间4.在“上海世博” 工程施工建设中,使用了我国科研人员自主研制的强度为460000000帕的钢材,那么数据460000000用科学记数法表示为………………………………………………………………………………( )A .8106.4⨯B .9106.4⨯C .91046.0⨯D .71046⨯ 5.如图所示,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是………………………………………………………………………………( )A .021>-a b B .0>-b a C .02>+b a D .0>+b a6.如图,点A 的坐标为(2-,0),点B 在直线 x y = 上运动,当线段AB 最短时,点B ( ) A .(-22,-22) B .(-21,-21) C .(22,22-) D .(0,0) 7.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是…………………( )A .中位数B .平均数C .众数D .加权平均数 8.方程(x -1)(x +2)=2(x +2)的根是…………………………………………( )A .1B .3,-2C .0,-2D .1,-29.已知方程0252=--x x 的两个解分别是21,x x .则2121x x x x ⨯-+的值为( )A .-7B .-3C .7D .3 10.下列三视图所对应的直观图是……………………………………………( )11.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。

广西百色市2013年中考数学一模试卷(解析版)

广西百色市2013年中考数学一模试卷(解析版)

广西百色市2013年中考数学一模试卷一、选择题(本大题共12题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)..3.(3分)(2013•百色一模)2013年广西壮族自治区财政将进一步调整支出结构,筹措资金2012年增长17.2%.将18 400 000 000184亿元用于实施社保惠民、健康惠民工程项目,比4.(3分)(2013•百色一模)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )B7.(3分)(2013•百色一模)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()先根据圆周角、圆心角及弧的关系求出的度数,进而可得出=2=180=180ABD==9.(3分)(2011•重庆)为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造B10.(3分)(2010•深圳)某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方.=+12 =﹣12=﹣12 =+12=11.(3分)(2012•兰州)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为()B或1 或1或=s和12.(3分)(2013•百色一模)如图,已知直线l:,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()x,二、填空题(本大题共6题,每小题3分,共18分)13.(3分)(2013•百色一模)若分式无意义,则实数a的值是3.解:∵分式无意义,14.(3分)(2011•济南)方程x2﹣2x=0的解为x1=0,x2=2.15.(3分)(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为2.BC=216.(3分)(2012•温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27人.17.(3分)(2007•黑龙江)如图,矩形纸片ABCD,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为2.MG=12﹣4﹣AE,且由勾股定理可得EM2=EG2+MG2列方程,解之可得AE=2.解答:解:过点E作EG⊥BC,交BC于点GRt△EGM中,EG=AB=8,EM=ED=12﹣AE,MG=12﹣4﹣AE∵EM2=EG2+MG2∴(12﹣AE)2=64+(12﹣4﹣AE)2∴AE=2.18.(3分)(2013•百色一模)如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离CD是7.7m(取≈1.732,结果精确到0.1m).×m≈三、解答题(本大题共8题,共66分.解答题应写出文字说明、过程或演算步骤)19.(6分)(2013•百色一模)计算:.﹣×.20.(6分)(2013•百色一模)化简求值:,其中x=2.•=21.(6分)(2012•广安)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?(2)∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共种情况,∴他同时抽到两科都准备的较好的实验题目的概率是=.22.(8分)(2009•娄底)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD 的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.AEAE23.(8分)(2013•百色一模)为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.依题意得:3.24.(10分)(2009•北京)如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.y=解答:解:(1)由图象可知,函数(x>0)的图象经过点A(1,6),可得m=6.设直线AB的解析式为y=kx+b.∵A(1,6),B(6,1)两点在函数y=kx+b的图象上,∴,解得.25.(10分)(2013•百色一模)如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E作ED⊥AB,垂足为点D,(1)求证:DE为⊙O的切线;(2)过O点作EC的垂线,垂足为H,求证:EH•BE=BD•CO.解答:(1)证明:连接OE,∵AB=AC,∴∠B=∠C(1分)∵OC=OE,∴∠C=∠CEO,(1分)∴∠B=∠CEO,∴AB∥EO,(1分)∵DE⊥AB,∴EO⊥DE,(1分)∵EO是圆O的半径,∴D为⊙O的切线.(1分)(2)解:∵OH⊥BC,∴EH=HC,∠OHC=90°(1分)∵∠B=∠C,∠BDE=∠CHO=90°26.(12分)(2012•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.)∵b=+ABO==,×=2tt+2t+2ty=x。

广西百色市田阳县2013年中考数学一模试卷(解析版) 新人教版

广西百色市田阳县2013年中考数学一模试卷(解析版) 新人教版

2013年某某某某市田阳县中考数学一模试卷一、选择题(共12小题,每小题3分,共36分,请将答案写在答题卡上).1.(3分)(2013•某某)2013的相反数是()A.2013 B.﹣2013 C.D.﹣考点:相反数.分析:直接根据相反数的定义求解.解答:解:2013的相反数为﹣2013.故选B.点评:本题考查了相反数:a的相反数为﹣a.2.(3分)(2011•某某)如图,∠1+∠2等于()A.60°B.90°C.110°D.180°考点:余角和补角.专题:计算题.分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3.(3分)(2005•某某)图中几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从物体上面看,左边三个正方形,右边中间一个正方形,故选C.点评:本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.(3分)(2013•田阳县一模)下列计算正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.3a2+2a3=5a5D.a6÷a3=a3考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据积的乘方,完全平方公式,合并同类项,同底数幂的除法法则计算即可.解答:解:A、(﹣a3)2=a6,故本选项错误;B、(a﹣b)2=a2﹣2ab+b2,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、a6÷a3=a3,故本选项正确.故选D.点评:本题综合考查了积的乘方,完全平方公式,合并同类项,同底数幂的除法,是基础题目,难度不大.5.(3分)(2011•某某)函数y=的自变量x的取值X围是()A.x>1 B.x<1 C.x≥1D.x≤1考点:函数自变量的取值X围.专题:计算题.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的X围.解答:解:由题意得x﹣1≥0,解得x≥1.故选C.点评:考查求函数自变量的取值;用到的知识点为:二次根式的被开方数为非负数.6.(3分)(2013•田阳县一模)计算:的值为()A.1B.2C.3D.﹣3考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1+2=2﹣1+2=3.故选C.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.7.(3分)(2013•田阳县一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.8.(3分)(2013•田阳县一模)下列命题()(1)等边三角形是中心对称图形;(2)全等三角形对应角相等;(3)如果|a|=|b|,那么a=b;(4)相似三角形的面积比等于相似比的平方.其中是真命题的个数为()A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据等边三角形的性质以及全等三角形的性质和相似三角形的判定与性质和绝对值得性质分别判断得出即可.解答:解:(1)等边三角形不是中心对称图形,此命题错误;(2)全等三角形对应角相等,此命题正确;(3)如果|a|=|b|,那么a=±b,故此选项错误;(4)相似三角形的面积比等于相似比的平方,此命题正确.故正确的有2个.故选:B.点评:此题主要考查了命题与定理,熟练掌握相关的定理判断得出是解题关键.9.(3分)(2011•某某)今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的()A.中位数B.众数C.平均数D.方差考点:统计量的选择.分析:本题需根据中位数、众数、平均数、方差表示的含义进行分析即可求出正确答案.解答:解:∵有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,并且知道某同学分数,∴要判断他能否进入决赛,只需知道这些数据的中位数即可.故选A.点评:本题主要考查了统计量的选择,在解题时要能根据中位数、众数、平均数、方差表示的含义求出正确答案是本题的关键.10.(3分)(2009•某某)如图,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为()A.4πcm2B.6πcm2C.9πcm2D.12πcm2考点:圆锥的计算.专题:压轴题.分析:扇形的面积公式=,把相应数值代入求解即可.解答:解:圆锥的侧面积==12πcm2,故选D.点评:本题利用了扇形的面积公式求解.11.(3分)(2009•某某)如图,在等边△ABC中,D、E、F分别是BC,AC,AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比等于()A.1:3 B.2:3 C.:2 D.:3考点:相似三角形的判定与性质;三角形的面积;等边三角形的性质.专题:压轴题.分析:三角形的面积=×高×底,所以相似三角形的面积之比等于边之比的平方,由DE⊥AC,EF⊥AB,FC⊥BC得出△DEF与△ABC的角对应相等,即:△DEF∽△CAB,求出两个三角形的边之比即可,又知△ABC是正三角形,所以∠B=∠C=∠A=60°,利用余弦和正弦定理求出两个三角形的边之比.解答:解:∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=()2,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°,△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴==,∴△DEF与△ABC的面积之比等于:()2==1:3.故选:A.点评:本题主要考查如何求三角形的面积之比,若能证出两个三角形是相似三角形,此时三角形的面积之比等于对应边之比的平方,只要求出对应边比即可.12.(3分)(2011•某某)如图,已知A、B是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P 作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.考点:反比例函数综合题;动点问题的函数图象.专题:综合题;压轴题.分析:当点P在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,当点P在BC上运动时,S随t的增大而减小,根据以上判断做出选择即可.解答:解:当点P在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,∴B、D淘汰;当点P在BC上运动时,S随t的增大而逐渐减小,∴C错误.故选A.点评:本题考查了反比例函数的综合题和动点问题的函数图象,解题的关键是根据点的移动确定函数的解析式,从而确定其图象.二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).13.(3分)(2010•某某)因式分解:a2﹣1= (a+1)(a﹣1).考点:因式分解-运用公式法.分析:考查了对平方差公式的理解,本题属于基础题.本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:a2﹣1=a2﹣12=(a+1)(a﹣1).点评:本题考查了公式法分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.14.(3分)(2013•田阳县一模)2013年4月20日8点02分我国某某省某某市芦山县发生7.0级地震,截至4月27日8时02分.根据基金会行业第三方信息披露平台基金会中心网数据统计,全国共有115家基金会已参与地震救援和确定参与灾后重建工作,共募集善款和物资10.49亿元人民币左右,用科学记数法表示为 1.049×109元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于10.49亿有10位,所以可以确定n=10﹣1=9.解答:解:10.49亿=1 049 000 000=1.049×109.故答案为:1.049×109.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.(3分)(2013•田阳县一模)以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是第四象限.考点:解二元一次方程组;点的坐标.专题:计算题.分析:利用加减消元法解出方程组的解,得到x与y的值,从而确定出点的坐标,根据平面上点坐标的特征,即可确定出所在的象限.解答:解:①+②得2y=﹣4,即y=﹣2,把y=﹣2代入①得:x=4,∴方程组的解为,∴坐点的标(4,﹣2),则点(x,y)在平面直角坐标系中的位置是第四象限.故答案为:四点评:此题考查了解二元一次方程组,以及实数的运算,利用了消去的思想,消去的方法有:加减消去法与代入消元法.16.(3分)(2013•田阳县一模)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为.考点:概率公式.分析:先求出球的所有个数与白球的个数,再根据概率公式解答即可.解答:解:∵共8球在袋中,其中3个白球,∴摸到白球的概率为,故答案为:.点评:本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.17.(3分)(2013•田阳县一模)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为.考点:圆周角定理;等腰直角三角形.分析:连接OB,由同弧说对圆周角等于圆心角的一半可知∠AOB=90°,在Rt△AOB中,由勾股定理可知,AO=50m,所以AD=.解答:解:∵∠ACB=45°,∴∠AOB=90°,∵AB=100m,∴AO=50m,∴AD=2AO=100m,故答案为:.点评:此题主要考查了圆周角定理,以及勾股定理的应用,关键是证出∠AOB=90°,在Rt△AOB中,由勾股定理算出AO的长.18.(3分)(2013•田阳县一模)如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y 轴于点A2;…;按此作法继续下去,则点A4的坐标为(0,256).考点:一次函数综合题.专题:压轴题;规律型;数形结合.分析:根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A4坐标即可.解答:解:∵l:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256),故答案为:(0,256).点评:综合考查一次函数的知识;根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.三、解答题(本大题共8题,满分66分,请将答案写在答题卡上.)19.(6分)(2013•田阳县一模)解不等式组:.考点:解一元一次不等式组.分析:先解每一个不等式,再求解集的公共部分.解答:解:,解不等式①,得x>﹣2,解不等式②,得x≤1,∴不等式组的解集为﹣2<x≤1.点评:本题考查了解一元一次不等式组.关键是分别解每一个不等式,再求解集的公共部分.20.(6分)(2011•某某)先化简:()÷.再从1,2,3中选一个你认为合适的数作为a的值代入求值.考点:分式的化简求值.专题:开放型.分析:括号里通分,除式的分母因式分解,除法化为乘法,约分,代值时,a的取值不能使分母、除式为0.解答:解:原式=•=•=.∵a≠1,a≠﹣1,a≠0.∴在1,2,3中,a只能取2或3.当a=2时,原式=.当a=3时,原式=.注:在a=2,a=3中任选一个算对即可.点评:本题考查了分式的化简求值.关键是根据分式混合运算的顺序解题,代值时,字母的取值不能使分母、除式为0.21.(8分)(2011•潼南县)为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是72 度;(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?考点:条形统计图;用样本估计总体;扇形统计图.专题:压轴题;图表型.分析:(1)结合条形统计图和扇形统计图,先用成绩类别为“差”的人数÷16%,得被抽取的学生总数,再用被抽取的学生总数×成绩类别为“中”的人数所占的百分比求得成绩类别为“中”的人数,从而补全条形统计图.(2)成绩类别为“优”的扇形所占的百分比=成绩类别为“优”的人数÷被抽取的学生总数,它所对应的圆心角的度数=360°×成绩类别为“优”的扇形所占的百分比.(3)该校九年级学生的数学成绩达到优秀的人数=1000×成绩类别为“优”的学生所占的百分比.解答:解:(1)如上图.(2)成绩类别为“优”的扇形所占的百分比=10÷50=20%,所以表示成绩类别为“优”的扇形所对应的圆心角是:360°×20%=72°;(3)1000×20%=200(人),答:该校九年级共有200名学生的数学成绩可以达到优秀.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2013•田阳县一模)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.请你猜想:线段AF与线段EC有怎样的数量关系?并对你的猜想加以证明.考点:平行四边形的性质;全等三角形的判定与性质.分析:由在▱ABCD中,E、F分别是AB、CD的中点,利用SAS即可判定:△BEC≌△DFA,利用全等三角形的性质即可得到AF=CE.解答:解:猜想:AF=CE,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS),∴AF=CE.点评:此题考查了平行四边形的性质、全等三角形的判定与性质,此题难度适中,注意掌握数形结合思想的应用.23.(8分)(2013•田阳县一模)今年1月份底,民政局将全市为冰冻受灾地区捐赠的物资打包成件,其中御寒衣物3000件,食品1300件.现计划租用甲、乙两种货车共10辆将这批物资全部运往受灾地区,已知甲种货车可装衣物400件和食品100件,乙种货车可装衣物、食品各200件(1)民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则民政局应选择哪种方案可使运费最少?最少运费是多少元?考点:一元一次不等式组的应用.专题:应用题.分析:(1)设安排甲种车辆x,乙种车辆(10﹣x),根据这些车辆运送的御寒衣物至少3000件,食品至少1300件,可得出不等式组,解出即可;(2)设运费为W,则可得出W关于x的表达式,根据一次函数的增减性进行判断即可.解答:解:设安排甲种车辆x,乙种车辆(10﹣x),由题意得,,解得:5≤x≤7,∵x为正整数,∴x可取5,6,7,①安排甲种车5辆,乙种车5辆;②安排甲种车6辆,乙种车4辆;③安排甲种车7辆,乙种车3辆;(2)设运费为W,由题意得,W=2000x+1300(10﹣x)=700x+13000,∵700>0,∴w=700x+13000是增函数,故选择方案①运费最少,最少运费为16500元.点评:本题考查了一元一次不等式组及一次函数的应用,解答本题的关键是仔细审题,设出未知数,将实际问题转化为数学模型.24.(8分)(2011•仙桃)如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.考点:反比例函数综合题.专题:计算题;几何图形问题.分析:(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.解答:解:(1)∵双曲线过A(3,),∴k=20.把B(﹣5,a)代入,得a=﹣4.∴点B的坐标是(﹣5,﹣4).(2分)设直线AB的解析式为y=mx+n,将A(3,)、B(﹣5,﹣4)代入,得,解得:,∴直线AB的解析式为:;(4分)(2)四边形CBED是菱形.理由如下:(5分)点D的坐标是(3,0),点C的坐标是(﹣2,0).∵BE∥x轴,∴点E的坐标是(0,﹣4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.(6分)在Rt△OED中,ED2=OE2+OD2,∴ED====5,∴ED=CD.∴平行四边形CBED是菱形.(8分)点评:本题考查了反比例函数综合题.解答此题时,利用了反比例函数图象上点的坐标特征.25.(10分)(2013•田阳县一模)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,连接BF.(1)证明:AF平分∠BAC;(2)作∠ABC的角平分线交AF于点D,(尺规作图,保留作图痕迹,不写作法)(3)若EF=2,DE=3,求tan∠EBF的值.考点:切线的性质;作图—复杂作图.分析:(1)首先连接OF,由FH是⊙O的切线,切点为F,FH∥BC,易证得OF⊥BC,然后由垂径定理,求得AF平分∠BAC;(2)根据角平分线的作法,求解即可求得∠ABC的角平分线;(3)易证得△BDF是等腰三角形,即可求得BF的长,△BEF∽△ABF,然后由相似三角形的对应边成比例,求得AF的长,继而求得答案.解答:(1)证明:连接OF,∵FH是⊙O的切线,∴OF⊥FH,∵FH∥BC,∴OF⊥BC,∴=,∴∠BAF=∠CAF,∴AF平分∠BAC;(2)如图:BF即是∠ABC的角平分线;(3)解:∵∠ABD=∠CBD,∠BAF=∠CAF=∠CBF,且∠FBD=∠CBD+∠CBF,∠BDF=∠ABD+∠BAF,∴∠FBD=∠BDF,∴BF=DF=EF+DE=2+3=5,∵∠AFB=∠BFE(公共角),∠CBF=∠BAF,∴△BEF∽△ABF,∴BF:AF=EF:BF,∴AF==,∵AB是⊙O的直径,∴∠AFB=90°,∴tan∠EBF=tan∠BAF===.点评:此题考查了切线的性质,角平分线的作法、等腰三角形的判定与性质、相似三角形的判定与性质、垂径定理、圆周角定理以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.(12分)(2007•义乌)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)因为抛物线与x轴相交,所以可令y=0,解出A、B的坐标.再根据C点在抛物线上,C点的横坐标为2,代入抛物线中即可得出C点的坐标.再根据两点式方程即可解出AC的函数表达式;(2)根据P点在AC上可设出P点的坐标.E点坐标可根据已知的抛物线求得.因为PE都在垂直于x轴的直线上,所以两点之间的距离为y p﹣y E,列出方程后结合二次函数的性质即可得出答案;(3)存在四个这样的点.①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣x+7.因此直线GF与x轴的交点F的坐标为(4+,0);④如图,同③可求出F的坐标为(4﹣,0);综合四种情况可得出,存在4个符合条件的F点.解答:解:(1)令y=0,解得x1=﹣1或x2=3∴A(﹣1,0)B(3,0)将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3∴C(2,﹣3)∴直线AC的函数解析式是y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1)E(x,x2﹣2x﹣3)∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣)2+,∴当时,PE的最大值=;(3)存在4个这样的点F,分别是F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G 点的坐标为(1+,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣x+4+.因此直线GF与x轴的交点F的坐标为(4+,0);④如图,同③可求出F的坐标为(4﹣,0).综合四种情况可得出,存在4个符合条件的F点.点评:本题着重考查了待定系数法求一次函数解析式、平行四边形的判定、二次函数的性质等重要知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.。

2013年广西百色市中考数学试卷(解析版)-推荐下载

2013年广西百色市中考数学试卷(解析版)-推荐下载
第 2 页 共 16 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年广西百色市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.
3.(3分)(2013•百色)百色市人民政府在2013年工作报告中提出,今年将继续实施十项为民办实事工程.其中教育惠民工程将投资2.82亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生
5.(3分)(2013•百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()
6.(3分)(2013•百色)在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx的图象.
y=
7.(3分)(2013•百色)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是()
8.(3分)(2013•百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是()
∴,
9.(3分)(2013•百色)如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:
①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.
其中正确的有()
10.(3分)(2013•百色)不等式组的解集在数轴上表示正确的是()

11.(3分)(2013•百色)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A 落在点A′处,折痕为DE,则A′E的长是()
BD=

E=
12.(3分)(2013•百色)如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、
A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()
92
=OC=).根据
(﹣
OC=
OCD==
,==3,
=7,,=63

96
二、填空题(本大题共6小题,每小题3分,共18分.)请把答案填在答题卷指定的位置上.13.(3分)(2013•百色)4的算术平方根是2.
14.(3分)(2013•百色)若函数y=有意义,则自变量x的取值范围是x≠2.
15.(3分)(2013•百色)如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长是3cm.
OA=AC=
OB=,
BD=2OB=3.
16.(3分)(2013•百色)某校对去年毕业的350名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有28人.
17.(3分)(2013•百色)如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋
转过程中所经过的路线的长是πcm.(结果保留π)
在旋转过程中所经过的路线的长是:=
故答案为:
18.(3分)(2013•百色)如图,在边长为10cm的正方形ABCD中,P为AB边上任意一点(P不与A、B两点
重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为cm.
=,所以=,即x
∴,即=,
x((
有最大值.
故答案是:
三、解答题(本大题共8小题,共66分)请在答题卷指定的位置上写出解答过程.
19.(6分)(2013•百色)计算:(3﹣π)0+2sin60°+()﹣2﹣|﹣|
×+4
20.(6分)(2013•百色)先化简,再求值:+,其中a=﹣1,b=.
时,原式
21.(6分)(2013•百色)如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.
(1)求证:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.
=,即=CE=(
∴,即=.
CE=(
22.(8分)(2013•百色)“中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗.小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧.
(1)小明随机拿一个月饼,是莲蓉的概率是多少?
(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?
小明随机拿一个月饼,是莲蓉的概率是
没有拿到豆沙月饼的概率是:=
23.(8分)(2013•百色)如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(﹣3,0),交y轴于点B(0,2),并与y=的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C′是点C关于y轴的对称点,请求出△ABC′的面积.

∴,

x+2
y=


24.(10分)(2013•百色)为响应区“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.
(1)该项绿化工作原计划每天完成多少m2?,
(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?
25.(10分)(2013•百色)如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.
(1)如果∠CBD=∠E,求证:BC是⊙O的切线;
(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;
(3)若tanE=,BC=,求阴影部分的面积.(计算结果精确到0.1)
(参考数值:π≈3.14,≈1.41,≈1.73)

BAD=.
BC=
AB=
BAD=
﹣××π≈
26.(12分)(2013•百色)如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧).
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由.
×××
OM=CM=.
.∴。

相关文档
最新文档